Genetic T-type calcium channelopathies
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31217264
PubMed Central
PMC6929700
DOI
10.1136/jmedgenet-2019-106163
PII: jmedgenet-2019-106163
Knihovny.cz E-zdroje
- Klíčová slova
- aldosteronism, amyotrophic lateral sclerosis, autism spectrum disorders, calcium channels, cav3 channels, channelopathies, epilepsy, mutation, schizophrenia, t-type channels,
- MeSH
- kanálopatie genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- vápníkové kanály genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vápníkové kanály MeSH
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
Zobrazit více v PubMed
Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA. Nomenclature of voltage-gated calcium channels. Neuron 2000;25:533–5. 10.1016/S0896-6273(00)81057-0 PubMed DOI
Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003;83:117–61. 10.1152/physrev.00018.2002 PubMed DOI
Brown GN, Leong PL, Guo XE. T-type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics. Bone 2016;88:56–63. 10.1016/j.bone.2016.04.018 PubMed DOI PMC
Arnoult C, Cardullo RA, Lemos JR, Florman HM. Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida. Proc Natl Acad Sci U S A 1996;93:13004–9. 10.1073/pnas.93.23.13004 PubMed DOI PMC
Wang H, Zhang X, Xue L, Xing J, Jouvin M-H, Putney JW, Anderson MP, Trebak M, Kinet J-P. Low-voltage-activated CaV3.1 calcium channels shape T helper cell cytokine profiles. Immunity 2016;44:782–94. 10.1016/j.immuni.2016.01.015 PubMed DOI PMC
Lacinova L, Weiss N. It takes two T to shape immunity: emerging role for T-type calcium channels in immune cells. Gen Physiol Biophys 2016;35:393–6. 10.4149/gpb_2016034 PubMed DOI
Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 1992;12:3804–17. 10.1523/JNEUROSCI.12-10-03804.1992 PubMed DOI PMC
Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW. Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci U S A 2006;103:5555–60. 10.1073/pnas.0601261103 PubMed DOI PMC
Cain SM, Snutch TP. Contributions of T-type calcium channel isoforms to neuronal firing. Channels 2010;4:475–82. 10.4161/chan.4.6.14106 PubMed DOI PMC
Weiss N, Zamponi GW. Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828;2013:1579–86. PubMed
Carbone E, Calorio C, Vandael DHF. T-type channel-mediated neurotransmitter release. Pflugers Arch - Eur J Physiol 2014;466:677–87. 10.1007/s00424-014-1489-z PubMed DOI
Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee J-H. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 1998;391:896–900. 10.1038/36110 PubMed DOI
Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 1998;83:103–9. 10.1161/01.RES.83.1.103 PubMed DOI
Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, Schneider T, Perez-Reyes E. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 1999;19:1912–21. 10.1523/JNEUROSCI.19-06-01912.1999 PubMed DOI PMC
Shcheglovitov A, Vitko I, Bidaud I, Baumgart JP, Navarro-Gonzalez MF, Grayson TH, Lory P, Hill CE, Perez-Reyes E. Alternative splicing within the I-II loop controls surface expression of T-type Ca(v)3.1 calcium channels. FEBS Lett 2008;582:3765–70. 10.1016/j.febslet.2008.10.013 PubMed DOI PMC
Nie L, Zhu J, Gratton MA, Liao A, Mu KJ, Nonner W, Richardson GP, Yamoah EN. Molecular identity and functional properties of a novel T-type Ca2+ channel cloned from the sensory epithelia of the mouse inner ear. J Neurophysiol 2008;100:2287–99. 10.1152/jn.90707.2008 PubMed DOI PMC
Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P, alpha Aspliced. Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 2001;80:1238–50. 10.1016/S0006-3495(01)76100-0 PubMed DOI PMC
Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW. Expression of T-type calcium channel splice variants in human glioma. Glia 2004;48:112–9. 10.1002/glia.20063 PubMed DOI
