Pathophysiology of ion channels in amyotrophic lateral sclerosis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
#22-23242S
Grantová Agentura České Republiky
VEGA #2/0073/22
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
PubMed
38102715
PubMed Central
PMC10722804
DOI
10.1186/s13041-023-01070-6
PII: 10.1186/s13041-023-01070-6
Knihovny.cz E-zdroje
- Klíčová slova
- Amyotrophic lateral sclerosis, Ion channels, Motor neurons, Neurodegeneration, Neuronal excitability,
- MeSH
- amyotrofická laterální skleróza * MeSH
- iontové kanály MeSH
- lidé MeSH
- motorické neurony MeSH
- svalová slabost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- iontové kanály MeSH
Amyotrophic lateral sclerosis (ALS) stands as the most prevalent and severe form of motor neuron disease, affecting an estimated 2 in 100,000 individuals worldwide. It is characterized by the progressive loss of cortical, brainstem, and spinal motor neurons, ultimately resulting in muscle weakness and death. Although the etiology of ALS remains poorly understood in most cases, the remodelling of ion channels and alteration in neuronal excitability represent a hallmark of the disease, manifesting not only during the symptomatic period but also in the early pre-symptomatic stages. In this review, we delve into these alterations observed in ALS patients and preclinical disease models, and explore their consequences on neuronal activities. Furthermore, we discuss the potential of ion channels as therapeutic targets in the context of ALS.
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. NED. 2013;41(2):118–130. PubMed PMC
Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;12(7):181–193. PubMed PMC
Kumar DR, Aslinia F, Yale SH, Mazza JJ. Jean-Martin Charcot: the father of neurology. Clin Med Res. 2011;9(1):46–49. PubMed PMC
Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206. PubMed PMC
Martínez HR. Accelerate the diagnosis of amyotrophic lateral sclerosis using the Gold Coast criteria and biomarkers. RMN. 2023;24(3):10292.
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci. 2022 doi: 10.3389/fnmol.2022.1000183. PubMed DOI PMC
Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2017;18(7):735–738. PubMed
Fels JA, Dash J, Leslie K, Manfredi G, Kawamata H. Effects of PB-TURSO on the transcriptional and metabolic landscape of sporadic ALS fibroblasts. Ann Clin Transl Neurol. 2022;9(10):1551–1564. PubMed PMC
Schuster JE, Fu R, Siddique T, Heckman CJ. Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS. J Neurophysiol. 2011;107(1):484–492. PubMed PMC
van Roon-Mom W, Ferguson C, Aartsma-Rus A. From failure to meet the clinical endpoint to U.S. Food and Drug Administration Approval: 15th Antisense Oligonucleotide Therapy Approved Qalsody (Tofersen) for treatment of SOD1 mutated amyotrophic lateral sclerosis. Nucleic Acid Therapeut. 2023 doi: 10.1089/nat.2023.0027. PubMed DOI
Foster LA, Salajegheh MK. Motor neuron disease: pathophysiology, diagnosis, and management. Am J Med. 2019;132(1):32–37. PubMed
Sturmey E, Malaspina A. Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta Neurol Scand. 2022;146(4):375–388. PubMed PMC
Joilin G, Leigh PN, Newbury SF, Hafezparast M. An overview of MicroRNAs as Biomarkers of ALS. Front Neurol. 2019 doi: 10.3389/fneur.2019.00186. PubMed DOI PMC
Bozzoni V, Pansarasa O, Diamanti L, Nosari G, Cereda C, Ceroni M. Amyotrophic lateral sclerosis and environmental factors. Funct Neurol. 2016;31(1):7–19. PubMed PMC
Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig’s Disease. Sci Total Environ. 2022;15(817):152504. PubMed
Chiò A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128(Pt 3):472–476. PubMed
McKay KA, Smith KA, Smertinaite L, Fang F, Ingre C, Taube F. Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol Scand. 2021;143(1):39–50. PubMed PMC
Nguyen HP, Van Broeckhoven C, van der Zee J. ALS genes in the genomic era and their implications for FTD. Trends Genet. 2018;34(6):404–423. PubMed
