A novel strategy to study apomixis, automixis, and autogamy in plants
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GA23-06726S
Grantová Agentura České Republiky
GA21-01233S
Grantová Agentura České Republiky
CZ.02.2.69/0.0/0.0/18_053/0016952
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38431531
PubMed Central
PMC11377528
DOI
10.1007/s00497-024-00499-6
PII: 10.1007/s00497-024-00499-6
Knihovny.cz E-resources
- Keywords
- Rubus, Taraxacum, Apomixis, Automixis, FCSS, SSR-seq,
- MeSH
- Apomixis * genetics physiology MeSH
- Genotype MeSH
- Flow Cytometry * MeSH
- Reproduction MeSH
- Seeds * genetics physiology MeSH
- Taraxacum physiology genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The combination of a flow cytometric seed screen and genotyping of each single seed offers a cost-effective approach to detecting complex reproductive pathways in flowering plants. Reproduction may be seen as one of the driving forces of evolution. Flow cytometric seed screen and genotyping of parents and progeny are commonly employed techniques to discern various modes of reproduction in flowering plants. Nevertheless, both methods possess limitations constraining their individual capacity to investigate reproductive modes thoroughly. We implemented both methods in a novel manner to analyse reproduction pathways using a carefully selected material of parental individuals and their seed progeny. The significant advantage of this approach lies in its ability to apply both methods to a single seed. The introduced methodology provides valuable insights into discerning the levels of apomixis, sexuality, and selfing in complex Rubus taxa. The results may be explained by the occurrence of automixis in Rubus, which warrants further investigation. The approach showcased its effectiveness in a different apomictic system, specifically in Taraxacum. Our study presents a comprehensive methodological approach for determining the mode of reproduction where flow cytometry loses its potential. It provides a reliable and cost-effective method with significant potential in biosystematics, population genetics, and crop breeding.
See more in PubMed
Antonius K, Nybom H (1995) Discrimination between sexual recombination and apomixis/automixis in a Rubus plant breeding programme. Hereditas 123:205–21310.1111/j.1601-5223.1995.00205.x DOI
Brewster JD, Paoli GC (2013) DNA extraction protocol for rapid PCR detection of pathogenic bacteria. Anal Biochem 442:107–109 10.1016/j.ab.2013.07.013 PubMed DOI
Castillo NR, Reed BM, Graham J, Fernández-Fernández F, Bassil NV (2010) Microsatellite markers for raspberry and blackberry. J Am Soc Hortic Sci 135(3):271–27810.21273/JASHS.135.3.271 DOI
Castro P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primocane-fruiting and thornless traits of tetraploid blackberry. Theor Appl Genet 126:2521–2532 10.1007/s00122-013-2152-3 PubMed DOI
Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71(4):421–43510.1038/hdy.1993.157 DOI
Czapik R (1983) The secondary nucleus in four species of the genus Rubus. Acta Biol Cracov Bot 25:179–188
Czapik R (1985a) Apomictic embryo sacs in diploid Waldsteinia geoides Willd. (Rosaceae). Acta Biol Cracov Bot 27:29–37
Czapik R (1985b) Secondary nucleus in Rosoideae. In: Willemse MTM, van Went JL (eds) 8th International Symposium on sexual reproduction in seed plants, ferns and mosses. Pudoc, Wageningen, the Netherlands, pp 150–152
Dobeš C, Lückl A, Hülber K, Paule J (2013) Prospects and limits of the flow cytometric seed screen – insights from Potentilla sensu lato (Potentilleae, Rosaceae). New Phytol 198(2):605–616 10.1111/nph.12149 PubMed DOI PMC
Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31(2):113–12010.1007/BF02907241 DOI
Dowrick GJ (1961) Biology of reproduction in Rubus. Nature 191:680–68210.1038/191680a0 DOI
Dowrick GJ (1966) Breeding systems in tetraploid Rubus species. Genet Res 7(2):245–25310.1017/S0016672300009654 DOI
Falque M, Keurentjes J, Bakx-Schotman JMT, van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Genet 97:283–29210.1007/s001220050897 DOI
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051 10.1126/science.220.4601.1049 PubMed DOI
Gerlach D (1965) Befruchtung und Autogamie bei Rubus caesius. Biol Zbl 5:611–633
Gornall RJ (1999) Population genetic structure in agamospermous plants. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor and Francis, London, UK, pp 118–138
Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749 10.1007/s00122-004-1687-8 PubMed DOI
Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot-London 95(1):255–26010.1093/aob/mci019 PubMed DOI PMC
