T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
- MeSH
- analgezie * MeSH
- bolest farmakoterapie MeSH
- COVID-19 * MeSH
- lidé MeSH
- neuropilin-1 metabolismus MeSH
- receptory vaskulárního endoteliálního růstového faktoru metabolismus MeSH
- SARS-CoV-2 metabolismus MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Amyotrophic lateral sclerosis (ALS) stands as the most prevalent and severe form of motor neuron disease, affecting an estimated 2 in 100,000 individuals worldwide. It is characterized by the progressive loss of cortical, brainstem, and spinal motor neurons, ultimately resulting in muscle weakness and death. Although the etiology of ALS remains poorly understood in most cases, the remodelling of ion channels and alteration in neuronal excitability represent a hallmark of the disease, manifesting not only during the symptomatic period but also in the early pre-symptomatic stages. In this review, we delve into these alterations observed in ALS patients and preclinical disease models, and explore their consequences on neuronal activities. Furthermore, we discuss the potential of ion channels as therapeutic targets in the context of ALS.
- MeSH
- amyotrofická laterální skleróza * MeSH
- iontové kanály MeSH
- lidé MeSH
- motorické neurony MeSH
- svalová slabost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Triphenylphosphonium (TPP) derivatives are commonly used to target chemical into mitochondria. We show that alkyl-TPP cause reversible, dose- and hydrophobicity-dependent alterations of mitochondrial morphology and function and a selective decrease of mitochondrial inner membrane proteins including subunits of the respiratory chain complexes, as well as components of the mitochondrial calcium uniporter complex. The treatment with alkyl-TPP resulted in the cleavage of the pro-fusion and cristae organisation regulator Optic atrophy-1. The structural and functional effects of alkyl-TPP were found to be reversible and not merely due to loss of membrane potential. A similar effect was observed with the mitochondria-targeted antioxidant MitoQ.
- MeSH
- antioxidancia * farmakologie MeSH
- kationty metabolismus farmakologie MeSH
- membránové proteiny metabolismus MeSH
- membránový potenciál mitochondrií MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie * metabolismus MeSH
- organofosforové sloučeniny farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Missense mutations in the human secretary carrier-associated membrane protein 5 (SCAMP5) cause a variety of neurological disorders including neurodevelopmental delay, epilepsy, and Parkinson's disease. We recently documented the importance of SCAMP2 in the regulation of T-type calcium channel expression in the plasma membrane. Here, we show that similar to SCAMP2, the co-expression of SCAMP5 in tsA-201 cells expressing recombinant Cav3.1, Cav3.2, and Cav3.3 channels nearly abolished whole-cell T-type currents. Recording of intramembrane charge movements revealed that SCAMP5-induced inhibition of T-type currents is primarily caused by the reduced expression of functional channels in the plasma membrane. Moreover, we show that SCAMP5-mediated downregulation of Cav3.2 channels is essentially preserved with disease-causing SCAMP5 R91W and G180W mutations. Hence, this study extends our previous findings with SCAMP2 and indicates that SCAMP5 also contributes to repressing the expression of T-type channels in the plasma membrane.
- MeSH
- buněčná membrána MeSH
- down regulace MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mutace MeSH
- vápníkové kanály - typ T * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
T-type calcium channelopathies encompass a group of human disorders either caused or exacerbated by mutations in the genes encoding different T-type calcium channels. Recently, a new heterozygous missense mutation in the CACNA1H gene that encodes the Cav3.2 T-type calcium channel was reported in a patient presenting with epilepsy and hearing loss-apparently the first CACNA1H mutation to be associated with a sensorineural hearing condition. This mutation leads to the substitution of an arginine at position 132 with a histidine (R132H) in the proximal extracellular end of the second transmembrane helix of Cav3.2. In this study, we report the electrophysiological characterization of this new variant using whole-cell patch clamp recordings in tsA-201 cells. Our data reveal minor gating alterations of the channel evidenced by a mild increase of the T-type current density and slower recovery from inactivation, as well as an enhanced sensitivity of the channel to external pH change. To what extend these biophysical changes and pH sensitivity alterations induced by the R132H mutation contribute to the observed pathogenicity remains an open question that will necessitate the analysis of additional CACNA1H variants associated with the same pathologies.