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79(3):416–438. PubMed PMC
Peters OM, Ghasemi M, Brown RH. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125(5):1767–1779. PubMed PMC
Bozzo F, Mirra A, Carrì MT. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett. 2017;1(636):3–8. PubMed
Levy JR, Sumner CJ, Caviston JP, Tokito MK, Ranganathan S, Ligon LA, et al. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J Cell Biol. 2006;172(5):733–745. PubMed PMC
Ikenaka K, Katsuno M, Kawai K, Ishigaki S, Tanaka F, Sobue G. Disruption of axonal transport in motor neuron diseases. Int J Mol Sci. 2012;13(1):1225–1238. PubMed PMC
Cheroni C, Marino M, Tortarolo M, Veglianese P, De Biasi S, Fontana E, et al. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis†. Hum Mol Genet. 2009;18(1):82–96. PubMed PMC
Guber RD, Schindler AB, Budron MS, Lian CK, Li Y, Fischbeck KH, et al. Nucleocytoplasmic transport defect in a North American patient with ALS8. Ann Clin Transl Neurol. 2018;5(3):369–75. PubMed PMC
Jovičić A, Paul JW, III, Gitler AD. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. J Neurochem. 2016;138(S1):134–144. PubMed
Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N. Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis. Clin Neurophysiol. 2002;113(11):1688–1697. PubMed
Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129(9):2436–2446. PubMed
Kiernan MC. Hyperexcitability, persistent Na+ conductances and neurodegeneration in amyotrophic lateral sclerosis. Exp Neurol. 2009;218(1):1–4. PubMed
Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol. 2009;215(2):368–379. PubMed
Vucic S, Kiernan MC. Axonal excitability properties in amyotrophic lateral sclerosis. Clin Neurophysiol. 2006;117(7):1458–1466. PubMed
Vucic S, Nicholson G, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain. 2008;131:1540. PubMed
Vucic S, Kiernan MC. Cortical excitability testing distinguishes Kennedy’s disease from amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(5):1088–1096. PubMed
Kleine BU, Stegeman DF, Schelhaas HJ, Zwarts MJ. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin. Neurology. 2008;70(5):353–359. PubMed
Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26(4):438–458. PubMed
Ellis DZ, Rabe J, Sweadner KJ. Global Loss of Na, K-ATPase and its nitric oxide-mediated regulation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2003;23(1):43–51. PubMed PMC
Hand CK, Rouleau GA. Familial amyotrophic lateral sclerosis. Muscle Nerve. 2002;25(2):135–159. PubMed
Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci. 2014. PubMed PMC
Burke RE, Levine DN, Tsairis P, Zajac FE., III Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973;234(3):723–748. PubMed PMC
Kuo JJ, Siddique T, Fu R, Heckman CJ. Increased persistent Na+ current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol. 2005;563(3):843–854. PubMed PMC
Shaw P, Eggett CJ. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J Neurol. 2000;247(1):I17–27. PubMed
Pun S, Santos AF, Saxena S, Lan Xu, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci. 2006;9(3):408–19. PubMed
Do-Ha D, Buskila Y, Ooi L. Impairments in motor neurons, interneurons and astrocytes contribute to hyperexcitability in ALS: underlying mechanisms and paths to therapy. Mol Neurobiol. 2018;55(2):1410–1418. PubMed
Wagle-Shukla A, Ni Z, Gunraj CA, Bahl N, Chen R. Effects of short interval intracortical inhibition and intracortical facilitation on short interval intracortical facilitation in human primary motor cortex. J Physiol. 2009;587(23):5665–5678. PubMed PMC
Foerster BR, Callaghan BC, Petrou M, Edden RAE, Chenevert TL, Feldman EL. Decreased motor cortex γ-aminobutyric acid in amyotrophic lateral sclerosis. Neurology. 2012;78(20):1596–1600. PubMed PMC
Vucic S, Cheah BC, Kiernan MC. Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp Neurol. 2009;220(1):177–182. PubMed
