CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing

. 2016 Nov ; 10 (6) : 466-77. [epub] 20160622

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27331657

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

Zobrazit více v PubMed

Salameh JS, Brown RH, Berry JD. Amyotrophic lateral sclerosis: review. Semin Neurol 2015; 35:469-76; PMID:26502769; http://dx.doi.org/10.1055/s-0035-1558984 PubMed DOI

Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet 2011; 377:942-55; PMID:21296405; http://dx.doi.org/10.1016/S0140-6736(10)61156-7 PubMed DOI

Renton AE, Chi∫ A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17:17-23; PMID:24369373; http://dx.doi.org/10.1038/nn.3584 PubMed DOI PMC

Morahan JM, Yu B, Trent RJ, Pamphlett R. Genetic susceptibility to environmental toxicants in ALS. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:885-90; PMID:17503480; http://dx.doi.org/10.1002/ajmg.b.30543 PubMed DOI

Chi∫ A, Calvo A, Moglia C, Ossola I, Brunetti M, Sbaiz L, Lai SL, Abramzon Y, Traynor BJ, Restagno G. A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol Aging 2011; 32:553.e23-6; PMID:Can't PubMed PMC

DeJesus-Hernandez M, Kocerha J, Finch N, Crook R, Baker M, Desaro P, Johnston A, Rutherford N, Wojtas A, Kennelly K, et al.. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat 2010; 31:E1377-89; PMID:20232451; http://dx.doi.org/10.1002/humu.21241 PubMed DOI PMC

Alexander MD, Traynor BJ, Miller N, Corr B, Frost E, McQuaid S, Brett FM, Green A, Hardiman O. True” sporadic ALS associated with a novel SOD-1 mutation. Ann Neurol 2002; 52:680-3; PMID:12402272; http://dx.doi.org/10.1002/ana.10369 PubMed DOI

Takahashi Y, Fukuda Y, Yoshimura J, Toyoda A, Kurppa K, Moritoyo H, Belzil VV, Dion PA, Higasa K, Doi K, et al.. ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum Genet 2013; 93:900-5; PMID:24119685; http://dx.doi.org/10.1016/j.ajhg.2013.09.008 PubMed DOI PMC

Laffita-Mesa JM, Rodríguez Pupo JM, Moreno Sera R, Vázquez Mojena Y, Kourí V, Laguna-Salvia L, Martínez-Godales M, Valdevila Figueira JA, Bauer PO, Rodríguez-Labrada R, et al.. De novo mutations in ataxin-2 gene and ALS risk. PLoS One 2013; 8:e70560; PMID:23936447; http://dx.doi.org/10.1371/journal.pone.0070560 PubMed DOI PMC

Steinberg KM, Yu B, Koboldt DC, Mardis ER, Pamphlett R. Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep 2015; 5:9124; PMID:25773295; http://dx.doi.org/10.1038/srep09124 PubMed DOI PMC

Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW. The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 2005; 562:121-9; PMID:15498803; http://dx.doi.org/10.1113/jphysiol.2004.076273 PubMed DOI PMC

Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N. Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 2010; 30:99-109; PMID:20053892; http://dx.doi.org/10.1523/JNEUROSCI.4305-09.2010 PubMed DOI PMC

Crunelli V, Cope DW, Hughes SW. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 2006; 40:175-90; PMID:16777223; http://dx.doi.org/10.1016/j.ceca.2006.04.022 PubMed DOI PMC

Bal T, McCormick DA. Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol 1997; 77:3145-56; PMID:9212264 PubMed

Beurrier C, Congar P, Bioulac B, Hammond C. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 1999; 19:599-609; PMID:9880580 PubMed PMC

Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 2003; 551:927-43; PMID:12865506; http://dx.doi.org/10.1113/jphysiol.2003.046847 PubMed DOI PMC

Turner RW, Zamponi GW. T-type channels buddy up. Pflugers Arch 2014; 466:661-75; PMID:24413887; http://dx.doi.org/10.1007/s00424-013-1434-6 PubMed DOI PMC

Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW. Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 2010; 13:333-7; PMID:20154682; http://dx.doi.org/10.1038/nn.2493 PubMed DOI

Rehak R, Bartoletti TM, Engbers JD, Berecki G, Turner RW, Zamponi GW. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 2013; 8:e61844; PMID:23626738; http://dx.doi.org/10.1371/journal.pone.0061844 PubMed DOI PMC

Anderson D, Engbers JD, Heath NC, Bartoletti TM, Mehaffey WH, Zamponi GW, Turner RW. The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. J Neurosci 2013; 33:7811-24; PMID:23637173; http://dx.doi.org/10.1523/JNEUROSCI.5384-12.2013 PubMed DOI PMC

Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, et al.. A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 2012; 287:2810-8; PMID:22130660; http://dx.doi.org/10.1074/jbc.M111.290882 PubMed DOI PMC

Weiss N, Zamponi GW, De Waard M. How do T-type calcium channels control low-threshold exocytosis. Commun Integr Biol 2012; 5:377-80; PMID:23060963; http://dx.doi.org/10.4161/cib.19997 PubMed DOI PMC

