The T-type calcium channelosome
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38036777
DOI
10.1007/s00424-023-02891-z
PII: 10.1007/s00424-023-02891-z
Knihovny.cz E-zdroje
- Klíčová slova
- Calcium channels, Channelosome, Ion channels, T-type channels,
- MeSH
- blokátory kalciových kanálů MeSH
- neurony metabolismus MeSH
- vápník * metabolismus MeSH
- vápníkové kanály - typ T * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- blokátory kalciových kanálů MeSH
- vápník * MeSH
- vápníkové kanály - typ T * MeSH
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Zobrazit více v PubMed
Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG (2013) Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 304:H58–H71. https://doi.org/10.1152/ajpheart.00476.2012 PubMed DOI
Adams DR, Ron D, Kiely PA (2011) RACK1, A multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22. https://doi.org/10.1186/1478-811X-9-22 PubMed DOI PMC
Alaklabi AM, Gambeta E, Zamponi GW (2023) Electrophysiological characterization of a Ca PubMed DOI
Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13:333–337. https://doi.org/10.1038/nn.2493 PubMed DOI
Anderson D, Rehak R, Hameed S, Mehaffey WH, Zamponi GW, Turner RW (2010) Regulation of the KV4.2 complex by CaV3.1 calcium channels. Channels (Austin) 4:163–167. https://doi.org/10.4161/chan.4.3.11955 PubMed DOI
Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JQ (2016) A rare schizophrenia risk variant of CACNA1I disrupts Ca PubMed DOI PMC
Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES (2009) Kelch-like 1 protein upregulates T-type currents by an actin-F dependent increase in α(1H) channels via the recycling endosome. Channels (Austin) 3:402–412. https://doi.org/10.4161/chan.3.6.9858 PubMed DOI
Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES (2010) T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol 298:C1353–C1362. https://doi.org/10.1152/ajpcell.00235.2009 PubMed DOI
Aromolaran KA, Benzow KA, Koob MD, Piedras-Rentería ES (2007) The Kelch-like protein 1 modulates P/Q-type calcium current density. Neuroscience 145:841–850. https://doi.org/10.1016/j.neuroscience.2006.12.046 PubMed DOI
Arteaga-Tlecuitl R, Sanchez-Sandoval AL, Ramirez-Cordero BE, Rosendo-Pineda MJ, Vaca L, Gomora JC (2018) Increase of CaV3 channel activity induced by HVA β1b-subunit is not mediated by a physical interaction. BMC Res Notes 11. https://doi.org/10.1186/s13104-018-3917-1
Asmara H, Micu I, Rizwan AP, Sahu G, Simms BA, Zhang FX, Engbers JDT, Stys PK, Zamponi GW, Turner RW (2017) A T-type channel-calmodulin complex triggers αCaMKII activation. Mol Brain 10:37. https://doi.org/10.1186/s13041-017-0317-8 PubMed DOI PMC
Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108:13823–13828. https://doi.org/10.1073/pnas.1105115108 PubMed DOI PMC
Bae J, Suh EJ, Lee C (2010) Interaction of T-type calcium channel Ca(V)3.3 with the β-subunit. Mol Cells 30:185–191. https://doi.org/10.1007/s10059-010-0106-z PubMed DOI
Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin Y-C, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ (2022) Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 145:1839–1853. https://doi.org/10.1093/brain/awab443 PubMed DOI
Barghouth M, Ye Y, Karagiannopoulos A, Ma Y, Cowan E, Wu R, Eliasson L, Renström E, Luan C, Zhang E (2022) The T-type calcium channel Ca PubMed DOI
Barrett PQ, Lu HK, Colbran R, Czernik A, Pancrazio JJ (2000) Stimulation of unitary T-type Ca(2+) channel currents by calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 279:C1694–C1703. https://doi.org/10.1152/ajpcell.2000.279.6.C1694 PubMed DOI
Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT (2015) Towards a unified theory of calmodulin regulation (calmodulation) of voltage-gated calcium and sodium channels. Curr Mol Pharmacol 8:188–205. https://doi.org/10.2174/1874467208666150507110359 PubMed DOI
Ben-Johny M, Yue DT (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J Gen Physiol 143:679–692. https://doi.org/10.1085/jgp.201311153 PubMed DOI PMC
