Secretory carrier-associated membrane protein 5 regulates cell-surface targeting of T-type calcium channels
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37389974
PubMed Central
PMC10316736
DOI
10.1080/19336950.2023.2230776
Knihovny.cz E-zdroje
- Klíčová slova
- Calcium channels, Channelopathy, Ion channels, SCAMP5, Secretory carrier-associated membrane protein 5, T-type channels,
- MeSH
- buněčná membrána MeSH
- down regulace MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mutace MeSH
- vápníkové kanály - typ T * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- SCAMP5 protein, human MeSH Prohlížeč
- vápníkové kanály - typ T * MeSH
Missense mutations in the human secretary carrier-associated membrane protein 5 (SCAMP5) cause a variety of neurological disorders including neurodevelopmental delay, epilepsy, and Parkinson's disease. We recently documented the importance of SCAMP2 in the regulation of T-type calcium channel expression in the plasma membrane. Here, we show that similar to SCAMP2, the co-expression of SCAMP5 in tsA-201 cells expressing recombinant Cav3.1, Cav3.2, and Cav3.3 channels nearly abolished whole-cell T-type currents. Recording of intramembrane charge movements revealed that SCAMP5-induced inhibition of T-type currents is primarily caused by the reduced expression of functional channels in the plasma membrane. Moreover, we show that SCAMP5-mediated downregulation of Cav3.2 channels is essentially preserved with disease-causing SCAMP5 R91W and G180W mutations. Hence, this study extends our previous findings with SCAMP2 and indicates that SCAMP5 also contributes to repressing the expression of T-type channels in the plasma membrane.
Zobrazit více v PubMed
Weiss N, Zamponi GW.. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34–9. doi: 10.1016/j.biocel.2019.01.008 PubMed DOI
Weiss N, Khanna R.. 2022. Trafficking of neuronal calcium channels. ed(s). Voltage-Gated calcium channelspp. 195–216. Springer International Publishing; Cham:doi: 10.1007/978-3-031-08881-0_8. DOI
Aromolaran KA, Benzow KA, Cribbs LL, et al. Kelch-like 1 protein up-regulates T-type currents by an actin-F dependent increase in α1H channels via the recycling endosome. Channels (Austin). 2009;3(6):402–412. doi: 10.4161/chan.3.6.9858 PubMed DOI
Aromolaran KA, Benzow KA, Cribbs LL, et al. T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol. 2010;298(6):C1353–62. doi: 10.1152/ajpcell.00235.2009 PubMed DOI
Rzhepetskyy Y, Lazniewska J, Proft J, et al. A Cav.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels (Austin). 2016;10(5):346–354. doi: 10.1080/19336950.2016.1186318 PubMed DOI PMC
García-Caballero A, Gadotti VM, Stemkowski P, et al. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron. 2014;83(5):1144–1158. doi: 10.1016/j.neuron.2014.07.036 PubMed DOI
Proft J, Rzhepetskyy Y, Lazniewska J, et al. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav.2 channels. Sci Rep. 2017;7(1):11513. doi: 10.1038/s41598-017-11591-5 PubMed DOI PMC
Gandini MA, Souza IA, Khullar A, et al. Regulation of CaV.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Arch. 2021;474(4):447–454. doi: 10.1007/s00424-021-02631-1 PubMed DOI
Cmarko L, Stringer RN, Jurkovicova-Tarabova B, et al. Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels. Mol Brain. 2022;15(1):1. doi: 10.1186/s13041-021-00891-7 PubMed DOI PMC
Hubbard C, Singleton D, Rauch M, et al. The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell. 2000;11(9):2933–2947. doi: 10.1091/mbc.11.9.2933 PubMed DOI PMC
Zhao H, Kim Y, Park J, et al. SCAMP5 plays a critical role in synaptic vesicle endocytosis during high neuronal activity. J Neurosci. 2014;34(30):10085–10095. doi: 10.1523/JNEUROSCI.2156-14.2014 PubMed DOI PMC
Park D, Lee U, Cho E, et al. Impairment of release site clearance within the active zone by reduced SCAMP5 expression causes short-term depression of synaptic release. Cell Rep. 2018;22(12):3339–3350. doi: 10.1016/j.celrep.2018.02.088 PubMed DOI
Lee U, Choi C, Ryu SH, et al. SCAMP5 plays a critical role in axonal trafficking and synaptic localization of NHE6 to adjust quantal size at glutamatergic synapses. Proc Natl Acad Sci U S A. 2021;118(2):e2011371118. doi: 10.1073/pnas.2011371118 PubMed DOI PMC
Zhang D, Yuan C, Liu M, et al. Deficiency of SCAMP5 leads to pediatric epilepsy and dysregulation of neurotransmitter release in the brain. Hum Genet. 2020;139(4):545–555. doi: 10.1007/s00439-020-02123-9 PubMed DOI
Jiao X, Morleo M, Nigro V, et al. Identification of an identical de novo SCAMP5 missense variant in four unrelated patients with seizures and severe neurodevelopmental delay. Front Pharmacol. 2020;11:599191. doi: 10.3389/fphar.2020.599191 PubMed DOI PMC
Hubert L, Cannata Serio M, Villoing-Gaudé L, et al. De Novo SCAMP5 mutation causes a neurodevelopmental disorder with autistic features and seizures. J Med Genet. 2020;57(2):138–144. doi: 10.1136/jmedgenet-2018-105927 PubMed DOI
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet. 2020;57(1):1–10. doi: 10.1136/jmedgenet-2019-106163 PubMed DOI PMC
Dubel SJ, Altier C, Chaumont S, et al. Plasma membrane expression of T-type calcium channel α1 subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem. 2004;279(28):29263–29269. doi: 10.1074/jbc.M313450200 PubMed DOI
Guo Z, Liu L, Cafiso D, et al. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide. J Biol Chem. 2002;277(38):35357–35363. doi: 10.1074/jbc.M202259200 PubMed DOI
Zaarour N, Defontaine N, Demaretz S, et al. Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem. 2011;286(11):9489–9502. doi: 10.1074/jbc.M110.166546 PubMed DOI PMC
Fjorback AW, Müller HK, Haase J, et al. Modulation of the dopamine transporter by interaction with secretory carrier membrane protein 2. Biochem Biophys Res Commun. 2011;406(2):165–170. doi: 10.1016/j.bbrc.2011.01.069 PubMed DOI
Müller HK, Wiborg O, Haase J. Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem. 2006;281(39):28901–28909. doi: 10.1074/jbc.M602848200 PubMed DOI
Diering GH, Church J, Numata M. Secretory carrier membrane protein 2 regulates cell-surface targeting of brain-enriched Na+/H+ exchanger NHE5. J Biol Chem. 2009;284(20):13892–13903. doi: 10.1074/jbc.M807055200 PubMed DOI PMC
Han C, Chen T, Yang M, et al. Human SCAMP5, a novel secretory carrier membrane protein, facilitates calcium-triggered cytokine secretion by interaction with SNARE machinery. J Immunol. 2009;182(5):2986–2996. doi: 10.4049/jimmunol.0802002 PubMed DOI
Weiss N, Hameed S, Fernández-Fernández JM, et al. A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem. 2012;287(4):2810–2818. doi: 10.1074/jbc.M111.290882 PubMed DOI PMC
The T-type calcium channelosome