Zhang W, Zhang L, Liang B, Schroeder D, Wei ZZ, Cox GA, et al. Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders. Nat Neurosci. 2016;19(4):557–9. PubMed PMC
Nieto-Gonzalez J, Moser J, Lauritzen M, Schmitt-John T, Jensen K. Reduced GABAergic inhibition explains cortical hyperexcitability in the wobbler mouse model of ALS. Cerebral Cortex (New York, NY: 1991). 2011;21:625–35. PubMed
McGown A, McDearmid JR, Panagiotaki N, Tong H, Al Mashhadi S, Redhead N, et al. Early interneuron dysfunction in ALS: insights from a mutant sod1 zebrafish model. Ann Neurol. 2013;73(2):246–258. PubMed PMC
Petri S, Krampfl K, Hashemi F, Grothe C, Hori A, Dengler R, et al. Distribution of GABAA receptor mRNA in the motor cortex of ALS patients. J Neuropathol Exp Neurol. 2003;62(10):1041–1051. PubMed
Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990;28(1):18–25. PubMed
Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci. 2002;193(2):73–78. PubMed
Rothstein JD, Van Kammen M, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38:73–84. PubMed
King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC. Excitotoxicity in ALS: overstimulation, or overreaction? Exp Neurol. 2016;1(275):162–171. PubMed
Schiel KA. A beneficial role for elevated extracellular glutamate in amyotrophic lateral sclerosis and cerebral ischemia. BioEssays. 2021;43(11):2100127. PubMed
Wooley CM, Sher RB, Kale A, Frankel WN, Cox GA, Seburn KL. Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve. 2005;32(1):43–50. PubMed PMC
Philips T, Rothstein JD. Rodent models of amyotrophic lateral sclerosis. Curr Protocols Pharmacol. 2015;69(1):5.67.1–5.67.21. PubMed PMC
Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R, Liu E, et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci. 2006;103(18):7142–7147. PubMed PMC
Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol. 2009;187(6):761–772. PubMed PMC
Liu J, Zhang B, Lei H, Feng Z, Liu J, Hsu AL, et al. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans. Cell Metabolism. 2013;18(3):392–402. PubMed PMC
Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. 2010;30(32):10851–10859. PubMed PMC
Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–1211. PubMed PMC
Qiu H, Lee S, Shang Y, Wang WY, Au KF, Kamiya S, et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Investig. 2014;124(3):981–999. PubMed PMC
Lutz C. Mouse models of ALS: past, present and future. Brain Res. 2018;15(1693):1–10. PubMed
Mogyoros I. Strength-duration properties of sensory and motor axons in amyotrophic lateral sclerosis. Brain. 1998;121(5):851–859. PubMed
Bostock H, Sharief MK, Reid G, Murray NMF. Axonal ion channel dysfunction in amyotrophic lateral sclerosis. Brain. 1995;118(1):217–225. PubMed
Bostock H, Cikurel K, Burke D. Threshold tracking techniques in the study of human peripheral nerve. Muscle Nerve. 1998;21(2):137–158. PubMed
Kuo JJ, Schonewille M, Siddique T, Schults ANA, Fu R, Bär PR, et al. Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J Neurophysiol. 2004;91(1):571–575. PubMed
Lin WH, Wright DE, Muraro NI, Baines RA. Alternative splicing in the voltage-gated sodium channel DMNAV regulates activation, inactivation, and persistent current. J Neurophysiol. 2009;102(3):1994–2006. PubMed PMC
Hammarström AKM, Gage PW. Oxygen-sensing persistent sodium channels in rat hippocampus. J Physiol. 2000;529(1):107–118. PubMed PMC
Astman N, Gutnick MJ, Fleidervish IA. Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices. J Neurophysiol. 1998;80(3):1547–1551. PubMed
Su H, Alroy G, Kirson ED, Yaari Y. Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci. 2001;21(12):4173–4182. PubMed PMC
Kiss T. Persistent Na-channels: origin and function: a review János Salánki memory lecture. Acta Biol Hung. 2008;59(Supplement 2):1–12. PubMed
Segal MM. Endogenous bursts underlie seizurelike activity in solitary excitatory hippocampal neurons in microcultures. J Neurophysiol. 1994;72(4):1874–1884. PubMed
Zona C, Pieri M, Carunchio I. Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis. J Neurophysiol. 2006;96(6):3314–3322. PubMed