Bertolesi GE, Walia Da Silva R, Jollimore CAB, Shi C, Barnes S, Kelly MEM, Ca KME. CaV3.1 splice variant expression during neuronal differentiation of Y-79 retinoblastoma cells. Neuroscience 2006;141:259–68. 10.1016/j.neuroscience.2006.03.067 PubMed DOI
Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K. Identification and Electrophysiological Characteristics of Isoforms of T-type Calcium Channel Ca<sub>v</sub>3.2 Expressed in Pregnant Human Uterus. Cell Physiol Biochem 2005;16:245–54. 10.1159/000089850 PubMed DOI
Zhong X, Liu JR, Kyle JW, Hanck DA, Agnew WS. A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 2006;15:1497–512. 10.1093/hmg/ddl068 PubMed DOI
Swayne LA, Bourinet E. Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. Pflugers Arch - Eur J Physiol 2008;456:459–66. 10.1007/s00424-007-0390-4 PubMed DOI
Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, Foote SJ, Snutch TP, O'Brien TJ. A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 2009;29:371–80. 10.1523/JNEUROSCI.5295-08.2009 PubMed DOI PMC
David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP. Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels 2010;4:375–89. 10.4161/chan.4.5.12874 PubMed DOI PMC
Murbartián J, Arias JM, Lee J-H, Gomora JC, Perez-Reyes E. Alternative splicing of the rat Ca(v)3.3 T-type calcium channel gene produces variants with distinct functional properties(1). FEBS Lett 2002;528:272–8. 10.1016/S0014-5793(02)03341-0 PubMed DOI
Murbartián J, Arias JM, Perez-Reyes E. Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol 2004;92:3399–407. 10.1152/jn.00498.2004 PubMed DOI
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015;67:821–70. 10.1124/pr.114.009654 PubMed DOI PMC
Jurkovicova-Tarabova B, Mackova K, Moravcikova L, Karmazinova M, Lacinova L. Role of individual S4 segments in gating of Cav3.1 T-type calcium channel by voltage. Channels 2018;12:378–87. 10.1080/19336950.2018.1543520 PubMed DOI PMC
Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ. T-type calcium channel regulation by specific G-protein βγ subunits. Nature 2003;424:209–13. 10.1038/nature01772 PubMed DOI
DePuy SD, Yao J, Hu C, McIntire W, Bidaud I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ. The molecular basis for T-type Ca2+ channel inhibition by G protein beta2gamma2 subunits. Proc Natl Acad Sci U S A 2006;103:14590–5. 10.1073/pnas.0603945103 PubMed DOI PMC
Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, Barrett PQ. A Mechanism for the Direct Regulation of T-Type Calcium Channels by Ca 2+ /Calmodulin-Dependent Kinase II. J. Neurosci. 2003;23:10116–21. 10.1523/JNEUROSCI.23-31-10116.2003 PubMed DOI PMC
Asmara H, Micu I, Rizwan AP, Sahu G, Simms BA, Zhang F-X, Engbers JDT, Stys PK, Zamponi GW, Turner RW. A T-type channel-calmodulin complex triggers αCaMKII activation. Mol Brain 2017;10 10.1186/s13041-017-0317-8 PubMed DOI PMC
Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES. T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol 2010;298:C1353–C1362. 10.1152/ajpcell.00235.2009 PubMed DOI
Huang C-H, Chen Y-C, Chen C-C. Physical interaction between calcineurin and Cav3.2 T-type Ca2+ channel modulates their functions. FEBS Lett 2013;587:1723–30. 10.1016/j.febslet.2013.04.040 PubMed DOI
Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M, A Ca DWM. A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 2012;287:2810–8. 10.1074/jbc.M111.290882 PubMed DOI PMC
Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N. A Ca v 3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels 2016;10:346–54. 10.1080/19336950.2016.1186318 PubMed DOI PMC
