Major Genes for Powdery Mildew Resistance in Research and Breeding of Barley: A Few Brief Narratives and Recommendations
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
MZE-RO1123
Ministry of Agriculture
PubMed
40733328
PubMed Central
PMC12299605
DOI
10.3390/plants14142091
PII: plants14142091
Knihovny.cz E-resources
- Keywords
- Blumeria hordei, Hordeum vulgare, boom-and-bust cycle, durable resistance, gene postulation, major resistance genes, specific resistance,
- Publication type
- Journal Article MeSH
- Review MeSH
Genetic resistance is a sustainable way to protect crops from diseases, and breeding resistant varieties is a key objective. However, diseases are caused by pathogens with different life cycles, and the importance of individual evolutionary forces plays a key role in the adaptation of their populations. Therefore, strategies for the use of genetic resistance resources can vary depending on the plant pathosystem. Numerous major genes confer hypersensitive resistance to powdery mildew-one of the most common diseases in barley-but these genes conform to the gene-for-gene system of an extremely diverse and adaptable pathogen. When such resistance genes are transferred into commercial varieties, their efficiency in the field is soon overcome and replacement with newly developed resistant varieties can be slow. Hence, specific resistance genes should not be used in barley breeding programs. Only one monogenic, non-hypersensitive, non-specific and durable major resistance Mlo is known. This predominates in Central and Western European spring varieties and should be widely adopted by barley breeders elsewhere and in other crops where such type of resistance is found. In this paper, the relevant aspects involved in breeding barley resistant to powdery mildew are discussed, with conclusions supported by practical examples. Additionally, future directions for barley improvement are proposed.
See more in PubMed
Bourras S., Praz C.R., Spanu P.D., Keller B. Cereal powdery mildew effectors: A complex toolbox for an obligate pathogen. Curr. Opin. Microbiol. 2018;46:26–33. doi: 10.1016/j.mib.2018.01.018. PubMed DOI
Jørgensen J.H. Advances in Plant Pathology. Volume 6. Academic Press; London, UK: 1988. Erysiphe graminis, powdery mildew of cereals and grasses; pp. 137–157.
McDonald B.A., Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Ann. Rev. Phytopathol. 2002;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. PubMed DOI
Kusch S., Qian J.Z., Loos A., Kümmel F., Spanu P.D., Panstruga R. Long-term and rapid evolution in powdery mildew fungi. Mol. Ecol. 2024;33:10. doi: 10.1111/mec.16909. PubMed DOI
Brückner F. Powdery mildew (Erysiphe graminis DC.) on barley. Survey of the occurrence of physiological races on the territory of Czechoslovakia in 1960−1961. Rostl. Vyrob. 1963;9:1–8.
Brückner F. Powdery mildew (Erysiphe graminis DC.) on barley. V. The resistance of barley varieties to physiological races detected in Czechoslovakia and the possibility to use it in breeding for resistance. Rostl. Vyrob. 1964;10:395–408.
Brückner F. A complementary effect of different alleles for mildew resistance in barley. Z. Pflanzenzücht. 1967;58:122–127.
Brückner F. The breeding of the malting barley cultivar of new morphotype Forum. Genet. Šlecht. 1993;29:199–203.
Dreiseitl A. Analysis of growing Czechoslovak spring barley varieties resistant to powdery mildew. Rostl. Vyrob. 1993;39:337–344.
Dreiseitl A. Powdery mildew resistance in winter barley cultivars. Plant Breed. 2007;126:268–273. doi: 10.1111/j.1439-0523.2007.01348.x. DOI
Dreiseitl A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020;10:18930. doi: 10.1038/s41598-020-75978-7. PubMed DOI PMC
Dreiseitl A. Rare virulences and great pathotype diversity of a Central European Blumeria hordei population. J. Fungi. 2023;9:1045. doi: 10.3390/jof9111045. PubMed DOI PMC
Dreiseitl A., Jørgensen J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000;119:203–209. doi: 10.1046/j.1439-0523.2000.00473.x. DOI
Nover I., Brückner F., Wiberg A., Wolfe M.S. Races of Erysiphe graminis DC. f. sp. hordei Marchal in Europe. Z. Pfl.-Krank. Pfl. Schutz. 1968;75:350–353.