KubatÖktem E, Mruk K, Chang J, Akin A, Kobertz WR, Brown RH. Mutant SOD1 protein increases Nav13 channel excitability. J Biol Phys. 2016;42(3):351–70. PubMed PMC
Alessandri-Haber N, Alcaraz G, Deleuze C, Jullien F, Manrique C, Couraud F, et al. Molecular determinants of emerging excitability in rat embryonic motoneurons. J Physiol. 2002;541(1):25–39. PubMed PMC
Goldin AL. Diversity of mammalian voltage-gated sodium channels. Annals NY Acad Sci. 1999;868:38–50. PubMed
Jørgensen HS, Jensen DB, Dimintiyanova KP, Bonnevie VS, Hedegaard A, Lehnhoff J, et al. Increased axon initial segment length results in increased Na+ currents in spinal motoneurones at symptom onset in the G127X SOD1 mouse model of amyotrophic lateral sclerosis. Neuroscience. 2021;1(468):247–264. PubMed
Jo Y, Lee J, Lee SY, Kwon I, Cho H. Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS. Proc Natl Acad Sci. 2022;119(11):e2113813119. PubMed PMC
Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol. 2018;14(9):544–558. PubMed PMC
Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci. 2013;110(47):E4530–E4539. PubMed PMC
Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–1338. PubMed
Zu T, Liu Y, Bañez-Coronel M, Reid T, Pletnikova O, Lewis J, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci. 2013;110(51):E4968–E4977. PubMed PMC
Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin WL, DeJesus-Hernandez M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013;77(4):639–646. PubMed PMC
Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–428. PubMed PMC
Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P, et al. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol. 2013;126(6):845–857. PubMed PMC
Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science. 2014;345(6201):1139–1145. PubMed PMC
Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–1194. PubMed PMC
Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167(3):774–788.e17. PubMed PMC
Nutini M, Spalloni A, Florenzano F, Westenbroek RE, Marini C, Catterall WA, et al. Increased expression of the beta3 subunit of voltage-gated Na+ channels in the spinal cord of the SOD1G93A mouse. Mol Cell Neurosci. 2011;47(2):108–118. PubMed
Shah BS, Stevens EB, Pinnock RD, Dixon AK, Lee K. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit β3, in rat CNS. J Physiol. 2001;534(3):763–776. PubMed PMC
Camerino GM, Fonzino A, Conte E, Bellis MD, Mele A, Liantonio A, et al. Elucidating the contribution of skeletal muscle ion channels to amyotrophic lateral sclerosis in search of new therapeutic options. Sci Rep. 2019;9(1):1–15. PubMed PMC
Haimovich B, Schotland DL, Fieles WE, Barchi RL. Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies. J Neurosci. 1987;7(9):2957–2966. PubMed PMC
Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Phil Transac R Soc B Biol Sci. 2009;364(1514):257. PubMed PMC
Jiang YM, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol. 2005;57(2):236–251. PubMed
Kanai K, Kuwabara S, Misawa S, Tamura N, Ogawara K, Nakata M, et al. Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. Brain. 2006;129(4):953–962. PubMed
Bataveljić D, Nikolić L, Milosević M, Todorović N, Andjus PR. Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1G93A rat model. Glia. 2012;60(12):1991–2003. PubMed
Dodson PD, Billups B, Rusznák Z, Szucs G, Barker MC, Forsythe ID. Presynaptic Rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol. 2003;550(1):27–33. PubMed PMC
Peric M, Nikolic L, Andjus PR, Bataveljic D. Dysfunction of oligodendrocyte inwardly rectifying potassium channel in a rat model of amyotrophic lateral sclerosis. Eur J Neurosci. 2021;54(7):6339–6354. PubMed
Ferraiuolo L, Meyer K, Sherwood TW, Vick J, Likhite S, Frakes A, et al. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci USA. 2016 doi: 10.1073/pnas.1607496113. PubMed DOI PMC