Cottrell GS, Soubrane CH, Hounshell JA, Lin H, Owenson V, Rigby M, Cox PJ, Barker BS, Ottolini M, Ince S, Bauer CC, Perez-Reyes E, Patel MK, Stevens EB, Stephens GJ. CACHD1 is an α2δ-Like Protein That Modulates CaV3 Voltage-Gated Calcium Channel Activity. J Neurosci 2018;38:9186–201. 10.1523/JNEUROSCI.3572-15.2018 PubMed DOI PMC
Stephens GJ, Cottrell GS. CACHD1: a new activity-modifying protein for voltage-gated calcium channels. Channels 2019;13:120–3. 10.1080/19336950.2019.1600968 PubMed DOI PMC
Garcia-Caballero A, Zhang F-X, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 2018;11 10.1186/s13041-018-0368-5 PubMed DOI PMC
Turner RW, Zamponi GW. T-type channels buddy up. Pflugers Arch - Eur J Physiol 2014;466:661–75. 10.1007/s00424-013-1434-6 PubMed DOI PMC
Garcia-Caballero A, Gandini MA, Huang S, Chen L, Souza IA, Dang YL, Stutts MJ, Zamponi GW. Cav3.2 calcium channel interactions with the epithelial sodium channel ENaC. Mol Brain 2019;12 10.1186/s13041-019-0433-8 PubMed DOI PMC
Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P. Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci USA 2015;112:13705–10. 10.1073/pnas.1511740112 PubMed DOI PMC
García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, François A, Bourinet E, Zamponi GW. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 2014;83:1144–58. 10.1016/j.neuron.2014.07.036 PubMed DOI
Weiss N, Black SAG, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch - Eur J Physiol 2013;465:1159–70. 10.1007/s00424-013-1259-3 PubMed DOI
Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee S-S, Rose KE, Poiro N, DiGruccio MR, Krishnan K, Covey DF, Lee J-H, Barrett PQ, Jevtovic-Todorovic V, Todorovic SM. Reversal of neuropathic pain in diabetes by targeting glycosylation of Cav3.2 T-type calcium channels. Diabetes 2013;62:3828–38. 10.2337/db13-0813 PubMed DOI PMC
Lazniewska J, Weiss N. The "sweet" side of ion channels. Rev Physiol Biochem Pharmacol 2014;167:67–114. 10.1007/112_2014_20 PubMed DOI
Lazniewska J, Rzhepetskyy Y, Zhang F-X, Zamponi GW, Weiss N. Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. Pflugers Arch - Eur J Physiol 2016;468:1837–51. 10.1007/s00424-016-1881-y PubMed DOI
Ondacova K, Karmazinova M, Lazniewska J, Weiss N, Lacinova L. Modulation of Ca v 3.2 T-type calcium channel permeability by asparagine-linked glycosylation. Channels 2016;10:175–84. 10.1080/19336950.2016.1138189 PubMed DOI PMC
Lazniewska J, Weiss N. Glycosylation of voltage-gated calcium channels in health and disease. Biochim Biophys Acta Biomembr 2017;1859:662–8. 10.1016/j.bbamem.2017.01.018 PubMed DOI
Crandall SR, Govindaiah G, Cox CL. Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. Journal of Neuroscience 2010;30:15419–29. 10.1523/JNEUROSCI.3636-10.2010 PubMed DOI PMC
Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JDT, Hameed S, Zamponi GW, Turner RW. Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 2010;13:333–7. 10.1038/nn.2493 PubMed DOI
Anderson D, Rehak R, Hameed S, Mehaffey WH, Zamponi GW, Turner RW. Regulation of the Kv4.2 complex by CaV3.1 calcium channels. Channels 2010;4:163–7. 10.4161/chan.4.3.11955 PubMed DOI
Engbers JDT, Anderson D, Asmara H, Rehak R, Mehaffey WH, Hameed S, McKay BE, Kruskic M, Zamponi GW, Turner RW. Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences 2012;109:2601–6. 10.1073/pnas.1115024109 PubMed DOI PMC
Anderson D, Engbers JDT, Heath NC, Bartoletti TM, Mehaffey WH, Zamponi GW, Turner RW. The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. Journal of Neuroscience 2013;33:7811–24. 10.1523/JNEUROSCI.5384-12.2013 PubMed DOI PMC
Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 2013;8:e61844 10.1371/journal.pone.0061844 PubMed DOI PMC
Crunelli V, Cope D, Hughes S. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 2006;40:175–90. 10.1016/j.ceca.2006.04.022 PubMed DOI PMC
