Selective inhibition of neuronal Cav3.3 T-type calcium channels by TAT-based channel peptide
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
32560664
PubMed Central
PMC7304182
DOI
10.1186/s13041-020-00636-y
PII: 10.1186/s13041-020-00636-y
Knihovny.cz E-resources
- Keywords
- Calcium channel, Cav3.3 channel, Inhibitor, T-type channel, TAT-peptide,
- MeSH
- Cell Line MeSH
- Humans MeSH
- Models, Molecular MeSH
- Neurons metabolism MeSH
- Peptides metabolism MeSH
- Amino Acid Sequence MeSH
- Calcium Channels, T-Type chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Peptides MeSH
- Calcium Channels, T-Type MeSH
Low-voltage-activated Cav3 calcium channels (T-type) play an essential role in the functioning of the nervous system where they support oscillatory activities that relie on several channel molecular determinants that shape their unique gating properties. In a previous study, we documented the important role of the carboxy proximal region in the functioning of Cav3.3 channels. Here, we explore the ability of a TAT-based cell penetrating peptide containing this carboxy proximal region (TAT-C3P) to modulate the activity of Cav3 channels. We show that chronic application of TAT-C3P on tsA-201 cells expressing Cav3 channels selectively inhibits Cav3.3 channels without affecting Cav3.1 and Cav3.2 channels. Therefore, the TAT-C3P peptide described in this study represents a new tool to address the specific physiological role of Cav3.3 channels, and to potentially enhance our understanding of Cav3.3 in disease.
See more in PubMed
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–870. doi: 10.1124/pr.114.009654. PubMed DOI PMC
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet. 2020;57(1):1–10. doi: 10.1136/jmedgenet-2019-106163. PubMed DOI PMC
Staes M, Talavera K, Klugbauer N, Prenen J, Lacinova L, Droogmans G, et al. The amino side of the C-terminus determines fast inactivation of the T-type calcium channel alpha1G. J Physiol. 2001;530(Pt 1):35–45. doi: 10.1111/j.1469-7793.2001.0035m.x. PubMed DOI PMC
Hamid J, Peloquin JB, Monteil A, Zamponi GW. Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV. Neuroscience. 2006;143(3):717–728. doi: 10.1016/j.neuroscience.2006.08.023. PubMed DOI
Kang HW, Park JY, Lee JH. Distinct contributions of different structural regions to the current kinetics of the Cav3.3 T-type Ca2+ channel. Biochim Biophys Acta. 2008;1778(12):2740–2748. doi: 10.1016/j.bbamem.2008.08.002. PubMed DOI
Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E. I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS One. 2008;3(8):e2976. doi: 10.1371/journal.pone.0002976. PubMed DOI PMC
Karmažínová M, Baumgart JP, Perez-Reyes E, Lacinová L. The voltage dependence of gating currents of the neuronal CA(v)3.3 channel is determined by the gating brake in the I-II loop. Pflugers Arch. 2011;461(4):461–468. doi: 10.1007/s00424-011-0937-2. PubMed DOI PMC
Karmažínová M, Jašková K, Griac P, Perez-Reyes E, Lacinová Ľ. Contrasting the roles of the I-II loop gating brake in CaV3.1 and CaV3.3 calcium channels. Pflugers Arch. 2015;467(12):2519–2527. doi: 10.1007/s00424-015-1728-y. PubMed DOI
Jurkovicova-Tarabova B, Cmarko L, Rehak R, Zamponi GW, Lacinova L, Weiss N. Identification of a molecular gating determinant within the carboxy terminal region of Cav3.3 T-type channels. Mol Brain. 2019;12(1):34. doi: 10.1186/s13041-019-0457-0. PubMed DOI PMC
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Weiss N, Zamponi GW. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34–39. doi: 10.1016/j.biocel.2019.01.008. PubMed DOI