- MeSH
- epilepsie * genetika MeSH
- lidé MeSH
- missense mutace genetika MeSH
- mutace genetika MeSH
- nedoslýchavost * MeSH
- vápníkové kanály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
BACKGROUND: COVID-19, an infectious disease caused by SARS-CoV-2, was shown to be associated with an increased risk of new-onset diabetes. Mechanisms contributing to the development of hyperglycemia are still unclear. We aimed to study whether hyperglycemia is related to insulin resistance and/or beta cell dysfunction. MATERIALS AND METHODS: Survivors of severe COVID-19 but without a known history of diabetes were examined at baseline (T0) and after 3 (T3) and 6 (T6) months: corticosteroids use, indirect calorimetry, and OGTT. Insulin response and sensitivity (IS) were expressed as insulinogenic (IGI), disposition (DI), and Matsuda insulin sensitivity index (ISI). Resting energy expenditure (REE) and respiratory quotient (RQ) was calculated from the gas exchange and nitrogen losses. RESULTS: 26 patients (out of 37) with complete outcome data were included in the analysis (age ~59.0 years; BMI ~ 30.4, 35% women). Patients were hypermetabolic at T0 (30.3 ± 4.0 kcal/kg lean mass/day, ~120% predicted) but REE declined over 6 months (ΔT6-T0 mean dif. T6-T0 (95% CI): -5.4 (-6.8, -4.1) kcal/kg FFM/day, p < 0.0001). 17 patients at T0 and 13 patients at T6 had hyperglycemia. None of the patients had positive islet autoantibodies. Insulin sensitivity in T0 was similarly low in hyperglycemic (H) and normoglycemic patients (N) (T0 ISIH = 3.12 ± 1.23, ISIN = 3.47 ± 1.78, p = 0.44), whereas insulin response was lower in the H group (DIH = 3.05 ± 1.79 vs DIN = 8.40 ± 5.42, p = 0.003). Over 6 months ISI (ΔT6-T0 mean dif. T6-T0 for ISI (95% CI): 1.84 (0.45, 3.24), p = 0.01)) increased in the H group only. CONCLUSIONS: Patients with severe COVID-19 had increased REE and insulin resistance during the acute phase due to the infection and corticosteroid use, but these effects do not persist during the follow-up period. Only patients with insufficient insulin response developed hyperglycemia, indicating that beta cell dysfunction, rather than insulin resistance, was responsible for its occurrence.
- MeSH
- COVID-19 * komplikace MeSH
- hyperglykemie * MeSH
- inzulin MeSH
- inzulinová rezistence * fyziologie MeSH
- krevní glukóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Trigeminal neuralgia (TN) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paroxysms of electric shock-like or stabbing pain in a region of the face. While most cases occur in a sporadic manner and are accompanied by intracranial vascular compression of the trigeminal nerve root, alteration of ion channels has emerged as a potential exacerbating factor. Recently, whole exome sequencing analysis of familial TN patients identified 19 rare variants in the gene CACNA1H encoding for Cav3.2T-type calcium channels. An initial analysis of 4 of these variants pointed to a pathogenic role. In this study, we assessed the electrophysiological properties of 13 additional TN-associated Cav3.2 variants expressed in tsA-201 cells. Our data indicate that 6 out of the 13 variants analyzed display alteration of their gating properties as evidenced by a hyperpolarizing shift of their voltage dependence of activation and/or inactivation resulting in an enhanced window current supported by Cav3.2 channels. An additional variant enhanced the recovery from inactivation. Simulation of neuronal electrical membrane potential using a computational model of reticular thalamic neuron suggests that TN-associated Cav3.2 variants could enhance neuronal excitability. Altogether, the present study adds to the notion that ion channel polymorphisms could contribute to the etiology of some cases of TN and further support a role for Cav3.2 channels.
- MeSH
- elektrofyziologické jevy MeSH
- lidé MeSH
- membránové potenciály MeSH
- neuralgie trigeminu * genetika MeSH
- neurony MeSH
- vápníkové kanály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH