Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020

. 2022 Jul 18 ; 13 (7) : . [epub] 20220718

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35886057

Barley is an important crop grown annually on about 55 Mha and intensively cultivated in Europe. In central and north-western Europe, spring and winter barley can be grown in similar environments which creates suitable conditions for the development of barley pathogens, including Blumeria graminis f. sp. hordei, the causal agent of powdery mildew. Apart from pesticide application, it can be controlled by inexpensive and environmentally-friendly genetic resistance. In this contribution, results of the resistance gene identification in 58 barley cultivars to powdery mildew are presented. In 56 of them their resistances were postulated and in two hybrid cultivars a recently developed method of gene identification was used. In total, 18 known resistance genes were found and several unknown genes were detected. In spring barley, a gene of durable resistance mlo is still predominant. MlVe found in winter SU Celly was the only new resistance gene recorded in barley cultivars registered in the Czech Republic in this time span. Since 2001 eight new genes of specific resistance have been identified in cultivars registered in the country and their response under field conditions is discussed, including the corresponding responses of the pathogen population due to directional selection. Different strategies for breeding spring and winter barley are recommended.

Zobrazit více v PubMed

FAOSTAT [(accessed on 24 May 2022)]. Available online: https://www.fao.org/worldfoodsituation/csdb/en/

Státní Odrůdová Kniha 2020. [(accessed on 1 June 2022)]. Available online: https://eagri.cz/public/web/file/654573/_32020.pdf.

Situační a výhledová zpráva. Obiloviny. [(accessed on 1 June 2022)]. Available online: https://eagri.cz/public/web/file/702121/SVZ_Obiloviny_12_2021.pdf.

UKZUZ Obilniny 2020. [(accessed on 1 June 2022)]. Available online: https://eagri.cz/public/web/file/650948/Obilniny_2020.pdf.

Oguz A.C., Karakaya A. Genetic diversity of barley foliar fungal pathogens. Agronomy. 2021;11:434. doi: 10.3390/agronomy11030434. DOI

Hysing S.C., Rosenqvist H., Wiik L. Agronomic and economic effect of host resistance vs. fungicide control of barley powdery mildew in southern Sweden. Crop Protect. 2012;41:122–127. doi: 10.1016/j.cropro.2012.05.010. DOI

Jørgensen J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994;13:97–119. doi: 10.1080/07352689409701910. DOI

Dreiseitl A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes. 2020;11:971. doi: 10.3390/genes11090971. PubMed DOI PMC

Hollomon D.W. Resistance of barley powdery mildew to fungicides. ADAS Quart. Rev. 1980;39:226–233.

Hobbelen P.H.F., Paveley N.D., van den Bosch F. The emergence of resistance to fungicides. PLoS ONE. 2014;9:e91910. doi: 10.1371/journal.pone.0091910. PubMed DOI PMC

Hollomon D.W. Fungicide resistance: Facing the challenge. Plant Protect. Sci. 2015;51:170–176. doi: 10.17221/42/2015-PPS. DOI

McDonald B.A., Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. PubMed DOI

Hollomon D.W., Brent K.J. Combating plant diseases—The Darwin connection. Pest Managem. Sci. 2009;65:1156–1163. doi: 10.1002/ps.1845. PubMed DOI

Brown J.K.M., Hovmøller M.S. Epidemiology—Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–541. doi: 10.1126/science.1072678. PubMed DOI

Brown J.K.M., Jørgensen J.H. A catalogue of mildew resistance genes in European barley varieties. In: Jørgensen J.H., editor. Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø National Laboratory, Roskilde, Denmark, 23–25 January 1990. Risø National Laboratory; Roskilde, Denmark: 1991. pp. 263–286.

Dreiseitl A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019;53:801–811. doi: 10.1007/s10658-018-1593-6. DOI

Brückner F. Powdery mildew (Erysiphe graminis DC.) on barley. V. The resistance of barley varieties to physiological races of Erysiphe graminis DC. detected in Czechoslovakia and the possibility to use it in breeding for resistance. Rostl. Vyrob. 1964;10:395–408.

Dinoor A., Peleg N. Employing gene-for-gene hypothesis to estimate number of resistance genes in host and virulence in pathogen, and to determine their identity. Israel J. Agricult. Res. 1971;21:147.

McVey D.V., Roelfs A.P. Postulation of genes for stem rust resistance in entries of 4th International winter-wheat performance nursery. Crop Sci. 1975;15:335–337. doi: 10.2135/cropsci1975.0011183X001500030016x. DOI

Flor H.H. Host-parasite interaction in flax rust—its genetics and other implications. Phytopathology. 1955;45:680–685.

