Rare Virulences and Great Pathotype Diversity of a Central European Blumeria hordei Population
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1123
Ministry of Agriculture of the Czech Republic
PubMed
37998851
PubMed Central
PMC10672294
DOI
10.3390/jof9111045
PII: jof9111045
Knihovny.cz E-zdroje
- Klíčová slova
- Blumeria graminis f. sp. hordei, Hordeum vulgare, barley, powdery mildew, resistance genes, reverse octal notation, virulence complexity, virulence frequency,
- Publikační typ
- časopisecké články MeSH
Barley is an important crop grown on almost 49 Mha worldwide in 2021 and is particularly significant in Europe where powdery mildew is the most frequent disease on susceptible varieties. The most suitable way to protect crops is by exploiting genetic resistance. However, the causal agent Blumeria hordei is an extremely adaptable pathogen. The aims of this research were to increase our knowledge of the rapidly changing pathogen population and detect rare virulences. Random samples of the pathogen were obtained from the air by means of a mobile spore sampler. Spores were collected by driving across the Czech Republic in 2019, 2021 and 2023, and 299 isolates were analyzed on 121 host varieties. No infection occurred on 35 differentials, rare virulence was recorded on 31 varieties and a higher virulence frequency was found on 55 differentials. A core set of differentials along with four additional varieties distinguishes 295 pathotypes (Simple Index = 0.987) and the virulence complexity of isolates varied from 4 to 19 with an average of 10.39. The detection of new virulences, the increasing frequency of previously rare virulences and high pathotype diversity as well as high virulence complexity confirm that using nonspecific durable resistance is crucial for successfully breeding commercial varieties.
Zobrazit více v PubMed
Liu M., Braun U., Takamatsu S., Hambleton S., Shoukouhi P., Bisson K.R., Hubbard K. Taxonomic revision of Blumeria based on multi-gene DNA sequences, host preferences and morphology. Mycoscience. 2021;62:143–165. doi: 10.47371/mycosci.2020.12.003. PubMed DOI PMC
Wang Y., Zhang G., Wang F., Lang X., Zhao X., Zhu J., Hu C., Hu J., Zhang Y., Yao X., et al. Virulence variability and genetic diversity in Blumeria graminis f. sp. hordei in Southeastern and Southwestern China. Plant Dis. 2023;107:809–819. doi: 10.1094/PDIS-04-22-0944-RE. PubMed DOI
Wang Y.J., Zhuoma Q., Xu Z., Peng Y.L., Wang M. Virulence and genetic types of Blumeria graminis f. sp. hordei in Tibet and surrounding areas. J. Fungi. 2023;9:363. doi: 10.3390/jof9030363. PubMed DOI PMC
Murray G.M., Brennan J.P. Estimating disease losses to the Australian barley industry. Aust. Plant Pathol. 2010;39:85–96. doi: 10.1071/AP09064. DOI
Marzani Q.A., Amin M.M., Fateh S.A. Evaluation the effects of powdery mildew caused by Blumeria graminis f. sp. hordei and cultivar on the barley lodging. Eur. J. Plant Pathol. 2023;165:233–240. doi: 10.1007/s10658-022-02601-y. DOI
Jensen H.P., Christensen E., Jørgensen J.H. Powdery mildew resistance genes in 127 northwest European spring barley varieties. Plant Breed. 1992;108:210–228. doi: 10.1111/j.1439-0523.1992.tb00122.x. DOI
Dreiseitl A. Diferences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Ann. Appl. Biol. 2011;159:49–57. doi: 10.1111/j.1744-7348.2011.00474.x. DOI
Jørgensen J.H., Jensen H.P. Powdery mildew resistance in barley landrace material 1. Screening for resistance. Euphytica. 1997;97:227–233. doi: 10.1023/A:1003032424968. DOI
Czembor J.H., Czembor H.J. Powdery mildew resistance in selections from Moroccan barley landraces. Phytoparasitica. 2000;28:65–78. doi: 10.1007/BF02994024. DOI
Czembor J.H., Czembor H.J. Selections from barley landrace collected in Libya as new sources of efective resistance to powdery mildew (Blumeria graminis f. sp. hordei) Rostl. Vyrob. 2002;48:217–223. doi: 10.17221/4229-PSE. DOI
Fischbeck G., Schwarzbach E., Sobel Z., Wahl I. Mildew resistance in Israeli populations of 2-rowed wild barley (Hordeum spontaneum) Z. Pflanz. 1976;76:163–166.
Dreiseitl A., Dinoor A. Phenotypic diversity of barley powdery mildew resistance sources. Genet. Resour. Crop Evol. 2004;51:251–258. doi: 10.1023/B:GRES.0000024010.12369.b3. DOI
Dreiseitl A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017;8:202. doi: 10.3389/fpls.2017.00202. PubMed DOI PMC
Brown J.K.M., Jørgensen J.H. A catalogue of mildew resistance genes in European barley varieties. In: Jørgensen J.H., editor. Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø National Laboratory, Roskilde, Denmark, 23–25 January 1990. Risø National Laboratory; Roskilde, Denmark: 1991. pp. 263–286.
Jørgensen J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994;13:97–119. doi: 10.1080/07352689409701910. DOI
Dreiseitl A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes. 2020;11:971. doi: 10.3390/genes11090971. PubMed DOI PMC
McDonald B.A., Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. PubMed DOI
Praz C.R., Menardo F., Robinson M.D., Mueller M.C., Wicker T., Bourras S., Keller B. Non-parent of origin expression of numerous effector genes indicates a role of gene regulation in host adaption of the hybrid triticale powdery mildew pathogen. Front. Plant Sci. 2018;9:49. doi: 10.3389/fpls.2018.00049. PubMed DOI PMC
Muller M.C., Kunz L., Graf J., Schudel S., Keller B. Host adaptation through hybridization: Genome analysis of triticale powdery mildew reveals unique combination of lineage-specific effectors. Molec. Plant-Microbe Interact. 2021;34:1350–1357. doi: 10.1094/MPMI-05-21-0111-SC. PubMed DOI
Kusch S., Qian J., Loos A., Kuemmel F., Spanu P.D., Panstruga R. Long-term and rapid evolution in powdery mildew fungi. Molec. Ecology. 2023 doi: 10.1111/mec.16909. PubMed DOI
Dreiseitl A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019;53:801–811. doi: 10.1007/s10658-018-1593-6. DOI
Dreiseitl A. Virulence frequency to powdery mildew resistances in winter barley cultivars. Czech J. Genet. Plant Breed. 2008;44:160–166. doi: 10.17221/39/2008-CJGPB. DOI
Czembor H.J., Domeradzka O., Czembor J.H., Mankowski D.R. Virulence structure of the powdery mildew (Blumeria graminis) population occurring on triticale (x triticosecale) in Poland. J. Phytopathol. 2014;162:499–512. doi: 10.1111/jph.12225. DOI
Lalosevic M., Jevtic R., Zupunski V., Masirevic S., Orbovic B. Virulence structure of the wheat powdery mildew population in Serbia. Agronomy. 2022;12:45. doi: 10.3390/agronomy12010045. DOI
Cieplak M., Nucia A., Ociepa T., Okon S. Virulence structure and genetic diversity of Blumeria graminis f. sp. avenae from different regions of Europe. Plants. 2022;11:1358. doi: 10.3390/plants11101358. PubMed DOI PMC
Hovmøller M.S., Caffier V., Jalli M., Anderson O., Besenhofer G., Czembor J.H., Dreiseitl A., Felsenstein F., Fleck A., Heinrics F. The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie. 2000;20:729–743. doi: 10.1051/agro:2000172. DOI
Dreiseitl A. Pathogenic divergence of Central European and Australian populations of Blumeria graminis f. sp. hordei. Ann. Appl. Biol. 2014;165:364–372. doi: 10.1111/aab.12141. DOI
Komínková E., Dreiseitl A., Malečková E., Doležel J., Valárik M. Genetic diversity of Blumeria graminis f. sp. hordei in Central Europe and its comparison with Australian population. PLoS ONE. 2016;11:e0167099. doi: 10.1371/journal.pone.0167099. PubMed DOI PMC
Dreiseitl A. Rare virulences of barley powdery mildew found in aerial populations in the Czech Republic from 2009 to 2014. Czech J. Genet. Plant Breed. 2015;51:1–8. doi: 10.17221/254/2014-CJGPB. DOI
FAOSTAT. [(accessed on 9 August 2023)]. Available online: https://www.fao.org/faostat/en/
