• This record comes from PubMed

Electrophysiological characterization of sourced human iPSC-derived motor neurons

. 2025 Dec ; 19 (1) : 2480713. [epub] 20250325

Language English Country United States Media print-electronic

Document type Journal Article

Induced pluripotent stem cell (iPSC)-derived motor neurons provide a powerful platform for studying motor neuron diseases. These cells enable human-specific modeling of disease mechanisms and high-throughput drug screening. While commercially available iPSC-derived motor neurons offer a convenient alternative to time-intensive differentiation protocols, their electrophysiological properties and maturation require comprehensive evaluation to validate their utility for research and therapeutic applications. In this study, we characterized the electrophysiological properties of commercially available iPSC-derived motor neurons. Immunofluorescence confirmed the expression of motor neuron-specific biomarkers, indicating successful differentiation and maturation. Electrophysiological recordings revealed stable passive membrane properties, maturation-dependent improvements in action potential kinetics, and progressive increases in repetitive firing. Voltage-clamp analyses confirmed the functional expression of key ion channels, including high- and low-voltage-activated calcium channels, TTX-sensitive and TTX-insensitive sodium channels, and voltage-gated potassium channels. While the neurons exhibited hallmark features of motor neuron physiology, high input resistance, depolarized resting membrane potentials, and limited firing capacity suggest incomplete electrical maturation. Altogether, these findings underscore the potential of commercially available iPSC-derived motor neurons as a practical resource for MND research, while highlighting the need for optimized protocols to support prolonged culture and full maturation.

See more in PubMed

Li L, Chao J, Shi Y.. Modeling neurological diseases using iPSC-derived neural cells: iPSC modeling of neurological diseases. Cell Tissue Res. 2018;371(1):143–13. doi: 10.1007/s00441-017-2713-x PubMed DOI PMC

Johns AE, Maragakis NJ.. Exploring motor neuron diseases using iPSC platforms. Stem Cells. 2022;40(1):2–13. doi: 10.1093/stmcls/sxab006 PubMed DOI PMC

Tsitkov S, Valentine K, Kozareva V, et al. Disease related changes in atac-seq of iPSC-derived motor neuron lines from ALS patients and controls. Nat Commun. 2024;15(1):3606. doi: 10.1038/s41467-024-47758-8 PubMed DOI PMC

Egawa N, Kitaoka S, Tsukita K, et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med. 2012;4(145):145ra104. doi: 10.1126/scitranslmed.3004052 PubMed DOI

Little D, Ketteler R, Gissen P, et al. Using stem cell–derived neurons in drug screening for neurological diseases. Neurobiol Aging. 2019;78:130–141. doi: 10.1016/j.neurobiolaging.2019.02.008 PubMed DOI

Amorós MA, Choi ES, Cofré AR, et al. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol. 2022;10:962881. doi: 10.3389/fcell.2022.962881 PubMed DOI PMC

Ito D, Morimoto S, Takahashi S, et al. Maiden voyage: induced pluripotent stem cell-based drug screening for amyotrophic lateral sclerosis. Brain. 2023;146(1):13–19. doi: 10.1093/brain/awac306 PubMed DOI

Mateos-Aparicio P, Bello SA, Rodríguez-Moreno A. Challenges in physiological phenotyping of hiPSC-derived neurons: from 2D cultures to 3D brain organoids. Front Cell Dev Biol. 2020;8:797. doi: 10.3389/fcell.2020.00797 PubMed DOI PMC

Workman MJ, Lim RG, Wu J, et al. Large-scale differentiation of iPSC-derived motor neurons from ALS and control subjects. Neuron. 2023;111(8):1191–1204.e5. doi: 10.1016/j.neuron.2023.01.010 PubMed DOI PMC

Van Lent J, Prior R, Pérez Siles G, et al. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med. 2024;56(6):1348–1364. doi: 10.1038/s12276-024-01250-x PubMed DOI PMC

Rimington RP, Fleming JW, Capel AJ, et al. Bioengineered model of the human motor unit with physiologically functional neuromuscular junctions. Sci Rep. 2021;11(1):11695. doi: 10.1038/s41598-021-91203-5 PubMed DOI PMC

Fiskum V, Sandvig A, Sandvig I. Silencing of activity during hypoxia improves functional outcomes in motor neuron networks in vitro. Front Integr Neurosci. 2021;15:792863. doi: 10.3389/fnint.2021.792863 PubMed DOI PMC

Spijkers XM, Pasteuning-Vuhman S, Dorleijn JC, et al. A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci Rep. 2021;11(1):2080. doi: 10.1038/s41598-021-81335-z PubMed DOI PMC

Bostock H, Sharief MK, Reid G, et al. Axonal ion channel dysfunction in amyotrophic lateral sclerosis. Brain. 1995;118(1):217–225. doi: 10.1093/brain/118.1.217 PubMed DOI

LoRusso E, Hickman JJ, Guo X. Ion channel dysfunction and altered motoneuron excitability in ALS. Neurol Disord Epilepsy J. 2019;3(2):124. PubMed PMC