Ben-Johny M, Dick IE (2022) In Voltage-gated calcium channels Eds. Springer, pp 217–236 DOI
Bender KJ, Trussell LO (2009) Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 61:259–271. https://doi.org/10.1016/j.neuron.2008.12.004 PubMed DOI PMC
Berthier C, Monteil A, Lory P, Strube C (2002) Alpha(1H) mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice. J Physiol 539:681–691. https://doi.org/10.1113/jphysiol.2001.013246 PubMed DOI PMC
Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci USA 97:7627–7632. https://doi.org/10.1073/pnas.97.13.7627 PubMed DOI PMC
Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P (2015) Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci USA 112:13705–13710. https://doi.org/10.1073/pnas.1511740112 PubMed DOI PMC
Bryant S, Kimura TE, Kong CH, Watson JJ, Chase A, Suleiman MS, James AF, Orchard CH (2014) Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes. J Mol Cell Cardiol 68:47–55. https://doi.org/10.1016/j.yjmcc.2013.12.026 PubMed DOI PMC
Cai S, Gomez K, Moutal A, Khanna R (2021) Targeting T-type/CaV3.2 channels for chronic pain. Transl Res 234:20–30. https://doi.org/10.1016/j.trsl.2021.01.002 PubMed DOI PMC
Campiglio M, Costé de Bagneaux P, Ortner NJ, Tuluc P, Van Petegem F, Flucher BE (2018) STAC proteins associate to the IQ domain of Ca PubMed DOI PMC
Carabelli V, Marcantoni A, Comunanza V, Carbone E (2007) Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. Eur Biophys J 36:753–762. https://doi.org/10.1007/s00249-007-0138-2 PubMed DOI
Carabelli V, Marcantoni A, Comunanza V, de Luca A, Díaz J, Borges R, Carbone E (2007) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165. https://doi.org/10.1113/jphysiol.2007.132274 PubMed DOI PMC
Carbone E, Calorio C, Vandael DH (2014) T-type channel-mediated neurotransmitter release. Pflugers Arch 466:677–687. https://doi.org/10.1007/s00424-014-1489-z PubMed DOI
Carter MT, McMillan HJ, Tomin A, Weiss N (2019) Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin) 13:153–161. https://doi.org/10.1080/19336950.2019.1614415 PubMed DOI
Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J (2014) 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflügers Archiv - Eur J Physiol 466:1759–1768. https://doi.org/10.1007/s00424-013-1411-0 DOI
Chemin J, Siquier-Pernet K, Nicouleau M, Barcia G, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feysot C, Fourage C, Nitschké P, Thevenon J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A et al (2018) De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain 141:1998–2013. https://doi.org/10.1093/brain/awy145 PubMed DOI
Chemin J, Taiakina V, Monteil A, Piazza M, Guan W, Stephens RF, Kitmitto A, Pang ZP, Dolphin AC, Perez-Reyes E, Dieckmann T, Guillemette JG, Spafford JD (2017) Calmodulin regulates Ca PubMed DOI PMC
Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416–1418. https://doi.org/10.1126/science.1089268 PubMed DOI
Choi CSW, Souza IA, Sanchez-Arias JC, Zamponi GW, Arbour LT, Swayne LA (2019) Ankyrin B and Ankyrin B variants differentially modulate intracellular and surface Cav2.1 levels. Mol. Brain 12:75. https://doi.org/10.1186/s13041-019-0494-8 DOI
Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6:425–431. https://doi.org/10.1111/j.1601-183X.2006.00268.x PubMed DOI
Cmarko L, Stringer RN, Jurkovicova-Tarabova B, Vacik T, Lacinova L, Weiss N (2022) Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels. Mol Brain 15:1. https://doi.org/10.1186/s13041-021-00891-7 PubMed DOI PMC
Cottrell GS, Soubrane CH, Hounshell JA, Lin H, Owenson V, Rigby M, Cox PJ, Barker BS, Ottolini M, Ince S, Bauer CC, Perez-Reyes E, Patel MK, Stevens EB, Stephens GJ (2018) CACHD1 is an α2δ-like protein that modulates Ca PubMed DOI PMC
Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G (2015) A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet 97:726–737. https://doi.org/10.1016/j.ajhg.2015.09.007 PubMed DOI PMC
Crandall SR, Govindaiah G, Cox CL (2010) Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci 30:15419–15429. https://doi.org/10.1523/JNEUROSCI.3636-10.2010 PubMed DOI PMC
Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83:103–109. https://doi.org/10.1161/01.res.83.1.103 PubMed DOI
Cueni L, Canepari M, Luján R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Lüthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692. https://doi.org/10.1038/nn.2124 PubMed DOI
Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, Koval O, Li J, Gudmundsson H, Gumina RJ, Karck M, Schott JJ, Probst V, Le Marec H, Anderson ME, Dobrev D, Wehrens XH, Mohler PJ (2011) Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation 124:1212–1222. https://doi.org/10.1161/CIRCULATIONAHA.111.023986 PubMed DOI PMC
Dahimene S, Page KM, Kadurin I, Ferron L, Ho DY, Powell GT, Pratt WS, Wilson SW, Dolphin AC (2018) The α PubMed DOI PMC
Daniil G, Fernandes-Rosa FL, Chemin J, Blesneac I, Beltrand J, Polak M, Jeunemaitre X, Boulkroun S, Amar L, Strom TM, Lory P, Zennaro MC (2016) CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 13:225–236. https://doi.org/10.1016/j.ebiom.2016.10.002 PubMed DOI PMC
De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450. https://doi.org/10.1038/385446a0 PubMed DOI
DePuy SD, Yao J, Hu C, McIntire W, Bidaud I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ (2006) The molecular basis for T-type Ca2+ channel inhibition by G protein beta2gamma2 subunits. Proc Natl Acad Sci USA 103:14590–14595. https://doi.org/10.1073/pnas.0603945103 PubMed DOI PMC
Diering GH, Church J, Numata M (2009) Secretory carrier membrane protein 2 regulates cell-surface targeting of brain-enriched Na+/H+ exchanger NHE5. J Biol Chem 284:13892–13903. https://doi.org/10.1074/jbc.M807055200 PubMed DOI PMC
Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279:29263–29269. https://doi.org/10.1074/jbc.M313450200 PubMed DOI
Engbers JD, Anderson D, Asmara H, Rehak R, Mehaffey WH, Hameed S, McKay BE, Kruskic M, Zamponi GW, Turner RW (2012) Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci USA 109:2601–2606. https://doi.org/10.1073/pnas.1115024109 PubMed DOI PMC
Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753–763. https://doi.org/10.1002/jcp.21075 PubMed DOI
Felix R, Weiss N (2017) Ubiquitination and proteasome-mediated degradation of voltage-gated Ca2+ channels and potential pathophysiological implications. Gen Physiol Biophys 36:1–5. https://doi.org/10.4149/gpb_2016037 PubMed DOI
Feseha S, Timic Stamenic T, Wallace D, Tamag C, Yang L, Pan JQ, Todorovic SM (2020) Global genetic deletion of Ca PubMed DOI PMC
Ficelova V, Souza IA, Cmarko L, Gandini MA, Stringer RN, Zamponi GW, Weiss N (2020) Functional identification of potential non-canonical N-glycosylation sites within Ca PubMed DOI PMC
Fjorback AW, Müller HK, Haase J, Raarup MK, Wiborg O (2011) Modulation of the dopamine transporter by interaction with secretory carrier membrane protein 2. Biochem Biophys Res Commun 406:165–170. https://doi.org/10.1016/j.bbrc.2011.01.069 PubMed DOI
Flucher BE, Campiglio M (2019) STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. Biochim Biophys Acta Mol Cell Res 1866:1101–1110. https://doi.org/10.1016/j.bbamcr.2018.12.004 PubMed DOI
Gackière F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biology Open 2:941–951. https://doi.org/10.1242/bio.20135215 PubMed DOI PMC
Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, Zamponi GW (2015) Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain. Mol Pain 11:12. https://doi.org/10.1186/s12990-015-0011-8 PubMed DOI PMC
Gaifullina AS, Lazniewska J, Gerasimova EV, Burkhanova GF, Rzhepetskyy Y, Tomin A, Rivas-Ramirez P, Huang J, Cmarko L, Zamponi GW, Sitdikova GF, Weiss N (2019) A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain 160:2798–2810. https://doi.org/10.1097/j.pain.0000000000001669 PubMed DOI
Gambeta E, Gandini MA, Souza IA, Zamponi GW (2022) CaV3.2 calcium channels contribute to trigeminal neuralgia. Pain. https://doi.org/10.1097/j.pain.0000000000002651
Gandini MA, Souza IA, Khullar A, Gambeta E, Zamponi GW (2021) Regulation of Ca
Gangarossa G, Laffray S, Bourinet E, Valjent E (2014) T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front Behav Neurosci 8:92. https://doi.org/10.3389/fnbeh.2014.00092 PubMed DOI PMC