Brown J.K.M., Hovmoller M.S. Epidemiology—Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–541. doi: 10.1126/science.1072678. PubMed DOI
O’Hara R.B., Brown J.K.M. Movement of barley powdery mildew within field plots. Plant Pathol. 1998;47:394–400. doi: 10.1046/j.1365-3059.1998.00270.x. DOI
Dreiseitl A. Adaptation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ. 2003;49:241–248. doi: 10.17221/4120-PSE. DOI
Jørgensen J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994;13:97–119. doi: 10.1080/07352689409701910. DOI
Dreiseitl A. Specific resistance of barley to powdery mildew, its use and beyond: A concise critical review. Genes. 2020;11:971. doi: 10.3390/genes11090971. PubMed DOI PMC
Dreiseitl A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017;8:202. doi: 10.3389/fpls.2017.00202. PubMed DOI PMC
Fischbeck G., Schwarzbach E., Sobel Z., Wahl I. Mildew resistance in Israeli populations of 2-rowed wild barley (Hordeum spontaneum) Z. Pflanzenzücht. 1976;76:163–166.
Moseman J.G., Baenzinger P.S., Kilpatrick R.A. Genes conditioning resistance of Hordeum spontaneum to Erysiphe graminis f. sp. hordei. Crop Sci. 1981;21:229–232. doi: 10.2135/cropsci1981.0011183X002100020006x. DOI
Flor H.H. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI
Dreiseitl A. Mlo-mediated broad-spectrum and durable resistance against powdery mildews and its current and future applications. Plants. 2024;13:138. doi: 10.3390/plants13010138. PubMed DOI PMC
Xu Y.H., Jia Q.J., Zhou G.F., Zhang X.Q., Angessa T., Broughton S., Yan G., Zhang W.Y., Li C.D. Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol. 2017;17:11. doi: 10.1186/s12870-016-0964-4. PubMed DOI PMC
Dreiseitl A. Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Ann. Appl. Biol. 2011;159:49–57. doi: 10.1111/j.1744-7348.2011.00474.x. DOI
Brown J.K.M., Jørgensen J.H. A catalogue of mildew resistance genes in European barley varieties. In: Jørgensen J.H., editor. Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø, Denmark, 23–25 January 1990. Risø National Laboratory; Roskilde, Denmark: 1991. pp. 263–286.
Dreiseitl A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017;136:351–356. doi: 10.1111/pbr.12471. PubMed DOI PMC
Wolfe M.S., Brändle U., Koller B., Limpert E., McDermott J.M., Müller K., Schaffner D. Barley mildew in Europe: Population biology and host resistance. Euphytica. 1992;63:125–139. doi: 10.1007/BF00023918. DOI
Abebe T.D., Abate A., Leon J. Genetic diversity within landraces of barley (Hordeum vulgare L.) and its implications on germplasm collection and utilization. Genet. Resour. Crop Evol. 2023;70:1985–1998. doi: 10.1007/s10722-023-01549-0. DOI
Czembor J.H. Resistance to powdery mildew in selections from Moroccan barley landraces. Euphytica. 2002;125:397–409. doi: 10.1023/A:1016061508160. DOI
Czembor J.H., Czembor H.J. Selections from barley landrace collected in Libya as new sources of effective resistance to powdery mildew (Blumeria graminis f.sp. hordei) Rostl. Vyrob. 2002;48:217–223. doi: 10.17221/4229-PSE. DOI
Czembor J.H., Czembor E. Sources of resistance to powdery mildew in wild barley (Hordeum vulgare subsp. spontaneum) collected in Jordan, Lebanon, and Libya. Agronomy. 2023;13:2462. doi: 10.3390/agronomy13102462. DOI
Czembor J.H., Johnston M.R. Resistance to powdery mildew in selections from Tunisian landraces of barley. Plant Breed. 1999;118:503–509. doi: 10.1046/j.1439-0523.1999.00382.x. DOI
Piechota U., Czembor P.C., Slowacki P., Czembor J.H. Identifying a novel powdery mildew resistance gene in a barley landrace from Morocco. J. Appl. Genet. 2019;60:243–254. doi: 10.1007/s13353-019-00505-y. PubMed DOI PMC
Freisleben R., Lein A. Über die Auffindung einer mehltauresistenten Mutante nach Röentgenbestrahlung einer anfälligen reinen Linie von Sommergerste. Naturwissenschaften. 1942;30:608. doi: 10.1007/BF01488231. DOI
Jørgensen J.H. Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63:141–152. doi: 10.1007/BF00023919. DOI
Favret E.A. Mutation Breeding for Disease Resistance. International Atomic Energy Agency; Vienna, Austria: 1971. Different categories of mutations for disease reaction in the host organism; pp. 107–116.