Dreiseitl A. Postulation of specific powdery mildew resistance genes in cereals: A widely used method and its detailed description. Pathogens. 2022;11:284. doi: 10.3390/pathogens11030284. PubMed DOI PMC
Dreiseitl A., Platz G. Powdery mildew resistance genes in barley varieties grown in Australia. Crop Pasture Sci. 2012;63:997–1006. doi: 10.1071/CP12165. DOI
Kølster P., Munk L., Stølen O., Løhde J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986;26:903–907. doi: 10.2135/cropsci1986.0011183X002600050014x. DOI
Dreiseitl A., Nesvadba Z. Powdery mildew resistance genes in single-plant progenies derived from accessions of a winter barley core collection. Plants. 2021;10:1998. doi: 10.3390/plants10101988. PubMed DOI PMC
Schwarzbach E. A high throughput jet trap for collecting mildew spores on living leaves. Phytopathol. Z. 1979;94:165–171. doi: 10.1111/j.1439-0434.1979.tb01546.x. DOI
Torp J., Jensen H.P., Jørgensen J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Year-Book, 1978. Royal Veterinary and Agricultural University; Copenhagen, Denmark: 1978. pp. 75–102.
Kosman E., Chen X., Dreiseitl A., McCallum B., Lebeda A., Ben-Yehuda P., Gultyaeva E., Manisterski J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology. 2019;109:1324–1330. doi: 10.1094/PHYTO-02-19-0041-LE. PubMed DOI
Flor H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI
McVey D.V., Roelfs A.P. Postulation of genes for stem rust resistance in the entries of the Fourth international winter wheat performance nursery. Crop Sci. 1975;15:335–337. doi: 10.2135/cropsci1975.0011183X001500030016x. DOI
Gilmour J. Octal notation for designating physiologic races of plant pathogens. Nature. 1973;242:620. doi: 10.1038/242620a0. DOI
Limpert E., Müller K. Designation of pathotypes of plant pathogens. J. Phytopathol. 1994;140:346–358. doi: 10.1111/j.1439-0434.1994.tb00617.x. DOI
Herrmann A., Löwer C.F., Schachtel G.A. A new tool for entry and analysis of virulence data for plant pathogens. Plant Pathol. 1999;48:154–158. doi: 10.1046/j.1365-3059.1999.00325.x. DOI
Brückner F. Powdery mildew (Erysiphe graminis DC.) on barley. III. Investigation of physiological races of Erysiphe graminis DC. Detected in Czechoslovakia in 1960–61. Rostl. Vyr. 1963;9:1–8.
Brückner F. The finding of powdery mildew (Erysiphe graminis DC. var. hordei Marchal) race on barley: A race virulent to resistance genes Mla9 and Mla14. Ochrana Rostl. 1982;18:101–105.
Dreiseitl A. Resistance of ‘Roxana’ to powdery mildew and its presence in some European spring barley cultivars. Plant Breed. 2011;130:419–422. doi: 10.1111/j.1439-0523.2010.01786.x. DOI
Brückner F. Powdery mildew (Erysiphe graminis DC.) on barley. V. The resistance of barley varieties to physiological races of Erysiphe graminis DC. detected in Czechoslovakia and the possibility to use it in breeding for resistance. Rostl. Vyr. 1964;10:395–408.
Dreiseitl A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017;136:351–356. doi: 10.1111/pbr.12471. PubMed DOI PMC
Dreiseitl A. Emerging Blumeria graminis f. sp. hordei pathotypes reveal ‘Psaknon’ resistance in European barley varieties. J. Agric. Sci. 2016;154:1082–1089. doi: 10.1017/S0021859615001069. DOI
Dreiseitl A. Resistance of barley variety ‘Venezia’ and its reflection in Blumeria graminis f. sp. hordei population. Euphytica. 2018;214:40. doi: 10.1007/s10681-018-2123-5. DOI
Dreiseitl A. Powdery mildew resistance genes in European barley cultivars registered in the Czech Republic from 2016 to 2020. Genes. 2022;13:1274. doi: 10.3390/genes13071274. PubMed DOI PMC
Obilniny 2023. [(accessed on 12 September 2023)]. Available online: https://eagri.cz/public/web/file/724909/Obilniny_2023.pdf.