Stringer RN, Weiss N. Pathophysiology of ion channels in amyotrophic lateral sclerosis. Mol Brain. 2023;16(1):82. doi: 10.1186/s13041-023-01070-6 PubMed DOI PMC

Shimojo D, Onodera K, Doi-Torii Y, et al. Rapid, efficient, and simple motor neuron differentiation from human pluripotent stem cells. Mol Brain. 2015;8(1):79. doi: 10.1186/s13041-015-0172-4 PubMed DOI PMC

Kubat Öktem E, Mruk K, Chang J, et al. Mutant SOD1 protein increases Nav1.3 channel excitability. J Biol Phys. 2016;42(3):351–370. doi: 10.1007/s10867-016-9411-x PubMed DOI PMC

Jørgensen HS, Jensen DB, Dimintiyanova KP, et al. Increased axon initial segment length results in increased Na+ currents in spinal motoneurones at symptom onset in the G127X SOD1 mouse model of amyotrophic lateral sclerosis. Neuroscience. 2021;468:247–264. doi: 10.1016/j.neuroscience.2020.11.016 PubMed DOI

Jiang YM, Yamamoto M, Kobayashi Y, et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol. 2005;57(2):236–251. doi: 10.1002/ana.20379 PubMed DOI

Sepehrimanesh M, Ding B. Generation and optimization of highly pure motor neurons from human induced pluripotent stem cells via lentiviral delivery of transcription factors. Am J Physiol Cell Physiol. 2020;319(4):C771–80. doi: 10.1152/ajpcell.00279.2020 PubMed DOI PMC

Sanooghi D, Lotfi A, Bagher Z, et al. Large-scale analysis of MicroRNA expression in motor neuron-like cells derived from human umbilical cord blood mesenchymal stem cells. Sci Rep. 2022;12(1):5894. doi: 10.1038/s41598-022-09368-6 PubMed DOI PMC

Thomson SR, Nahon JE, Mutsaers CA, et al. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLOS ONE. 2012;7(12):e52605. doi: 10.1371/journal.pone.0052605 PubMed DOI PMC

Glenn LL, Dement WC. Membrane potential and input resistance in alpha motoneurons of hindlimb extensors during isolated and clustered episodes of phasic events in REM sleep. Brain Res. 1985;339(1):79–86. doi: 10.1016/0006-8993(85)90623-7 PubMed DOI

Glenn LL, Dement WC. Membrane potential and input resistance of cat spinal motoneurons in wakefulness and sleep. Behav Brain Res. 1981;2(2):231–236. doi: 10.1016/0166-4328(81)90060-7 PubMed DOI

Zimmerman A, Hochman S. Heterogeneity of membrane properties in sympathetic preganglionic neurons of neonatal mice: evidence of four subpopulations in the intermediolateral nucleus. J Neurophysiol. 2010;103(1):490–498. doi: 10.1152/jn.00622.2009 PubMed DOI PMC

Meehan CF, Moldovan M, Marklund SL, et al. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents. Acta Physiologica. 2010;200(4):361–376. doi: 10.1111/j.1748-1716.2010.02188.x PubMed DOI

Stockmann M, Linta L, Föhr KJ, et al. Developmental and functional nature of human iPSC derived motoneurons. STEM Cell Rev And Rep. 2013;9(4):475–492. doi: 10.1007/s12015-011-9329-4 PubMed DOI

Taga A, Dastgheyb R, Habela C, et al. Role of human-induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system. Stem Cells Transl Med. 2019;8(12):1272–1285. doi: 10.1002/sctm.19-0147 PubMed DOI PMC

Burley S, Beccano-Kelly DA, Talbot K, et al. Hyperexcitability in young iPSC-derived C9ORF72 mutant motor neurons is associated with increased intracellular calcium release. Sci Rep. 2022;12(1):7378. doi: 10.1038/s41598-022-09751-3 PubMed DOI PMC

Vahsen BF, Gray E, Candalija A, et al. Human iPSC co-culture model to investigate the interaction between microglia and motor neurons. Sci Rep. 2022;12(1):12606. doi: 10.1038/s41598-022-16896-8 PubMed DOI PMC

Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis. 2016;93:78–95. doi: 10.1016/j.nbd.2016.04.009 PubMed DOI PMC

Rzhepetskyy Y, Lazniewska J, Blesneac I, et al. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin). 2016;10(6):466–477. doi: 10.1080/19336950.2016.1204497 PubMed DOI PMC

Stringer RN, Jurkovicova-Tarabova B, Huang S, et al. A rare CACNA1H Variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity. Mol Brain. 2020;13(1):33. doi: 10.1186/s13041-020-00577-6 PubMed DOI PMC

Tang Y, Liu ML, Zang T, et al. Direct reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neurons. Front Mol Neurosci. 2017;10:359. doi: 10.3389/fnmol.2017.00359 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...