Klockgether T, Schwarz M, Turski L, Sontag KH. The rat ventromedial thalamic nucleus and motor control: role of N-methyl-D-aspartate-mediated excitation, GABAergic inhibition, and muscarinic transmission. J Neurosci 1986; 6:1702-11; PMID:2872282 PubMed PMC

Sommer MA. The role of the thalamus in motor control. Curr Opin Neurobiol 2003; 13:663-70; PMID:14662366; http://dx.doi.org/10.1016/j.conb.2003.10.014 PubMed DOI

Prevosto V, Sommer MA. Cognitive control of movement via the cerebellar-recipient thalamus. Front Syst Neurosci 2013; 7:56; PMID:24101896; http://dx.doi.org/10.3389/fnsys.2013.00056 PubMed DOI PMC

Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7:163; PMID:24273509; http://dx.doi.org/10.3389/fncom.2013.00163 PubMed DOI PMC

Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999; 19:1895-911; PMID:10066243 PubMed PMC

Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 2007; 62:560-8; PMID:17696120; http://dx.doi.org/10.1002/ana.21169 PubMed DOI

Foerster BR, Welsh RC, Feldman EL. Twenty-five years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 2013; 9:513-24; PMID:23917850; http://dx.doi.org/10.1038/nrneurol.2013.153 PubMed DOI PMC

Sach M, Winkler G, Glauche V, Liepert J, Heimbach B, Koch MA, Büchel C, Weiller C. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 2004; 127:340-50; PMID:14607785; http://dx.doi.org/10.1093/brain/awh041 PubMed DOI

Sharma KR, Saigal G, Maudsley AA, Govind V. 1H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR Biomed 2011; 24:1270-6; PMID:21404355; http://dx.doi.org/10.1002/nbm.1687 PubMed DOI PMC

Sudharshan N, Hanstock C, Hui B, Pyra T, Johnston W, Kalra S. Degeneration of the mid-cingulate cortex in amyotrophic lateral sclerosis detected in vivo with MR spectroscopy. AJNR Am J Neuroradiol 2011; 32:403-7; PMID:21087934; http://dx.doi.org/10.3174/ajnr.A2289 PubMed DOI PMC

Sharma KR, Sheriff S, Maudsley A, Govind V. Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J Neuroimaging 2013; 23:368-74; PMID:22273090; http://dx.doi.org/10.1111/j.1552-6569.2011.00679.x PubMed DOI PMC

Stoppel CM, Vielhaber S, Eckart C, Machts J, Kaufmann J, Heinze HJ, Kollewe K, Petri S, Dengler R, Hopf JM, et al.. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. Neuroimage Clin 2014; 5:277-90; PMID:25161894; http://dx.doi.org/10.1016/j.nicl.2014.07.007 PubMed DOI PMC

Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci 2002; 357:1659-73; PMID:12626002; http://dx.doi.org/10.1098/rstb.2002.1168 PubMed DOI PMC

Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, et al.. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54:239-43; PMID:12891677; http://dx.doi.org/10.1002/ana.10607 PubMed DOI

Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004; 279:9681-4; PMID:14729682; http://dx.doi.org/10.1074/jbc.C400006200 PubMed DOI

Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW. Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 2005; 57:745-9; PMID:15852375; http://dx.doi.org/10.1002/ana.20458 PubMed DOI

Peloquin JB, Khosravani H, Barr W, Bladen C, Evans R, Mezeyova J, Parker D, Snutch TP, McRory JE, Zamponi GW. Functional analysis of Ca3.2 T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia 2006; 47:655-8; PMID:16529636; http://dx.doi.org/10.1111/j.1528-1167.2006.00482.x PubMed DOI

Souza IA, Gandini MA, Wan MM, Zamponi GW. Two heterozygous Cav3.2 channel mutations in a pediatric chronic pain patient: recording condition-dependent biophysical effects. Pflugers Arch 2016; 468:635-42; PMID:26706850; http://dx.doi.org/10.1007/s00424-015-1776-3 PubMed DOI

Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput 1997; 9:1179-209; PMID:9248061; http://dx.doi.org/10.1162/neco.1997.9.6.1179 PubMed DOI

Huguenard JR, McCormick DA. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 1992; 68:1373-83; PMID:1279135 PubMed

Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR. In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 1996; 16:169-85; PMID:8613783 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The T-type calcium channelosome

. 2024 Feb ; 476 (2) : 163-177. [epub] 20231201

Pathophysiology of ion channels in amyotrophic lateral sclerosis

. 2023 Dec 15 ; 16 (1) : 82. [epub] 20231215

Electrophysiological characterization of a Cav3.2 calcium channel missense variant associated with epilepsy and hearing loss

. 2023 Sep 21 ; 16 (1) : 68. [epub] 20230921

Electrophysiological and computational analysis of Cav3.2 channel variants associated with familial trigeminal neuralgia

. 2022 Nov 17 ; 15 (1) : 91. [epub] 20221117

De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy

. 2021 Aug 16 ; 14 (1) : 126. [epub] 20210816

A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity

. 2020 Mar 06 ; 13 (1) : 33. [epub] 20200306

Genetic T-type calcium channelopathies

. 2020 Jan ; 57 (1) : 1-10. [epub] 20190619

Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy

. 2019 Dec ; 13 (1) : 153-161.

The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels

. 2017 Sep 14 ; 7 (1) : 11513. [epub] 20170914

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...