Schwarzbach E. Recessive total resistance of barley to mildew (Erysiphe graminis D.C. f. sp. hordei Marchal) as a mutation induced by ethylmethansulfonate. Genet. Šlechteni. 1967;3:159–162.
Kusch S., Frantzeskakis L., Lassen B.D., Kümmel F., Pesch L., Barsoum M., Walden K.D., Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. New Phytol. 2024;244:262–279. doi: 10.1111/nph.20063. PubMed DOI
Schwarzbach E. Response to selection for virulence against the ml-o based mildew resistance in barley, not fitting the gene-for-gene hypothesis. Barley Gen. Newsl. 1979;9:85–88.
Schwarzbach E. Heat induced susceptibility of mlo-barley to powdery mildew. (Blumeria graminis D.C. f.sp. hordei Marchal) Czech J. Genet. Plant Breed. 2001;37:82–87.
Yaeno T., Wahara M., Nagano M., Wanezaki H., Toda H., Inoue H., Eishima A., Nishiguchi M., Hisano H., Kobayashi K. RACE1, a Japanese Blumeria graminis f. sp. hordei isolate, is capable of overcoming partially mlo-mediated penetration resistance in barley in an allele-specific manner. PLoS ONE. 2021;16:e0256574. doi: 10.1371/journal.pone.0256574. PubMed DOI PMC
Kusch S., Panstruga R. mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Mol. Plant-Microbe Interact. 2017;30:179–189. doi: 10.1094/MPMI-12-16-0255-CR. PubMed DOI
Bui T.P., Le H., Ta D.T., Nguyen C.X., Le N.T., Tran T.T., Nguyen P.V., Stacey G., Stacey M.G., Pham N.B. Enhancing powdery mildew resistance in soybean by targeted mutation of MLO genes using the CRISPR/Cas9 system. BMC Plant Biol. 2023;23:533. doi: 10.1186/s12870-023-04549-5. PubMed DOI PMC
Giuseppe A., Raffaella E.M. The first genome-wide mildew locus O genes characterization in the Lamiaceae plant family. Int. J. Molec. Sci. 2023;24:13627. doi: 10.3390/ijms241713627. PubMed DOI PMC
Huang C.B., Wang Y.Q., Zhang X.Y., Zhang C.H. Cloning and expression analysis of mildew locus O (MLO) genes related to powdery mildew resistance in Vitis pseudoreticulata, and functional characterisation of VpMLO13. New Zealand J. Crop Hortic. Sci. 2023 doi: 10.1080/01140671.2023.2280185. Early Access. DOI
Liu J., Wu Y.P., Zhang X., Gill R.A., Hu M., Bai Z.T., Zhao C.J., Zhang Y., Liu Y.Y., Hu Q. Functional and evolutionary study of MLO gene family in the regulation of Sclerotinia stem rot resistance in Brassica napus L. Biotechnol. Biofuels Bioprod. 2023;16:86. doi: 10.1186/s13068-023-02325-z. PubMed DOI PMC
Li W., Deng Y., Ning Y., He Z., Wang G.L. Exploiting broad-spectrum disease resistance in crops: From molecular dissection to breeding. Ann. Rev. Plant Biol. 2020;71:575–603. doi: 10.1146/annurev-arplant-010720-022215. PubMed DOI
Sirangelo T.M. NLR- and mlo-based resistance mechanisms against powdery mildew in Cannabis sativa. Plants. 2024;13:105. doi: 10.3390/plants13010105. PubMed DOI PMC
Tek M.I., Calis O., Fidan H., Shah M.D., Celik S., Wani S.H. CRISPR/Cas9 based mlo-mediated resistance against Podosphaera xanthii in cucumber (Cucumis sativus L.) Front. Plant Sci. 2022;13:1081506. doi: 10.3389/fpls.2022.1081506. PubMed DOI PMC
Traore S.M., Han S., Binagwa P., Xu W., Chen X.G., Liu F.Z., He G.H. Genome-wide identification of mlo genes in the cultivated peanut (Arachis hypogaea L.) Euphytica. 2021;217:61. doi: 10.1007/s10681-021-02792-1. DOI