Sun S, Sun Y, Ling SC, Ferraiuolo L, McAlonis-Downes M, Zou Y, et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci USA. 2015 doi: 10.1073/pnas.1520639112. PubMed DOI PMC
Powers RK, Binder MD. Input-output functions of mammalian motoneurons. Rev Physiol Biochem Pharmacol. 2001;143:137–263. PubMed
Alexianu ME, Ho BK, Mohamed AH, Bella VL, Smith RG, Appel SH. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol. 1994;36(6):846–858. PubMed
Palecek J, Lips MB, Keller BU. Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol. 1999;520(2):485–502. PubMed PMC
Jaiswal MK. Calcium, mitochondria, and the pathogenesis of ALS: the good, the bad, and the ugly. Front Cell Neurosci. 2013 doi: 10.3389/fncel.2013.00199/full. PubMed DOI PMC
Vanselow BK, Keller BU. Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. J Physiol. 2000;525(2):433–445. PubMed PMC
Anzilotti S, Brancaccio P, Simeone G, Valsecchi V, Vinciguerra A, Secondo A, et al. Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na+ /Ca2+ exchanger 3 downregulation. Cell Death Dis. 2018;9(2):1–17. PubMed PMC
Boscia F, D’Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, et al. Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ. 2012;19(4):562–572. PubMed PMC
Casamassa A, Rocca CL, Sokolow S, Herchuelz A, Matarese G, Annunziato L, et al. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis. Glia. 2016;64(7):1124–1137. PubMed
Sokolow S, Manto M, Gailly P, Molgó J, Vandebrouck C, Vanderwinden JM, et al. Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J Clin Invest. 2004;113(2):265–273. PubMed PMC
Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis. 2016;1(93):78–95. PubMed PMC
Carlin KP, Jiang Z, Brownstone RM. Characterization of calcium currents in functionally mature mouse spinal motoneurons. Eur J Neurosci. 2000;12(5):1624–1634. PubMed
Arakawa Y, Nishijima C, Shimizu N, Urushidani T. Survival-promoting activity of nimodipine and nifedipine in rat motoneurons: implications of an intrinsic calcium toxicity in motoneurons. J Neurochem. 2002;83(1):150–156. PubMed
Tran LT, Gentil BJ, Sullivan KE, Durham HD. The voltage-gated calcium channel blocker lomerizine is neuroprotective in motor neurons expressing mutant SOD1, but not TDP-43. J Neurochem. 2014;130(3):455–466. PubMed
Camerino GM, Bouchè M, De Bellis M, Cannone M, Liantonio A, Musaraj K, et al. Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ. Pflugers Arch Eur J Physiol. 2014;466(12):2215–2228. PubMed
Desaphy JF, Gramegna G, Altamura C, Dinardo MM, Imbrici P, George AL, et al. Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Exp Neurol. 2013;1(248):530–540. PubMed PMC
Pierno S, Luca AD, Beck CL, George AL, Camerino DC. Aging-associated down-regulation of ClC-1 expression in skeletal muscle: phenotypic-independent relation to the decrease of chloride conductance. FEBS Lett. 1999;449(1):12–16. PubMed
Delestrée N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D. Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol. 2014;592(7):1687–1703. PubMed PMC
Naujock M, Stanslowsky N, Bufler S, Naumann M, Reinhardt P, Sterneckert J, et al. 4-Aminopyridine induced activity rescues hypoexcitable motor neurons from amyotrophic lateral sclerosis patient-derived induced pluripotent stem cells. Stem Cells. 2016;34(6):1563–1575. PubMed
Devlin AC, Burr K, Borooah S, Foster JD, Cleary EM, Geti I, et al. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat Commun. 2015;6(1):5999. PubMed PMC
Martínez-Silvade ML, Imhoff-Manuel RD, Sharma A, Heckman C, Shneider NA, Roselli F, et al. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife. 2018;7:e30955. PubMed PMC
Filipchuk A, Pambo-Pambo A, Gaudel F, Liabeuf S, Brocard C, Gueritaud JP, et al. Early hypoexcitability in a subgroup of spinal motoneurons in superoxide dismutase 1 transgenic mice, a model of amyotrophic lateral sclerosis. Neuroscience. 2021;21(463):337–353. PubMed
