T-type channels: A new route for calcium entry into platelets
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, komentáře
PubMed
35859284
DOI
10.1111/jth.15764
PII: S1538-7836(22)02076-1
Knihovny.cz E-zdroje
- Klíčová slova
- Cav3.2 channels, T-type channels, calcium channels, platelets,
- MeSH
- lidé MeSH
- neurony MeSH
- trombocyty * MeSH
- vápník * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vápník * MeSH
Zobrazit více v PubMed
Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost. 2009;7:1057-1066.
Braun A, Varga-Szabo D, Kleinschnitz C, et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood. 2009;113:2056-2063.
Mahaut-Smith MP, Jones S, Evans RJ. The P2X1 receptor and platelet function. Purinergic Signal. 2011;7:341-356.
Paez Espinosa EV, Lin OA, Karim ZA, Alshbool FZ, Khasawneh FT. Mouse transient receptor potential channel type 6 selectively regulates agonist-induced platelet function. Biochem Biophys Rep. 2019;20:100685.
Doyle VM, Rüegg UT. Lack of evidence for voltage dependent calcium channels on platelets. Biochem Biophys Res Commun. 1985;127:161-167.
Pannocchia A, Praloran N, Arduino C, et al. Absence of (−) [3H]desmethoxyverapamil binding sites on human platelets and lack of evidence for voltage-dependent calcium channels. Eur J Pharmacol. 1987;142:83-91.
Zschauer A, van Breemen C, Bühler FR, Nelson MT. Calcium channels in thrombin-activated human platelet membrane. Nature. 1988;334:703-705.
Nomura S, Kanazawa S, Fukuhara S. Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus. J Hum Hypertens. 2002;16:539-547.
Tamang HK, Yang RB, Song ZH, et al. Cav 3.2 T-type calcium channel regulates mouse platelet activation and arterial thrombosis. J Thromb Haemost. 2022; in press.
Weiss N, Zamponi GW. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34-39.
Weiss N, Zamponi GW. Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta. 2013;1828:1579-1586.
Antal L, Martin-Caraballo M. T-type calcium channels in cancer. Cancers. 2019;11:E134.
MacIntyre DE, Rink TJ. The role of platelet membrane potential in the initiation of platelet aggregation. Thromb Haemost. 1982;47:22-26.
Horne WC, Simons ER. Probes of transmembrane potentials in platelets: changes in cyanine dye fluorescence in response to aggregation stimuli. Blood. 1978;51:741-749.
Albitz R, Droogmans G, Nilius B, Casteels R. Thrombin stimulates L-type calcium channels of Guinea pig cardiomyocytes in cell-attached patches but not after intracellular dialysis. Cell Calcium. 1992;13:203-210.
Leoncini G, Pascale R, Signorello MG. Effects of homocysteine on l-arginine transport and nitric oxide formation in human platelets. Eur J Clin Invest. 2003;33:713-719.
Weiss N, Zamponi GW. T-type channel druggability at a crossroads. ACS Chem Nerosci. 2019;10:1124-1126.
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet. 2020;57:1-10.
Leiter O, Walker TL. Platelets: the missing link between the blood and brain. Prog Neurobiol. 2019;183:101695.
The T-type calcium channelosome