Metzger R.J., Trione E.J. Application of gene-for-gene relationship hypothesis to Triticum tilletia system. Phytopathology. 1962;52:363.

Flor H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI

Browder L.E., Eversmeyer M.G. Sorting of Puccinia-recondita, Triticum infection-type data sets towards the gene-for-gene model. Phytopathology. 1980;70:666–670. doi: 10.1094/Phyto-70-666. DOI

Jensen H.P., Christensen E., Jørgensen J.H. Powdery mildew resistance genes in 127 northwest European spring barley varieties. Plant Breed. 1992;108:210–228. doi: 10.1111/j.1439-0523.1992.tb00122.x. DOI

Andrivon D., de Vallavieille-Pope C. Race-specific resistance genes against Erysiphe graminis f. sp. hordei in old and recent French barley accessions. Plant Breed. 1992;108:40–52. doi: 10.1111/j.1439-0523.1992.tb00098.x. DOI

Dreiseitl A. Genes for resistance to powdery mildew in European winter barley cultivars registered in the Czech Republic and Slovakia to 2010. Plant Breed. 2013;132:558–562. doi: 10.1111/pbr.12108. PubMed DOI PMC

Dreiseitl A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017;136:351–356. doi: 10.1111/pbr.12471. PubMed DOI PMC

Dreiseitl A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020;10:18930. doi: 10.1038/s41598-020-75978-7. PubMed DOI PMC

Kølster P., Munk L., Stølen O., Løhde J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986;26:903–907. doi: 10.2135/cropsci1986.0011183X002600050014x. DOI

Torp J., Jensen H.P., Jørgensen J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Royal Veterinary and Agricultural University; Copenhagen, Denmark: 1978. pp. 75–102. Year-Book.

Kosman E., Chen X., Dreiseitl A., McCallum B., Lebeda A., Ben-Yehuda P., Gultyaeva E., Manisterski J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology. 2019;109:1324–1330. doi: 10.1094/PHYTO-02-19-0041-LE. PubMed DOI

Dreiseitl A. Postulation of specific disease resistance genes in cereals: A widely used method and its detailed description. Pathogens. 2022;11:284. doi: 10.3390/pathogens11030284. PubMed DOI PMC

Jørgensen J.H. Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63:141–152. doi: 10.1007/BF00023919. DOI

Brückner F. The breeding of the malting barley cultivar of new morphotype Forum. Genet. Šlecht. 1993;29:199–203.

Dreiseitl A., Jørgensen J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000;119:203–209. doi: 10.1046/j.1439-0523.2000.00473.x. DOI

Dreiseitl A. Resistance of ‘Roxana’ to powdery mildew and its presence in some European spring barley cultivars. Plant Breed. 2011;130:419–422. doi: 10.1111/j.1439-0523.2010.01786.x. DOI

Dreiseitl A. Changes in the population of Blumeria graminis f.sp. hordei in the Czech Republic from 2009 to 2010. Plant Protect. Sci. 2011;47:43–51. doi: 10.17221/44/2010-PPS. DOI

Dreiseitl A. Powdery mildew resistance in winter barley cultivars. Plant Breed. 2007;126:268–273. doi: 10.1111/j.1439-0523.2007.01348.x. DOI

Dreiseitl A. Dissimilarity of barley powdery mildew resistances Heils Hanna and Lomerit. Czech J. Genet. Plant Breed. 2011;47:95–100. doi: 10.17221/45/2011-CJGPB. DOI

Dreiseitl A. Virulence frequencies to powdery mildew resistance genes of winter barley cultivars. Plant Protect. Sci. 2004;40:135–140. doi: 10.17221/466-PPS. DOI

Dreiseitl A. Virulence frequency to powdery mildew resistances in winter barley cultivars. Czech J. Genet. Plant Breed. 2008;44:160–166. doi: 10.17221/39/2008-CJGPB. DOI

Dreiseitl A. Resistance of ‘Laverda’ to powdery mildew and its presence in some winter barley cultivars. Cereal Res. Commun. 2011;39:569–576. doi: 10.1556/CRC.2011.002. DOI

Dreiseitl A. Changes in virulence frequencies and higher fitness of simple pathotypes in the Czech population of Blumeria graminis f. sp. hordei. Plant Protect. Sci. 2015;51:67–73. doi: 10.17221/96/2014-PPS. DOI

Dreiseitl A. Rare virulences of barley powdery mildew found in aerial populations in the Czech Republic from 2009 to 2014. Czech J. Genet. Plant Breed. 2015;51:1–8. doi: 10.17221/254/2014-CJGPB. DOI

Dreiseitl A. (Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic). Study of the Czech airborne population of Blumeria graminis f. sp. hordei. 2022. Unpublished work .