Bal T, McCormick DA. Synchronized Oscillations in the Inferior Olive Are Controlled by the Hyperpolarization-Activated Cation Current i>Ii> h . J Neurophysiol 1997;77:3145–56. 10.1152/jn.1997.77.6.3145 PubMed DOI
Beurrier C, Congar P, Bioulac B, Hammond C. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J. Neurosci. 1999;19:599–609. 10.1523/JNEUROSCI.19-02-00599.1999 PubMed DOI PMC
Cain SM, Snutch TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta 2013;1828:1572–8. 10.1016/j.bbamem.2012.07.028 PubMed DOI
Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW. The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 2005;562:121–9. 10.1113/jphysiol.2004.076273 PubMed DOI PMC
Leresche N, Lambert RC. T-type calcium channels in synaptic plasticity. Channels 2017;11:121–39. 10.1080/19336950.2016.1238992 PubMed DOI PMC
Mangoni ME, Traboulsie A, Leoni A-L, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin H-S, Escande D, Charpentier F, Nargeot J, Lory P, Vilar J, Nargeot J. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 2006;98:1422–30. 10.1161/01.RES.0000225862.14314.49 PubMed DOI
Choi S, Yu E, Hwang E, Llinás RR. Pathophysiological implication of Ca V 3.1 T-type Ca 2+ channels in trigeminal neuropathic pain. Proc Natl Acad Sci USA 2016;113:2270–5. 10.1073/pnas.1600418113 PubMed DOI PMC
Na HS, Choi S, Kim J, Park J, Shin H-S. Attenuated neuropathic pain in CaV3.1 null mice. Mol Cells 2008;25:242–6. PubMed
Thuesen AD, Andersen K, Lyngsø KS, Burton M, Brasch-Andersen C, Vanhoutte PM, Hansen PBL. Deletion of T-type calcium channels CaV3.1 or Pflugers Arch. Eur J Physiol 2018;470:355–65. 10.1007/s00424-017-2068-x PubMed DOI
Chen C-C, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 2003;302:1416–8. 10.1126/science.1089268 PubMed DOI
Hansen PBL. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol Regul Integr Comp Physiol 2015;308:R227–R237. 10.1152/ajpregu.00276.2014 PubMed DOI
Chiang C-S, Huang C-H, Chieng H, Chang Y-T, Chang D, Chen J-J, Chen Y-C, Chen Y-H, Shin H-S, Campbell KP, Chen C-C. The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 2009;104:522–30. 10.1161/CIRCRESAHA.108.184051 PubMed DOI
Kim D, Song I, Keum S, Lee T, Jeong M-J, Kim S-S, McEnery MW, Shin H-S. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron 2001;31:35–45. 10.1016/S0896-6273(01)00343-9 PubMed DOI
Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen C-C, Campbell KP, Shin H-S. Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 2007;6:425–31. 10.1111/j.1601-183X.2006.00268.x PubMed DOI
Chen C-C, Shen J-W, Chung N-C, Min M-Y, Cheng S-J, Liu IY. Retrieval of Context-Associated memory is dependent on the Cav3.2 T-type calcium channel. PLoS ONE 2012;7:e29384 10.1371/journal.pone.0029384 PubMed DOI PMC
Gangarossa G, Laffray S, Bourinet E, Valjent E. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front Behav Neurosci 2014;8 10.3389/fnbeh.2014.00092 PubMed DOI PMC
Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 2011;108:13823–8. 10.1073/pnas.1105115108 PubMed DOI PMC
Pellegrini C, Lecci S, Lüthi A, Astori S. Suppression of sleep spindle rhythmogenesis in mice with deletion of Cav3.2 and Cav3.3 T-type Ca2+ channels. Sleep 2016;39:875–85. 10.5665/sleep.5646 PubMed DOI PMC
Jensen LJ, Nielsen MS, Salomonsson M, Sørensen CM. T-type Ca 2+ channels and autoregulation of local blood flow. Channels 2017;11:183–95. 10.1080/19336950.2016.1273997 PubMed DOI PMC
Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 1998;18:3574–88. 10.1523/JNEUROSCI.18-10-03574.1998 PubMed DOI PMC
Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996;58:329–48. 10.1146/annurev.ph.58.030196.001553 PubMed DOI
Huguenard JR, McCormick DA. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 1992;68:1373–83. 10.1152/jn.1992.68.4.1373 PubMed DOI