Garcia-Caballero A, Gadotti VM, Ali MY, Bladen C, Gambeta E, Van Humbeck JF, MacCallum JL, Zamponi GW (2022) A synthetically accessible small-molecule inhibitor of USP5-Cav3.2 calcium channel interactions with analgesic properties. ACS Chem Neurosci 13:524–536. https://doi.org/10.1021/acschemneuro.1c00765 PubMed DOI
Garcia-Caballero A, Gadotti VM, Chen L, Zamponi GW (2016) A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Mol Pain 12:1744806916642444. https://doi.org/10.1177/1744806916642444 PubMed DOI PMC
García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, François A, Bourinet E, Zamponi GW (2014) The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 83:1144–1158. https://doi.org/10.1016/j.neuron.2014.07.036 PubMed DOI
Garcia-Caballero A, Gandini MA, Huang S, Chen L, Souza IA, Dang YL, Stutts MJ, Zamponi GW (2019) Cav3.2 calcium channel interactions with the epithelial sodium channel ENaC. Mol Brain 12:12. https://doi.org/10.1186/s13041-019-0433-8 PubMed DOI PMC
Garcia-Caballero A, Zhang FX, Chen L, M’Dahoma S, Huang J, Zamponi GW (2019) SUMOylation regulates USP5-Cav3.2 calcium channel interactions. Mol Brain 12:73. https://doi.org/10.1186/s13041-019-0493-9 PubMed DOI PMC
Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW (2018) T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 11:24. https://doi.org/10.1186/s13041-018-0368-5 PubMed DOI PMC
Giraldez T, Domínguez J, Alvarez de la Rosa D (2013) ENaC in the brain--future perspectives and pharmacological implications. Curr Mol Pharmacol 6:44–49. https://doi.org/10.2174/1874467211306010006 PubMed DOI
He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, Zhao Y (2022) Structure, gating, and pharmacology of human CaV3.3 channel. Nat Commun 13. https://doi.org/10.1038/s41467-022-29728-0
He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26:9975–9982. https://doi.org/10.1523/JNEUROSCI.2595-06.2006 PubMed DOI PMC
Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62:560–568. https://doi.org/10.1002/ana.21169 PubMed DOI
Ho TS, Zollinger DR, Chang KJ, Xu M, Cooper EC, Stankewich MC, Bennett V, Rasband MN (2014) A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat Neurosci 17:1664–1672. https://doi.org/10.1038/nn.3859 PubMed DOI PMC
Hu C, Depuy SD, Yao J, McIntire WE, Barrett PQ (2009) Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimers. J Biol Chem 284:7465–7473. https://doi.org/10.1074/jbc.M808049200 PubMed DOI PMC
Huang J, Zamponi GW (2017) Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Curr Opin Pharmacol 32:1–8. https://doi.org/10.1016/j.coph.2016.10.001 PubMed DOI
Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D (2000) The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell 11:2933–2947. https://doi.org/10.1091/mbc.11.9.2933 PubMed DOI PMC
Hughes SW, Cope DW, Blethyn KL, Crunelli V (2002) Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–958. https://doi.org/10.1016/s0896-6273(02)00623-2 PubMed DOI
Isacson CK, Lu Q, Karas RH, Cox DH (2007) RACK1 is a BKCa channel binding protein. Am J Physiol Cell Physiol 292:C1459–C1466. https://doi.org/10.1152/ajpcell.00322.2006 PubMed DOI
Ivanov AI, Calabrese RL (2000) Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J Neurosci 20:4930–4943. https://doi.org/10.1523/JNEUROSCI.20-13-04930.2000 PubMed DOI PMC
Jeong S, Shim JS, Sin SK, Park K, Lee J (2023) Phosphorylation states greatly regulate the activity and gating properties of Ca PubMed DOI
Jiang S, Seng S, Avraham HK, Fu Y, Avraham S (2007) Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem 282:12319–12329. https://doi.org/10.1074/jbc.M701019200 PubMed DOI
Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279:9681–9684. https://doi.org/10.1074/jbc.C400006200 PubMed DOI
Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW (2005) Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 57:745–749. https://doi.org/10.1002/ana.20458 PubMed DOI
Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302:117–119. https://doi.org/10.1126/science.1088886 PubMed DOI
Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31:35–45. https://doi.org/10.1016/s0896-6273(01)00343-9 PubMed DOI
Kline CF, Scott J, Curran J, Hund TJ, Mohler PJ (2014) Ankyrin-B regulates Cav2.1 and Cav2.2 channel expression and targeting. J Biol Chem 289:5285–5295. https://doi.org/10.1074/jbc.M113.523639 PubMed DOI PMC
Komada M, Soriano P (2002) [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 156:337–348. https://doi.org/10.1083/jcb.200110003 PubMed DOI PMC
Kozlov G, Gehring K (2020) Calnexin cycle - structural features of the ER chaperone system. FEBS J 287:4322–4340. https://doi.org/10.1111/febs.15330 PubMed DOI PMC
Lacinova L, Weiss N (2016) It takes two T to shape immunity: emerging role for T-type calcium channels in immune cells. Gen Physiol Biophys 35:393–396. https://doi.org/10.4149/gpb_2016034 PubMed DOI
Lazniewska J, Weiss N (2014) The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 167:67–114. https://doi.org/10.1007/112_2014_20 PubMed DOI
Lazniewska J, Weiss N (2017) Glycosylation of voltage-gated calcium channels in health and disease. Biochim Biophys Acta Biomembr 1859:662–668. https://doi.org/10.1016/j.bbamem.2017.01.018 PubMed DOI
Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921 PubMed DOI PMC
Lee U, Choi C, Ryu SH, Park D, Lee SE, Kim K, Kim Y, Chang S (2021) SCAMP5 plays a critical role in axonal trafficking and synaptic localization of NHE6 to adjust quantal size at glutamatergic synapses. Proc Natl Acad Sci USA 118:e2011371118. https://doi.org/10.1073/pnas.2011371118 PubMed DOI
Legha W, Gaillard S, Gascon E, Malapert P, Hocine M, Alonso S, Moqrich A (2010) stac1 and stac2 genes define discrete and distinct subsets of dorsal root ganglia neurons. Gene Expr Patterns 10:368–375. https://doi.org/10.1016/j.gep.2010.08.003 PubMed DOI
Leuranguer V, Bourinet E, Lory P, Nargeot J (1998) Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology 37:701–708. https://doi.org/10.1016/s0028-3908(98)00060-4 PubMed DOI
Lin SS, Tzeng BH, Lee KR, Smith RJ, Campbell KP, Chen CC (2014) Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci USA 111:E1990–E1998. https://doi.org/10.1073/pnas.1323112111 PubMed DOI PMC
Liu CH, Seo R, Ho TS, Stankewich M, Mohler PJ, Hund TJ, Noebels JL, Rasband MN (2020) β spectrin-dependent and domain specific mechanisms for Na PubMed DOI PMC
Liu CH, Stevens SR, Teliska LH, Stankewich M, Mohler PJ, Hund TJ, Rasband MN (2020) Nodal β spectrins are required to maintain Na PubMed DOI PMC
Lledo PM, Homburger V, Bockaert J, Vincent JD (1992) Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 8:455–463. https://doi.org/10.1016/0896-6273(92)90273-g PubMed DOI
Lledo PM, Legendre P, Israel JM, Vincent JD (1990) Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 127:990–1001. https://doi.org/10.1210/endo-127-3-990 PubMed DOI
Lory P, Nicole S, Monteil A (2020) Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 472:831–844. https://doi.org/10.1007/s00424-020-02429-7 PubMed DOI PMC
Lu HK, Fern RJ, Nee JJ, Barrett PQ (1994) Ca(2+)-dependent activation of T-type Ca2+ channels by calmodulin-dependent protein kinase II. Am J Physiol 267:F183–F189. https://doi.org/10.1152/ajprenal.1994.267.1.F183 PubMed DOI
Lundt A, Seidel R, Soós J, Henseler C, Müller R, Bakki M, Arshaad MI, Ehninger D, Hescheler J, Sachinidis A, Broich K, Wormuth C, Papazoglou A, Weiergräber M (2019) Ca PubMed DOI
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF (2014) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta 1838:620–634. https://doi.org/10.1016/j.bbamem.2013.05.002 PubMed DOI
Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51:321–330. https://doi.org/10.1016/j.ceca.2012.01.005 PubMed DOI
Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 98:1422–1430. https://doi.org/10.1161/01.RES.0000225862.14314.49 PubMed DOI
Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 406:104–111. https://doi.org/10.1007/BF00586670 PubMed DOI