Dreiseitl A. Emerging Blumeria graminis f. sp. hordei pathotypes reveal ‘Psaknon’ resistance in European barley varieties. J. Agric. Sci. 2016;154:1082–1089. doi: 10.1017/S0021859615001069. DOI

Dreiseitl A. Resistance of barley variety ‘Venezia’ and its reflection in Blumeria graminis f. sp. hordei population. Euphytica. 2018;214:40. doi: 10.1007/s10681-018-2123-5. DOI

Dreiseitl A. Postulation of genes for resistance to powdery mildew in spring barley cultivars registered in the Czech Republic from 1996 to 2010. Euphytica. 2013;191:183–189. doi: 10.1007/s10681-012-0741-x. PubMed DOI PMC

Brückner F. The finding of powdery mildew (Erysiphe graminis DC. var. hordei Marchal) race on barley: A race virulent to resistance genes Mla9 and Mla14. Ochr. Rostl. 1982;18:101–105.

Wolfe M.S., Brändle U., Koller B., Limpert E., McDermott J.M., Müller K., Schaffner D. Barley mildew in Europe: Population biology and host resistance. Euphytica. 1992;63:125–139. doi: 10.1007/BF00023918. DOI

Brown J.K. Durable Resistance of Crops to Disease: A Darwinian Perspective. Annu. Rev. Phytopathol. 2015;53:513–539. doi: 10.1146/annurev-phyto-102313-045914. PubMed DOI

Niks R.E., Qi X., Marcel T.C. Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annu. Rev. Phytopathol. 2015;53:445–470. doi: 10.1146/annurev-phyto-080614-115928. PubMed DOI

Cowger C., Brown J.K. Durability of Quantitative Resistance in Crops: Greater Than We Know? Annu. Rev. Phytopathol. 2019;57:253–277. doi: 10.1146/annurev-phyto-082718-100016. PubMed DOI

Miedaner T., Boeven A.L.G.-C., Gaikpa D.S., Kistner M.B., Grote C.P. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int. J. Mol. Sci. 2020;21:9717. doi: 10.3390/ijms21249717. PubMed DOI PMC

Czembor J.H., Czembor E., Suchecki R., Watson-Haigh N.S. Genome-wide association study for powdery mildew and rusts adult plant resistance in European spring barley from Polish gene bank. Agronomy. 2022;12:7. doi: 10.3390/agronomy12010007. DOI

Xu J., Kasha K.J. Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare) Theor. Appl. Genet. 1992;84:771–777. doi: 10.1007/BF00227383. PubMed DOI

Pickering R.A., Hill A.M., Michel M., Timmerman-Vaughan G.M. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I) Theor. Appl. Genet. 1995;91:1288–1292. doi: 10.1007/BF00220943. PubMed DOI

Panstruga R., Moscou M.J. What is the molecular basis of nonhost resistance? Molecul. Plant-Microbe Interact. 2020;33:1253–1264. doi: 10.1094/MPMI-06-20-0161-CR. PubMed DOI

Niks R.E. Nonhost plant-species as donors for resistance to pathogens with narrow host range. 2. Concepts and evidence on the genetic-basis of nonhost resistance. Euphytica. 1988;37:89–99. doi: 10.1007/BF00037229. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mlo-Mediated Broad-Spectrum and Durable Resistance against Powdery Mildews and Its Current and Future Applications

. 2024 Jan 04 ; 13 (1) : . [epub] 20240104

Rare Virulences and Great Pathotype Diversity of a Central European Blumeria hordei Population

. 2023 Oct 25 ; 9 (11) : . [epub] 20231025

Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions

. 2022 Nov 11 ; 11 (22) : . [epub] 20221111

Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020

. 2022 Jul 18 ; 13 (7) : . [epub] 20220718

Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description

. 2022 Feb 23 ; 11 (3) : . [epub] 20220223

A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars

. 2020 Nov 03 ; 10 (1) : 18930. [epub] 20201103

Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review

. 2020 Aug 21 ; 11 (9) : . [epub] 20200821

Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity

. 2018 ; 13 (12) : e0208719. [epub] 20181207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...