Wang J., Wu X.H., Wang Y., Wu X.Y., Wang B.G., Lu Z.F., Li G.J. Genome-wide characterization and expression analysis of the MLO gene family sheds light on powdery mildew resistance in Lagenaria siceraria. Heliyon. 2023;9:e14624. doi: 10.1016/j.heliyon.2023.e14624. PubMed DOI PMC
Xu J.P., Naing A.H., Kang H.H., Lee S.Y., Li W.L., Chung M.Y., Kim C.K. CRISPR/Cas9-mediated editing of PhMLO1 confers powdery mildew resistance in petunia. Plant Biotech. Rep. 2023;17:767–775. doi: 10.1007/s11816-023-00854-5. DOI
Hiura U., Heta H. Studies on the disease resistance in barley. III. Further studies on the physiologic races of Erysiphe graminis hordei in Japan. Berichte Ohara Inst. landwirtschaft. Biol. 1955;10:135–156.
Jørgensen J.H., Jensen H.P. Powdery mildew resistance gene Ml-a8 (Reg1h8) in northwest European spring barley varieties. Barley Genet. Newsl. 1983;13:51–52.
Czembor J.H., Czembor E. Sources of resistance to powdery mildew in barley landraces from Turkey. Agriculture. 2021;11:1017. doi: 10.3390/agriculture11101017. DOI
Czembor J.H., Czembor H.J. Powdery mildew resistance in selections from Moroccan barley landraces. Phytoparasitica. 2000;28:65–78. doi: 10.1007/BF02994024. DOI
Jensen H.P., Christensen E., Jørgensen J.H. Powdery mildew resistance genes in 127 Northwest European spring barley varieties. Plant Breed. 1992;108:210–228. doi: 10.1111/j.1439-0523.1992.tb00122.x. DOI
Moseman J.G. Genes for specific resistance-powdery mildew of barley. Phytopathology. 1971;61:617–620. doi: 10.1094/Phyto-61-617. DOI
Dreiseitl A. Resistance of ‘Roxana’ to powdery mildew and its presence in some European spring barley cultivars. Plant Breed. 2011;130:419–422. doi: 10.1111/j.1439-0523.2010.01786.x. DOI
McVey D.V., Roelfs A.P. Postulation of genes for stem rust resistance in the entries of the Fourth international winter wheat performance nursery. Crop Sci. 1975;15:335–337. doi: 10.2135/cropsci1975.0011183X001500030016x. DOI
Dreiseitl A., Steffenson B.J. Postulation of leaf rust resistance genes in Czech and Slovak barley cultivars and breeding lines. Plant Breed. 2000;119:211–214. doi: 10.1046/j.1439-0523.2000.00495.x. DOI
Kaur H., Kaur J., Bala R., Sharma A., Kumari J., Mavi G.S., Kaur S. Postulation of leaf rust resistance genes in Indian and exotic wheat germplasm using near-isogenic lines (NILs) and molecular markers. Crop Prot. 2023;174:106431. doi: 10.1016/j.cropro.2023.106431. DOI
Mebrate S.A., Dehne H.W., Pillen K., Oerke E.C. Postulation of seedling leaf rust resistance genes in selected Ethiopian and German bread wheat cultivars. Crop Sci. 2008;48:507–516. doi: 10.2135/cropsci2007.03.0173. DOI
Randhawa M., Bansal U., Lillemo M., Miah H., Bariana H. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. J. Appl. Genet. 2016;57:453–465. doi: 10.1007/s13353-016-0345-6. PubMed DOI
Singh D., Park R.F., McIntosh R.A. Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica. 2001;120:205–218. doi: 10.1023/A:1017578217829. DOI
Xu X.D., Feng J., Lin R.M., Hussain K., Xu S.C., Lin F. Postulation of stripe rust resistance genes in 44 Chinese wheat cultivars. Int. J. Agric. Biol. 2011;13:665–670.