Markandeya YS, Fahey JM, Pluteanu F, Cribbs LL, Balijepalli RC (2011) Caveolin-3 regulates protein kinase A modulation of the Ca(V)3.2 (alpha1H) T-type Ca2+ channels. J Biol Chem 286:2433–2444. https://doi.org/10.1074/jbc.M110.182550 PubMed DOI
Mesirca P, Torrente AG, Mangoni ME (2014) T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch 466:791–799. https://doi.org/10.1007/s00424-014-1482-6 PubMed DOI
Mezghrani A, Monteil A, Watschinger K, Sinnegger-Brauns MJ, Barrère C, Bourinet E, Nargeot J, Striessnig J, Lory P (2008) A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J Neurosci 28:4501–4511. https://doi.org/10.1523/jneurosci.2844-07.2008 PubMed DOI PMC
Monteil A, Chausson P, Boutourlinsky K, Mezghrani A, Huc-Brandt S, Blesneac I, Bidaud I, Lemmers C, Leresche N, Lambert RC, Lory P (2015) Inhibition of Cav3.2 T-type calcium channels by its intracellular I-II loop. J Biol Chem 290:16168–16176. https://doi.org/10.1074/jbc.m114.634261 PubMed DOI PMC
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H (2015) A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 8:89. https://doi.org/10.1186/s13041-015-0180-4 PubMed DOI PMC
Müller CS, Haupt A, Bildl W, Schindler J, Knaus H-G, Meissner M, Rammner B, Striessnig J, Flockerzi V, Fakler B, Schulte U (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci 107:14950–14957. https://doi.org/10.1073/pnas.1005940107 PubMed DOI PMC
Müller HK, Wiborg O, Haase J (2006) Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem 281:28901–28909. https://doi.org/10.1074/jbc.M602848200 PubMed DOI
Mustafá ER, Gambeta E, Stringer RN, Souza IA, Zamponi GW, Weiss N (2022) Electrophysiological and computational analysis of Ca DOI
Mustafá ER, Weiß K, Weiss N (2023) Secretory carrier-associated membrane protein 5 regulates cell-surface targeting of T-type calcium channels. Channels (Austin) 17:2230776. https://doi.org/10.1080/19336950.2023.2230776 PubMed DOI
Nelson BR, Wu F, Liu Y, Anderson DM, McAnally J, Lin W, Cannon SC, Bassel-Duby R, Olson EN (2013) Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci USA 110:11881–11886. https://doi.org/10.1073/pnas.1310571110 PubMed DOI PMC
Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD (2000) The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 9:1543–1551. https://doi.org/10.1093/hmg/9.10.1543 PubMed DOI
Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, Poiro N, Digruccio MR, Krishnan K, Covey DF, Lee JH, Barrett PQ, Jevtovic-Todorovic V, Todorovic SM (2013) Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels. Diabetes 62:3828–3838. https://doi.org/10.2337/db13-0813 PubMed DOI PMC
Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98. https://doi.org/10.1016/s0896-6273(01)00454-8 PubMed DOI
Patterson RL, van Rossum DB, Barrow RK, Snyder SH (2004) RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci USA 101:2328–2332. https://doi.org/10.1073/pnas.0308567100 PubMed DOI PMC
Pellegrini C, Lecci S, Lüthi A, Astori S (2016) Suppression of sleep spindle rhythmogenesis in mice with deletion of CaV3.2 and CaV3.3 T-type Ca(2+) channels. Sleep 39:875–885. https://doi.org/10.5665/sleep.5646 PubMed DOI PMC
Peloquin JB, Khosravani H, Barr W, Bladen C, Evans R, Mezeyova J, Parker D, Snutch TP, McRory JE, Zamponi GW (2006) Functional analysis of Ca3.2 T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia 47:655–658. https://doi.org/10.1111/j.1528-1167.2006.00482.x PubMed DOI
Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900. https://doi.org/10.1038/36110 PubMed DOI
Perissinotti PP, Ethington EA, Almazan E, Martínez-Hernández E, Kalil J, Koob MD, Piedras-Rentería ES (2014) Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice. Front Cell Neurosci 8:444. https://doi.org/10.3389/fncel.2014.00444 PubMed DOI
Perissinotti PP, Ethington EG, Cribbs L, Koob MD, Martin J, Piedras-Rentería ES (2014) Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density. Cell Calcium 55:269–280. https://doi.org/10.1016/j.ceca.2014.03.002 PubMed DOI
Polster A, Dittmer PJ, Perni S, Bichraoui H, Sather WA, Beam KG (2018) Stac proteins suppress Ca PubMed DOI PMC
Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, Zamponi GW, Weiss N (2017) The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca PubMed DOI PMC
Proft J, Weiss N (2015) G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 87:890–906. https://doi.org/10.1124/mol.114.096008 PubMed DOI
Rehak R, Bartoletti TM, Engbers JD, Berecki G, Turner RW, Zamponi GW (2013) Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 8:e61844. https://doi.org/10.1371/journal.pone.0061844 PubMed DOI PMC
Rufenach B, Van Petegem F (2021) Structure and function of STAC proteins: calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 297:100874. https://doi.org/10.1016/j.jbc.2021.100874 PubMed DOI PMC
Rzhepetskyy Y, Lazniewska J, Blesneac I, Pamphlett R, Weiss N (2016) CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin) 10:466–477. https://doi.org/10.1080/19336950.2016.1204497 PubMed DOI
Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N (2016) A Ca PubMed DOI
Sakkaki S, Gangarossa G, Lerat B, Françon D, Forichon L, Chemin J, Valjent E, Lerner-Natoli M, Lory P (2016) Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model. Neuropharmacology 101:320–329. https://doi.org/10.1016/j.neuropharm.2015.09.032 PubMed DOI
Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H et al (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4:e06315. https://doi.org/10.7554/eLife.06315 PubMed DOI PMC
Shi X, Xiang S, Cao J, Zhu H, Yang B, He Q, Ying M (2019) Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 148:104404. https://doi.org/10.1016/j.phrs.2019.104404 PubMed DOI
Smith MR, Nelson AB, Du Lac S (2002) Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. J Neurophysiol 87:2031–2042. https://doi.org/10.1152/jn.00821.2001 PubMed DOI
Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281:22085–22091. https://doi.org/10.1074/jbc.M603316200 PubMed DOI
Stephens GJ, Cottrell GS (2019) CACHD1: A new activity-modifying protein for voltage-gated calcium channels. Channels (Austin) 13:120–123. https://doi.org/10.1080/19336950.2019.1600968 PubMed DOI
Stephens KE, Zhou W, Ji Z, Chen Z, He S, Ji H, Guan Y, Taverna SD (2019) Sex differences in gene regulation in the dorsal root ganglion after nerve injury. BMC Genomics 20:147. https://doi.org/10.1186/s12864-019-5512-9 PubMed DOI PMC
Stevens SR, Rasband MN (2022) Pleiotropic ankyrins: scaffolds for ion channels and transporters. Channels (Austin) 16:216–229. https://doi.org/10.1080/19336950.2022.2120467 PubMed DOI
Stringer RN, Cmarko L, Zamponi GW, De Waard M, Weiss N (2023) Electrophysiological characterization of a Ca DOI
Stringer RN, Jurkovicova-Tarabova B, Huang S, Haji-Ghassemi O, Idoux R, Liashenko A, Souza IA, Rzhepetskyy Y, Lacinova L, Van Petegem F, Zamponi GW, Pamphlett R, Weiss N (2020) A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Ca DOI
Stringer RN, Jurkovicova-Tarabova B, Souza IA, Ibrahim J, Vacik T, Fathalla WM, Hertecant J, Zamponi GW, Lacinova L, Weiss N (2021) De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy. Mol Brain 14:126. https://doi.org/10.1186/s13041-021-00838-y PubMed DOI PMC
Stringer RN, Lazniewska J, Weiss N (2020) Transcriptomic analysis of glycan-processing genes in the dorsal root ganglia of diabetic mice and functional characterization on Ca PubMed DOI
Suzuki H, Kawai J, Taga C, Yaoi T, Hara A, Hirose K, Hayashizaki Y, Watanabe S (1996) Stac, a novel neuron-specific protein with cysteine-rich and SH3 domains. Biochem Biophys Res Commun 229:902–909. https://doi.org/10.1006/bbrc.1996.1900 PubMed DOI
Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911 PubMed DOI PMC
Tamang HK, Yang RB, Song ZH, Hsu SC, Peng CC, Tung YC, Tzeng BH, Chen CC (2022) Ca
Thompson WR, Majid AS, Czymmek KJ, Ruff AL, García J, Duncan RL, Farach-Carson MC (2011) Association of the α DOI
Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15:3110–3117 PubMed DOI PMC
Turner RW, Zamponi GW (2014) T-type channels buddy up. Pflugers Arch 466:661–675. https://doi.org/10.1007/s00424-013-1434-6 PubMed DOI PMC