Huguenard JR. Block of T -Type Ca(2+) Channels Is an Important Action of Succinimide Antiabsence Drugs. Epilepsy Curr 2002;2:49–52. 10.1046/j.1535-7597.2002.00019.x PubMed DOI PMC
Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 2006;86:941–66. 10.1152/physrev.00002.2006 PubMed DOI
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2016;15:19–34. 10.1038/nrd.2015.5 PubMed DOI
Cain SM, Tyson JR, Choi H-B, Ko R, Lin PJC, LeDue JM, Powell KL, Bernier L-P, Rungta RL, Yang Y, Cullis PR, O'Brien TJ, MacVicar BA, Snutch TP. Ca V 3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia 2018;59:778–91. 10.1111/epi.14018 PubMed DOI PMC
Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995;15:3110–7. 10.1523/JNEUROSCI.15-04-03110.1995 PubMed DOI PMC
Zhang Y, Mori M, Burgess DL, Noebels JL. Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 2002;22:6362–71. 10.1523/JNEUROSCI.22-15-06362.2002 PubMed DOI PMC
Zhang Y, Vilaythong AP, Yoshor D, Noebels JL. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma. J Neurosci 2004;24:5239–48. 10.1523/JNEUROSCI.0992-04.2004 PubMed DOI PMC
Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL. Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 2009;29:1615–25. 10.1523/JNEUROSCI.2081-08.2009 PubMed DOI PMC
Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison J-L, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O'Brien TJ, Snutch TP. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Science Translational Medicine 2012;4 10.1126/scitranslmed.3003120 PubMed DOI
Powell KL, Cain SM, Snutch TP, O'Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol 2014;77:729–39. 10.1111/bcp.12205 PubMed DOI PMC
Casillas-Espinosa PM, Hicks A, Jeffreys A, Snutch TP, O’Brien TJ, Powell KL. Z944, a novel selective T-type calcium channel antagonist delays the progression of seizures in the amygdala kindling model. Plos One 2015;10:e0130012 10.1371/journal.pone.0130012 PubMed DOI PMC
Capovilla G, Beccaria F, Veggiotti P, Rubboli G, Meletti S, Tassinari CA. Ethosuximide is effective in the treatment of epileptic negative myoclonus in childhood partial epilepsy. J Child Neurol 1999;14:395–400. 10.1177/088307389901400609 PubMed DOI
Mattson RH, Cramer JA, Williamson PD, Novelly RA. Valproic acid in epilepsy: clinical and pharmacological effects. Ann Neurol. 1978;3:20–5. 10.1002/ana.410030105 PubMed DOI
Kwan S-Y, Chuang Y-C, Huang C-W, Chen T-C, Jou S-B, Dash A. Zonisamide: review of recent clinical evidence for treatment of epilepsy. CNS Neurosci Ther 2015;21:683–91. 10.1111/cns.12418 PubMed DOI PMC
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WHY, Qiang B, Chan P, Shen Y, Wu X. Association between genetic variation ofCACNA1H and childhood absence epilepsy. Ann Neurol. 2003;54:239–43. 10.1002/ana.10607 PubMed DOI
Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE. Genetic variation ofCACNA1H in idiopathic generalized epilepsy. Ann Neurol. 2004;55:595–6. 10.1002/ana.20028 PubMed DOI
Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol. 2007;62:560–8. 10.1002/ana.21169 PubMed DOI
Liang J, Zhang Y, Wang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X. New variants in the CACNA1H gene identified in childhood absence epilepsy. Neuroscience Letters 2006;406:27–32. 10.1016/j.neulet.2006.06.073 PubMed DOI
Liang J, Zhang Y, Chen Y, Wang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X. Common Polymorphisms in the CACNA1H Gene Associated with Childhood Absence Epilepsy in Chinese Han Population. Ann Hum Genet 2007;71:325–35. 10.1111/j.1469-1809.2006.00332.x PubMed DOI
Chourasia N, Ossó-Rivera H, Ghosh A, Von Allmen G, Koenig MK. Expanding the phenotypic spectrum of CACNA1H mutations. Pediatric Neurology 2019;93:50–5. 10.1016/j.pediatrneurol.2018.11.017 PubMed DOI
Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW. Gating Effects of Mutations in the Ca v 3.2 T-type Calcium Channel Associated with Childhood Absence Epilepsy. J Biol Chem 2004;279:9681–4. 10.1074/jbc.C400006200 PubMed DOI
Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW. Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 2005;57:745–9. 10.1002/ana.20458 PubMed DOI
Vitko I, Chen Y, Arias JM, Shen Y, Wu X-R, Perez-Reyes E. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-Type calcium channel. J Neurosci 2005;25:4844–55. 10.1523/JNEUROSCI.0847-05.2005 PubMed DOI PMC
Peloquin JB, Khosravani H, Barr W, Bladen C, Evans R, Mezeyova J, Parker D, Snutch TP, McRory JE, Zamponi GW. Functional analysis of Ca3.2 T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia 2006;47:655–8. 10.1111/j.1528-1167.2006.00482.x PubMed DOI
Arias-Olguín II, Vitko I, Fortuna M, Baumgart JP, Sokolova S, Shumilin IA, Van Deusen A, Soriano-García M, Gomora JC, Perez-Reyes E. Characterization of the gating brake in the I-II loop of Ca(v)3.2 T-type Ca(2+) channels. J Biol Chem 2008;283:8136–44. 10.1074/jbc.M708761200 PubMed DOI PMC
Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E. I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS One 2008;3:e2976 10.1371/journal.pone.0002976 PubMed DOI PMC
Eckle V-S, Shcheglovitov A, Vitko I, Dey D, Yap CC, Winckler B, Perez-Reyes E. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol 2014;592:795–809. 10.1113/jphysiol.2013.264176 PubMed DOI PMC
Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter JM. A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 1984;25:326–31. 10.1111/j.1528-1157.1984.tb04196.x PubMed DOI
Proft J, Rzhepetskyy Y, Lazniewska J, Zhang F-X, Cain SM, Snutch TP, Zamponi GW, Weiss N. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels. Sci Rep 2017;7 10.1038/s41598-017-11591-5 PubMed DOI PMC
Ramaswami G, Geschwind DH. Genetics of autism spectrum disorder. Handb Clin Neurol 2018;147:321–9. 10.1016/B978-0-444-63233-3.00021-X PubMed DOI
de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016;22:345–61. 10.1038/nm.4071 PubMed DOI PMC
Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT. CACNA1H mutations in autism spectrum disorders. J Biol Chem 2006;281:22085–91. 10.1074/jbc.M603316200 PubMed DOI
Pinggera A, Lieb A, Benedetti B, Lampert M, Monteleone S, Liedl KR, Tuluc P, Striessnig J. Cacna1d de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biol Psychiatry 2015;77:816–22. 10.1016/j.biopsych.2014.11.020 PubMed DOI PMC
Pinggera A, Mackenroth L, Rump A, Schallner J, Beleggia F, Wollnik B, Striessnig J. New gain-of-function mutation shows Cacna1d as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum Mol Genet 2017;26:2923–32. 10.1093/hmg/ddx175 PubMed DOI PMC
Pinggera A, Striessnig J. Cav 1.3 (CACNA1D) L-type Ca2+ channel dysfunction in CNS disorders. J Physiol 2016;594:5839–49. 10.1113/JP270672 PubMed DOI PMC
Pinggera A, Negro G, Tuluc P, Brown MJ, Lieb A, Striessnig J. Gating defects of disease-causing de novo mutations in Cav1.3 Ca2+ channels. Channels 2018;12:388–402. 10.1080/19336950.2018.1546518 PubMed DOI PMC
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017;3 10.1038/nrdp.2017.71 PubMed DOI
Gibson SB, Downie JM, Tsetsou S, Feusier JE, Figueroa KP, Bromberg MB, Jorde LB, Pulst SM. The evolving genetic risk for sporadic ALS. Neurology 2017;89:226–33. 10.1212/WNL.0000000000004109 PubMed DOI PMC
Steinberg KM, Yu B, Koboldt DC, Mardis ER, Pamphlett R. Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep 2015;5 10.1038/srep09124 PubMed DOI PMC