Yang H.L., Diao W.D., Yan X.C., Gebrewahid T.W., Li Z.F., Yao Z.J. Identification of genes for leaf rust resistance in seedlings of wheat cultivars from the Yellow-Huai Basin in China and slow rusting observations in field trials. Czech J. Genet. Plant Breed. 2023;59:219–234. doi: 10.17221/9/2023-CJGPB. DOI
Liu S.B., Wang H.G., Zhang X.Y., Li X.F., Li D.Y., Duan X.Y., Zhou Y.L. Molecular cytogenetic identification of a wheat-Thinopyron intermedium (Host) Barkworth & DR Dewey partial amphiploid resistant to powdery mildew. J. Integr. Plant Biol. 2005;47:726–733. doi: 10.1111/j.1744-7909.2005.00051.x. DOI
Hysing S.C., Merker A., Liljeroth E., Koebner R.M.D., Zeller F.J., Hsam S.L.K. Powdery mildew resistance in 155 Nordic bread wheat cultivars and landraces. Hereditas. 2007;144:102–119. doi: 10.1111/j.2007.0018-0661.01991.x. PubMed DOI
Yang G.T., Tong C.Y., Li H.W., Li B., Li Z.S., Zheng Q. Cytogenetic identification and molecular marker development of a novel wheat-Thinopyrum ponticum translocation line with powdery mildew resistance. Theor. Appl. Genet. 2022;135:2041–2057. doi: 10.1007/s00122-022-04092-1. PubMed DOI
Silvar C., Flath K., Kopahnke D., Gracia M.P., Lasa J.M., Casas A.M., Igartua E., Ordon F. Analysis of powdery mildew resistance in the Spanish barley core collection. Plant Breed. 2011;130:195–202. doi: 10.1111/j.1439-0523.2010.01843.x. DOI
Surlan-Momirovic G., Flath K., Silvar C., Brankovic G., Kopahnke D., Knezevic D., Schliephake E., Ordon F., Perovic D. Exploring the Serbian GenBank barley (Hordeum vulgare L. subsp vulgare) collection for powdery mildew resistance. Genet. Resour. Crop Evol. 2016;63:275–287. doi: 10.1007/s10722-015-0246-2. DOI
Brown J.K.M. The choice of molecular marker methods for population genetic studies of plant pathogens. New Phytol. 1996;133:183–195. doi: 10.1111/j.1469-8137.1996.tb04353.x. DOI
Czembor P.C., Czembor J.H. Identification of RAPD marker for the Mlat powdery mildew resistance gene in barley. Mikol. Fitopatol. 2005;39:66–73.
Hinze K., Thompson R.D., Ritter E., Salamini F., Schulze-Lefert P. Restriction fragment length polymorphism-mediated targeting of the ML-O resistance locus in barley (Hordeum vulgare) Proc. Nat. Acad. Sci. USA. 1991;88:3691–3695. doi: 10.1073/pnas.88.9.3691. PubMed DOI PMC
Schuller C., Backes G., Fischbeck G. RFLP markers to identity the alleles on the Mla locus confering powdery mildew resistance in barley. Theor. Appl. Genet. 1992;84:330–338. doi: 10.1007/BF00229491. PubMed DOI
Piechota U., Slowacki P., Czembor P.C. Identification of a novel recessive gene for resistance to powdery mildew (Blumeria graminis f. sp. hordei) in barley (Hordeum vulgare) Plant Breed. 2020;139:730–742. doi: 10.1111/pbr.12819. DOI
af Sätra J.S., Troggio M., Odilbekov F., Sehic J., Mattisson H., Hjalmarsson I., Ingvarsson P.K., Garkava-Gustavsson L. Genetic status of the Swedish central collection of heirloom apple cultivars. Sci. Hortic. 2020;272:109599. doi: 10.1016/j.scienta.2020.109599. DOI
Girma G., Korie S., Dumet D., Franco J. Improvement of accession distinctiveness as an added value to the global worth of the yam (Dioscorea ssp) genebank. Int. J. Conserv. Sci. 2012;3:199–206.