Uebele VN, Gotter AL, Nuss CE, Kraus RL, Doran SM, Garson SL, Reiss DR, Li Y, Barrow JC, Reger TS, Yang ZQ, Ballard JE, Tang C, Metzger JM, Wang SP, Koblan KS, Renger JJ (2009) Antagonism of T-type calcium channels inhibits high-fat diet-induced weight gain in mice. J Clin Invest 119:1659–1667. https://doi.org/10.1172/JCI36954 PubMed DOI PMC
Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E (2007) The I-II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27:322–330. https://doi.org/10.1523/JNEUROSCI.1817-06.2007 PubMed DOI PMC
Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP (2016) Low-Voltage-Activated CaV3.1 Calcium channels shape T helper cell cytokine profiles. Immunity 44:782–794. https://doi.org/10.1016/j.immuni.2016.01.015 PubMed DOI PMC
Weiss N (2022) T-type channels: a new route for calcium entry into platelets. J Thromb Haemost 20:1778–1780. https://doi.org/10.1111/jth.15764 PubMed DOI
Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465:1159–1170. https://doi.org/10.1007/s00424-013-1259-3 PubMed DOI
Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818. https://doi.org/10.1074/jbc.M111.290882 PubMed DOI
Weiss N, Zamponi GW (2012) Regulation of voltage-gated calcium channels by synaptic proteins. Adv Exp Med Biol 740:759–775. https://doi.org/10.1007/978-94-007-2888-2_33 PubMed DOI
Weiss N, Zamponi GW (2013) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828:1579–1586. https://doi.org/10.1016/j.bbamem.2012.07.031 PubMed DOI
Weiss N, Zamponi GW (2020) Genetic T-type calcium channelopathies. J Med Genet 57:1–10. https://doi.org/10.1136/jmedgenet-2019-106163 PubMed DOI
Weiss N, Zamponi GW (2021) Opioid receptor regulation of neuronal voltage-gated calcium channels. Cell Mol Neurobiol 41:839–847. https://doi.org/10.1007/s10571-020-00894-3 PubMed DOI
Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, Barrett PQ (2003) A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J Neurosci 23:10116–10121 PubMed DOI PMC
Williams PJ, MacVicar BA, Pittman QJ (1990) Synaptic modulation by dopamine of calcium currents in rat pars intermedia. J Neurosci 10:757–763. https://doi.org/10.1523/JNEUROSCI.10-03-00757.1990 PubMed DOI PMC
Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V (1997) The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol 505:689–705. https://doi.org/10.1111/j.1469-7793.1997.689ba.x PubMed DOI PMC
Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214. https://doi.org/10.1186/gb-2004-5-3-214 PubMed DOI PMC
Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413. https://doi.org/10.1523/JNEUROSCI.22-09-03404.2002 PubMed DOI PMC
Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ (2003) T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213. https://doi.org/10.1038/nature01772 PubMed DOI
Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ (2002) Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol 538:343–355. https://doi.org/10.1113/jphysiol.2001.012839 PubMed DOI PMC
Woodard GE, López JJ, Jardín I, Salido GM, Rosado JA (2010) TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 285:8045–8053. https://doi.org/10.1074/jbc.M109.033605 PubMed DOI
Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ (2012) Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 287:6551–6561. https://doi.org/10.1074/jbc.M111.305854 PubMed DOI
Yang T, He M, Zhang H, Barrett PQ, Hu C (2020) L- and T-type calcium channels control aldosterone production from human adrenals. J Endocrinol 244:237–247. https://doi.org/10.1530/JOE-19-0259 PubMed DOI PMC
Yao J, Davies LA, Howard JD, Adney SK, Welsby PJ, Howell N, Carey RM, Colbran RJ, Barrett PQ (2006) Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. J Clin Invest 116:2403–2412. https://doi.org/10.1172/JCI27918 PubMed DOI PMC
Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K (2011) Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem 286:9489–9502. https://doi.org/10.1074/jbc.M110.166546 PubMed DOI PMC
Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446. https://doi.org/10.1038/385442a0 PubMed DOI
Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, Yan N (2019) Cryo-EM structures of apo and antagonist-bound human Ca PubMed DOI