Rzhepetskyy Y, Lazniewska J, Blesneac I, Pamphlett R, Weiss N. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels 2016;10:466–77. 10.1080/19336950.2016.1204497 PubMed DOI PMC
Canto-Bustos M, Loeza-Alcocer E, González-Ramírez R, Gandini MA, Delgado-Lezama R, Felix R. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle. PLoS One 2014;9:e108187 10.1371/journal.pone.0108187 PubMed DOI PMC
Zhang Z, David G. Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons. J Physiol 2016;594:39–57. 10.1113/JP271207 PubMed DOI PMC
Park SB, Kiernan MC, Vucic S. Axonal Excitability in Amyotrophic Lateral Sclerosis : Axonal Excitability in ALS. Neurotherapeutics 2017;14:78–90. 10.1007/s13311-016-0492-9 PubMed DOI PMC
Kim J-W, Oh HA, Lee SH, Kim KC, Eun PH, Ko MJ, Gonzales ELT, Seung H, Kim S, Bahn GH, Shin CY. T-type calcium channels are required to maintain viability of neural progenitor cells. Biomol Ther 2018;26:439–45. 10.4062/biomolther.2017.223 PubMed DOI PMC
Carter MT, McMillan HJ, Tomin A, Weiss N. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels 2019;13:153–61. 10.1080/19336950.2019.1614415 PubMed DOI PMC
Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, Voitenko NV, Belan PV. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain 2015;11 10.1186/s12990-015-0028-z PubMed DOI PMC
Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2008;99:3151–6. 10.1152/jn.01031.2007 PubMed DOI PMC
Marger F, Gelot A, Alloui A, Matricon J, Ferrer JFS, Barrère C, Pizzoccaro A, Muller E, Nargeot J, Snutch TP, Eschalier A, Bourinet E, Ardid D. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci U S A 2011;108:11268–73. 10.1073/pnas.1100869108 PubMed DOI PMC
Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, Zamponi GW. Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain. Mol Pain 2015;11 10.1186/s12990-015-0011-8 PubMed DOI PMC
Garcia-Caballero A, Gadotti VM, Chen L, Zamponi GW. A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Mol Pain 2016;12. doi:10.1177/1744806916642444 PubMed DOI PMC
Stemkowski P, García-Caballero A, Gadotti VDM, M'Dahoma S, Huang S, Black SAG, Chen L, Souza IA, Zhang Z, Zamponi GW. TRPV1 nociceptor activity initiates USP5/T-type channel-mediated plasticity. Cell Rep 2016;17:2901–12. 10.1016/j.celrep.2016.11.047 PubMed DOI
Souza IA, Gandini MA, Wan MM, Zamponi GW. Two heterozygous Cav3.2 channel mutations in a pediatric chronic pain patient: recording condition-dependent biophysical effects. Pflugers Arch 2016;468:635–42. 10.1007/s00424-015-1776-3 PubMed DOI
Schrier AD, Wang H, Talley EM, Perez-Reyes E, Barrett PQ. Alpha1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol Cell Physiol 2001;280:C265–C272. 10.1152/ajpcell.2001.280.2.C265 PubMed DOI
Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H, Fahlke C, Lifton RP. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015;4:e06315 10.7554/eLife.06315 PubMed DOI PMC
Reimer EN, Walenda G, Seidel E, Scholl UI. CACNA1H(M1549V) Mutant Calcium Channel Causes Autonomous Aldosterone Production in HAC15 Cells and Is Inhibited by Mibefradil. Endocrinology 2016;157:3016–22. 10.1210/en.2016-1170 PubMed DOI
Daniil G, Fernandes-Rosa FL, Chemin J, Blesneac I, Beltrand J, Polak M, Jeunemaitre X, Boulkroun S, Amar L, Strom TM, Lory P, Zennaro M-C. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 2016;13:225–36. 10.1016/j.ebiom.2016.10.002 PubMed DOI PMC
Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, Prasad ML, Hartung EA, Mauras N, Benson MR, Brady T, Shapiro JR, Loring E, Nelson-Williams C, Libutti SK, Mane S, Hellman P, Westin G, Åkerström G, Björklund P, Carling T, Fahlke C, Hidalgo P, Lifton RP. Somatic and germline Cacna1d calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013;45:1050–4. 10.1038/ng.2695 PubMed DOI PMC