Brown J.K.M. Recombination and selection in populations of plant pathogens. Plant Pathol. 1995;44:279–293. doi: 10.1111/j.1365-3059.1995.tb02779.x. DOI
Huang R., Kranz J., Welz H.G. Virulence gene-frequency change in Erysiphe graminis f. sp. hordei due to selection by non-corresponding barley mildew resistance gene and hitchhiking. J. Phytopathol. 1995;143:287–294. doi: 10.1111/j.1439-0434.1995.tb00262.x. DOI
Jahoor A., Stephan U., Fischbeck G. Study of powdery mildew resistance gene from ´Engledow India´. Barley Genet. Newslett. 1990;20:41–42.
Giese H., Jensen H.P., Jørgensen J.H. Allelism of genes in the Ml-a locus. Barley Genet. Newslett. 1980;10:22–24.
Dreiseitl A., Yang J. Powdery mildew resistance in a collection of Chinese barley varieties. Genet. Resour. Crop Evol. 2007;54:259–266. doi: 10.1007/s10722-005-3810-3. DOI
Dreiseitl A., Fowler R.A., Platz G.J. Pathogenicity of Blumeria graminis f. sp. hordei in Australia in 2010 and 2011. Australas. Plant Pathol. 2013;42:713–721. doi: 10.1007/s13313-013-0227-x. DOI
Rsaliyev A., Pahratdinova Z., Rsaliyev S. Characterizing the pathotype structure of barley powdery mildew and effectiveness of resistance genes to this pathogen in Kazakhstan. BMC Plant Biol. 2017;17:178. doi: 10.1186/s12870-017-1130-3. PubMed DOI PMC
Zeybek A., Khan M.K., Pandey A., Gunel A., Erdogan O., Akkaya M.S. Genetic structure of powdery mildew disease pathogen Blumeria graminis f. sp. hordei in the barley fields of Cukurova in Turkey. Fresenius Environ. Bull. 2017;26:906–912.
Tucker M.A., Jayasena K., Ellwood S.R., Oliver R.P. Pathotype variation of barley powdery mildew in Western Australia. Australas. Plant Pathol. 2013;42:617–623. doi: 10.1007/s13313-013-0226-y. DOI
Hiura U., Heta H. Studies on the disease resistance in barley. III. Further studies on the physiologic races of Erysiphe graminis hordei in Japan. Ber. Des Ohara Inst. Für Landwirtsch. Biol. 1955;10:135–156.
Bettgenhaeuser J., Hernández-Pinzón I., Dawson A.M., Gardiner M., Green P., Taylor J., Smoker M., Ferguson J.N., Emmrich P., Hubbard A., et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat. Commun. 2021;12:6915. doi: 10.1038/s41467-021-27288-3. PubMed DOI PMC
Roelfs A., McVey D.V. Wheat stem rust races in Yaqui valley of Mexico during 1972. Plant Dis. Report. 1972;56:1038–1039.
Limpert E., Clifford B., Dreiseitl A., Johnson R., Müller K., Roelfs A., Wellings C. Systems of designation of pathotypes of plant pathogens. J. Phytopathol. 1994;140:359–362. doi: 10.1111/j.1439-0434.1994.tb00618.x. DOI
Okon S., Cieplak M., Kuzdralinski A., Ociepa T. New pathotype nomenclature for better characterisation the virulence and diversity of Blumeria graminis f. sp. avenae populations. Agronomy. 2021;11:1852. doi: 10.3390/agronomy11091852. DOI
Kusch S., Panstruga R. mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Molec. Plant-Microbe Interact. 2017;30:179–189. doi: 10.1094/MPMI-12-16-0255-CR. PubMed DOI
Panstruga R., Moscou M. What is the molecular basis of nonhost resistance? Molec. Plant-Microbe Interact. 2020;33:1253–1264. doi: 10.1094/MPMI-06-20-0161-CR. PubMed DOI
Dreiseitl A. Adaptation of Blumeria graminis f. sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ. 2003;49:241–248. doi: 10.17221/4120-PSE. DOI