Venugopal S, Hsiao CF, Sonoda T, Wiedau-Pazos M, Chandler SH. Homeostatic dysregulation in membrane properties of masticatory motoneurons compared with oculomotor neurons in a mouse model for amyotrophic lateral sclerosis. J Neurosci. 2015;35(2):707–720. PubMed PMC
Le Masson G, Przedborski S, Abbott LF. A computational model of motor neuron degeneration. Neuron. 2014;83(4):975–988. PubMed PMC
Clausen MV, Hilbers F, Poulsen H. The structure and function of the Na, K-ATPase isoforms in health and disease. Front Physiol. 2017 doi: 10.3389/fphys.2017.00371/full. PubMed DOI PMC
Ames A. CNS energy metabolism as related to function. Brain Res Rev. 2000;34(1–2):42–68. PubMed
Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH, Beal MF. Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosis. J Neurochem. 2002;71(1):281–287. PubMed
Mense M, Stark G, Apell HJ. Effects of free radicals on partial reactions of the Na. K-ATPase J Membr Biol. 1997;156(1):63–71. PubMed
Thévenod F, Friedmann JM. Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J. 1999;13(13):1751–1761. PubMed
Zolotarjova N, Ho C, Mellgren RL, Askari A, Hsiung HW. Different sensitivities of native and oxidized forms of Na-K+-ATPase to intracellular proteinases. Biochim Biophy Acta (BBA) Biomembr. 1994;1192(1):125–31. PubMed
Rzhepetskyy Y, Lazniewska J, Blesneac I, Pamphlett R, Weiss N. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels. 2016;10(6):466–77. PubMed PMC
Stringer RN, Jurkovicova-Tarabova B, Huang S, Haji-Ghassemi O, Idoux R, Liashenko A, et al. A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity. Mol Brain. 2020;13(1):33. PubMed PMC
Chemin J, Monteil A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P. Specific contribution of human T-type calcium channel isotypes (α1G, α1H and α1I) to neuronal excitability. J Physiol. 2002;540(1):3–14. PubMed PMC
Turner RW, Zamponi GW. T-type channels buddy up. Pflugers Arch Eur J Physiol. 2014;466(4):661–675. PubMed PMC
Lipscombe D, Helton TD, Xu W. L-type calcium channels: the low down. J Neurophysiol. 2004;92(5):2633–2641. PubMed
Nagy ZF, Sonkodi B, Pál M, Klivényi P, Széll M. Likely pathogenic variants of Cav1.3 and Nav1.1 encoding genes in amyotrophic lateral sclerosis could elucidate the dysregulated pain pathways. Biomedicines. 2023;11(3):933. PubMed PMC
Saitoh Y, Takahashi Y. Riluzole for the treatment of amyotrophic lateral sclerosis. Neurodegener Dis Manag. 2020;10(6):343–355. PubMed
Neupane P, Thada PK, Singh P, Faisal AR, Rai N, Poudel P, et al. Investigating edaravone use for management of amyotrophic lateral sclerosis (ALS): a narrative review. Cureus. 2023;15(1):e33746. PubMed PMC
Sun Y, Li X, Bedlack R. An evaluation of the combination of sodium phenylbutyrate and taurursodiol for the treatment of amyotrophic lateral sclerosis. Expert Rev Neurother. 2023;23(1):1–7. PubMed
Blair HA. Tofersen: first approval. Drugs. 2023;83(11):1039–1043. PubMed
Dunlop J, Beal McIlvain H, She Y, Howland DS. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci. 2003;23(5):1688–1696. PubMed PMC
Grunnet M, Jespersen T, Angelo K, Frøkjær-Jensen C, Klaerke DA, Olesen SP, et al. Pharmacological modulation of SK3 channels. Neuropharmacology. 2001;40(7):879–887. PubMed
Xu L, Enyeart JA, Enyeart JJ. Neuroprotective agent riluzole dramatically slows inactivation of Kv1.4 potassium channels by a voltage-dependent oxidative mechanism. J Pharmacol Exp Ther. 2001;299:227–37. PubMed
Lamanauskas N, Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur J Neurosci. 2008;27(10):2501–2514. PubMed
Jaiswal MK. Riluzole but not melatonin ameliorates acute motor neuron degeneration and moderately inhibits SOD1-mediated excitotoxicity induced disrupted mitochondrial Ca2+ signaling in amyotrophic lateral sclerosis. Front Cell Neurosci. 2017 doi: 10.3389/fncel.2016.00295/full. PubMed DOI PMC
Kumar V, Kashav T, Hassan MDI. Amyotrophic lateral sclerosis: current therapeutic perspectives. In: Singh S, Joshi N, editors. Pathology, prevention and therapeutics of neurodegenerative disease. Singapore: Springer Singapore; 2019. pp. 207–24.