Flanagan SE, Vairo F, Johnson MB, Caswell R, Laver TW, Lango Allen H, Hussain K, Ellard S. A Cacna1d mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. Pediatr Diabetes 2017;18:320–3. 10.1111/pedi.12512 PubMed DOI PMC
Mancuso M, Orsucci D, Siciliano G, Bonuccelli U. The genetics of ataxia: through the labyrinth of the Minotaur, looking for Ariadne's thread. J Neurol 2014;261 Suppl 2(Suppl 2):528–41. 10.1007/s00415-014-7387-7 PubMed DOI PMC
Coutelier M, Blesneac I, Monteil A, Monin M-L, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G. A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet 2015;97:726–37. 10.1016/j.ajhg.2015.09.007 PubMed DOI PMC
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H. A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 2015;8 10.1186/s13041-015-0180-4 PubMed DOI PMC
Kimura M, Yabe I, Hama Y, Eguchi K, Ura S, Tsuzaka K, Tsuji S, Sasaki H. SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia. J Hum Genet 2017;62:857–9. 10.1038/jhg.2017.51 PubMed DOI
Ngo K, Aker M, Petty LE, Chen J, Cavalcanti F, Nelson AB, Hassin-Baer S, Geschwind MD, Perlman S, Italiano D, Laganà A, Cavallaro S, Coppola G, Below JE, Fogel BL. Expanding the global prevalence of spinocerebellar ataxia type 42. Neurol Genet 2018;4:e232 10.1212/NXG.0000000000000232 PubMed DOI PMC
Chemin J, Siquier-Pernet K, Nicouleau M, Barcia G, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feysot C, Fourage C, Nitschké P, Thevenon J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A, Lyonnet S, Boddaert N, Fassi E, Shinawi M, Zimmerman H, Amiel J, Faivre L, Colleaux L, Lory P, Cantagrel V. De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain 2018;141:1998–2013. 10.1093/brain/awy145 PubMed DOI
Li X, Zhou C, Cui L, Zhu L, Du H, Liu J, Wang C, Fang S. A case of a novel CACNA1G mutation from a Chinese family with SCA42: a case report and literature review. Medicine 2018;97:e12148 10.1097/MD.0000000000012148 PubMed DOI PMC
Singh B, Monteil A, Bidaud I, Sugimoto Y, Suzuki T, Hamano S-ichiro, Oguni H, Osawa M, Alonso ME, Delgado-Escueta AV, Inoue Y, Yasui-Furukori N, Kaneko S, Lory P, Yamakawa K. Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Mutation in brief #962. Online. Hum Mutat 2007;28:524–5. 10.1002/humu.9491 PubMed DOI
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel SCN2A. Epilepsia 2016;57:e103–7. 10.1111/epi.13390 PubMed DOI PMC
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. Epilepsia 2017;58:e111–5. 10.1111/epi.13811 PubMed DOI PMC
Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RCP, Savage RM, Swerdlow NR, Gur RE, Braff DL, King M-C, McClellan JM, Consortium on the Genetics of Schizophrenia (COGS), PAARTNERS Study Group . Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 2013;154:518–29. 10.1016/j.cell.2013.06.049 PubMed DOI PMC
Henriksen MG, Nordgaard J, Jansson LB. Genetics of schizophrenia: overview of methods, findings and limitations. Front Hum Neurosci 2017;11 10.3389/fnhum.2017.00322 PubMed DOI PMC
Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JQ. A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Sci Rep 2016;6 10.1038/srep34233 PubMed DOI PMC
Wang J, Zhang Y, Liang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X. CACNA1I is not associated with childhood absence epilepsy in the Chinese Han population. Pediatr Neurol 2006;35:187–90. 10.1016/j.pediatrneurol.2006.03.006 PubMed DOI
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:7.20.1–7.20.41. 10.1002/0471142905.hg0720s76 PubMed DOI PMC
Kammenga JE. The background puzzle: how identical mutations in the same gene lead to different disease symptoms. Febs J 2017;284:3362–73. 10.1111/febs.14080 PubMed DOI
The T-type calcium channelosome
Selective inhibition of neuronal Cav3.3 T-type calcium channels by TAT-based channel peptide