Hempel P., Hohe A., Trankner C. Molecular reconstruction of an old pedigree of diploid and triploid Hydrangea macrophylla genotypes. Front. Plant Sci. 2018;9:429. doi: 10.3389/fpls.2018.00429. PubMed DOI PMC
Jreisat C.S., Laten H.M. Ribosomal RNA internal transcribed regions identify possible misidentification or mislabeling among Trifolium (Clover) specimens from germplasm collections. Crop Sci. 2017;57:322–326. doi: 10.2135/cropsci2016.07.0626. DOI
Shan F., Clarke H.C., Plummer J.A., Yan G., Siddique K.H.M. Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor. Appl. Genet. 2005;110:381–391. doi: 10.1007/s00122-004-1849-8. PubMed DOI
van de Wouw M., van Treuren R., van Hintum T. Authenticity of old cultivars in genebank collections: A case study on Lettuce. Crop Sci. 2011;51:736–746. doi: 10.2135/cropsci2010.09.0511. DOI
Zhang W., Sun Y.Z., Liu J., Xu C., Zou X.H., Chen X., Liu Y.L., Wu P., Yang X.Y., Zhou S.L. DNA barcoding of Oryza: Conventional, specific, and super barcodes. Plant Mol. Biol. 2021;105:215–228. doi: 10.1007/s11103-020-01054-3. PubMed DOI PMC
Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C.S., Ens J., Gundlach H., Boston L.B., Tulpová Z., et al. Long-read sequence assembly: A technical evaluation in barley. Plant Cell. 2021;33:1888–1906. doi: 10.1093/plcell/koab077. PubMed DOI PMC
Pont L., Compte I., Sanz-Nebot V., Barbosa J., Benavente F. Analysis of hordeins in barley grain and malt by capillary electrophoresis-mass spectrometry. Food Anal. Methods. 2020;13:325–336. doi: 10.1007/s12161-019-01648-8. DOI
Dreiseitl A., Zavřelová M. Non-authenticity of spring barley genotypes revealed in gene bank accessions. Plants. 2022;11:3059. doi: 10.3390/plants11223059. PubMed DOI PMC
Dreiseitl A., Zavřelová M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. PLoS ONE. 2018;13:e0208719. doi: 10.1371/journal.pone.0208719. PubMed DOI PMC
Nover I., Lehmann C.O. Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. 17. Prüfung von Sommergersten auf ihr Verhalten gegen Mehltau (Erysiphe graminis DC. f. sp. hordei Marchal) Kulturpflanze. 1973;21:275–294. doi: 10.1007/BF02103162. DOI
Silvar C., Casas A.M., Igartua E., Ponce-Molina L.J., Gracia M.P., Schweizer G., Herz M., Flath K., Waugh R., Kopahnke D., et al. Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor. Appl. Genet. 2011;123:1019–1028. doi: 10.1007/s00122-011-1644-2. PubMed DOI
Czembor J.H., Czembor E., Suchecki R., Watson-Haigh N.S. Genome-wide association study for powdery mildew and rusts adult plant resistance in European spring barley from Polish gene bank. Agronomy. 2022;12:7. doi: 10.3390/agronomy12010007. DOI
Pickering R.A., Rennie W.F., Cromey M.G. Disease resistant material available from the wide hybridization programme at DSIR. Barley Newsl. 1987;31:248–259.
Pickering R.A., Hill A.M., Michel M., Timmerman-Vaughan G.M. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I) Theor. Appl. Genet. 1995;91:1288–1292. doi: 10.1007/BF00220943. PubMed DOI
Xu J., Kasha K.J. Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare) Theor. Appl. Genet. 1992;84:771–777. doi: 10.1007/BF00227383. PubMed DOI
Hoseinzadeh P., Ruge-Wehling B., Schweizer P., Stein N., Pidon H. High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front. Plant Sci. 2020;11:225. doi: 10.3389/fpls.2020.00225. PubMed DOI PMC