Waibel S, Reuter A, Malessa S, Blaugrund E, Ludolph Albert C. Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J Neurol. 2004 doi: 10.1007/s00415-004-0481-5. PubMed DOI
Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2008;105(6):2052–2057. PubMed PMC
Choudry RB, Cudkowicz ME. Clinical trials in amyotrophic lateral sclerosis: the tenuous past and the promising future. J Clin Pharmacol. 2005;45(12):1334–1344. PubMed
Miller RG, Moore DH, Gelinas DF, Dronsky V, Mendoza M, Barohn RJ, et al. Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology. 2001;56(7):843–848. PubMed
Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res. 2013;36(3):237–251. PubMed
Li CY, Zhang XL, Matthews EA, Li KW, Kurwa A, Boroujerdi A, et al. Calcium channel α2δ1 subunit mediates spinal hyperexcitability in pain modulation. Pain. 2006;125(1):20–34. PubMed PMC
Patten SA, Aggad D, Martinez J, Tremblay E, Petrillo J, Armstrong GAB, et al. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis. JCI Insight. 2017;2(22):e97152. PubMed PMC
Armstrong GAB, Drapeau P. Calcium channel agonists protect against neuromuscular dysfunction in a genetic model of TDP-43 mutation in ALS. J Neurosci. 2013;33(4):1741–1752. PubMed PMC
Oskarsson B, Moore D, Mozaffar T, Ravits J, Wiedau-Pazos M, Parziale N, et al. Mexiletine for muscle cramps in amyotrophic lateral sclerosis: a randomized, double-blind crossover trial. Muscle Nerve. 2018;58(1):42–48. PubMed PMC
Caress JB, Ciarlone SL, Sullivan EA, Griffin LP, Cartwright MS. Natural history of muscle cramps in amyotrophic lateral sclerosis. Muscle Nerve. 2016;53(4):513–517. PubMed PMC
Kuwabara S, Misawa S, Tamura N, Kanai K, Hiraga A, Ogawara K, et al. The effects of mexiletine on excitability properties of human median motor axons. Clin Neurophysiol. 2005;116(2):284–289. PubMed
Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med. 1994;330(9):585–591. PubMed
Huang X, Roet KCD, Zhang L, Brault A, Berg AP, Jefferson AB, et al. Human amyotrophic lateral sclerosis excitability phenotype screen: target discovery and validation. Cell Rep. 2021;35(10):109224. PubMed PMC
Wainger BJ, Macklin EA, Vucic S, McIlduff CE, Paganoni S, Maragakis NJ, et al. Effect of ezogabine on cortical and spinal motor neuron excitability in amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 2021;78(2):186–196. PubMed PMC
Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SSW, Sandoe J, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 2014;7(1):1–11. PubMed PMC
Pipeline—QurAlis. 2023. Available from: https://www.quralis.com/pipeline/.
Electrophysiological characterization of sourced human iPSC-derived motor neurons