Gustafsson Å (1943) The genesis of the European blackberry flora. Lunds Universitets Årsskrift 39:1–199
Gustafsson Å (1946) Apomixis in the higher plants I The mechanism of apomixis. Lunds Universitets Årsskrift 43(2):1–66
Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E (2019) A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol Biol 19(1):1–11 10.1186/s12862-019-1495-z PubMed DOI PMC
Hojsgaard D, Hörandl E (2015) A little bit of sex matters for genome evolution in asexual plants. Front Plant Sci 6:82 10.3389/fpls.2015.00082 PubMed DOI PMC
Huang K, Dunn DW, Ritland K, Li B (2020) polygene: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods Ecol Evol 11(3):448–45610.1111/2041-210X.13338 DOI
Jedrzejczyk I, Sliwinska E (2010) Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. J Bot 2010:930895
Kaushal P, Dwivedi KK, Radhakrishna A, Saxena S, Paul S, Srivastava MK, Baig MJ, Roy AK, Malaviya DR (2018) Ploidy dependent expression of apomixis and its components in guinea grass (Panicum maximum Jacq.). Euphytica 214:15210.1007/s10681-018-2232-1 DOI
Krahulcová A, Rotreklová O (2010) Use of flow cytometry in research on apomictic plants. Preslia 82:23–39
Krahulcová A, Trávníček B, Šarhanová P (2013) Karyological variation in the genus Rubus, subgenus Rubus: new data from the Czech Republic and synthesis of the current knowledge of European species. Preslia 85:19–39
Liu C, He Z, Zhang Y, Hu F, Li M, Liu Q, Huang Y, Wang J, Zhang W, Wang C, Wang K (2023) Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Commun 4:100470 10.1016/j.xplc.2022.100470 PubMed DOI PMC
Majeský Ľ, Krahulec F, Vašut RJ (2017) How apomictic taxa are treated in current taxonomy: a review. Taxon 66:1017–104010.12705/665.3 DOI
Marshall TC, Slate JBKE, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655 10.1046/j.1365-294x.1998.00374.x PubMed DOI
Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108 10.1046/j.1365-313x.2000.00647.x PubMed DOI
Maynard-Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge, UK
Mirzaghaderi G, Hörandl E (2016) The evolution of meiotic sex and its alternatives. P Roy Soc B-Biol Sci 283(1838):20161221 PubMed PMC
Mogie M (1986) Automixis: its distribution and status. Biol J Linn Soc 28(3):321–32910.1111/j.1095-8312.1986.tb01761.x DOI
Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res-Fund Mol M 1:2–910.1016/0027-5107(64)90047-8 PubMed DOI
Nougué O, Rode NO, Jabbour-Zahab R, Ségard A, Chevin LM, Haag CR, Lenormand T (2015) Automixis in Artemia: solving a century-old controversy. J Evolution Biol 28(12):2337–234810.1111/jeb.12757 PubMed DOI
Paun O, Stuessy TF, Hörandl E (2006) The role of hybridization, polyploidization and glaciations in the origin of the apomictic Ranunculus cassubicus complex. New Phytol 171:223–236 10.1111/j.1469-8137.2006.01738.x PubMed DOI
Pratt C, Einset J (1955) Development of the embryo sac in some American blackberries. Am J Botany 42:637–64510.1002/j.1537-2197.1955.tb10400.x DOI
Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. Am Nat 155(3):383–394 10.1086/303324 PubMed DOI
Richards AJ (2003) Apomixis in flowering plants: an overview. Philos T Roy Soc B 358(1434):1085–109310.1098/rstb.2003.1294 PubMed DOI PMC
Sailer C, Schmid B, Grossniklaus U (2016) Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Curr Biol 26(3):331–337 10.1016/j.cub.2015.12.045 PubMed DOI
Šarhanová P, Vašut RJ, Dančák M, Bureš P, Trávníček B (2012) New insights into the variability of reproduction modes in European populations of Rubus subgen Rubus: how sexual are polyploid brambles? Sex Plant Reprod 25(4):319–335 10.1007/s00497-012-0200-9 PubMed DOI
Šarhanová P, Sharbel TF, Sochor M, Vašut RJ, Dančák M, Trávníček B (2017) Hybridization drives evolution of apomicts in Rubus subgenus Rubus: evidence from microsatellite markers. Ann Bot-London 120(2):317–32810.1093/aob/mcx033 PubMed DOI PMC
Šarhanová P, Pfanzelt S, Brandt R, Himmelbach A, Blattner FR (2018) SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecol Evol 8(22):10817–10833 10.1002/ece3.4533 PubMed DOI PMC
Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79(1):151–16310.1046/j.1095-8312.2003.00175.x DOI
Sochor M, Trávníček B, Király G (2019) Ploidy level variation in the genus Rubus in the Pannonian Basin and the northern Balkans, and evolutionary implications. Plant Syst Evol 305:611–62610.1007/s00606-019-01593-3 DOI
Stebbins GL (1957) Self fertilization and population variability in higher plants. Am Nat 91:337–35410.1086/281999 DOI
Tas ICQ, Van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum): I. The Inheritance of Apomixis Heredity 83:707–714 10.1046/j.1365-2540.1999.00619.x PubMed DOI
Vašut RJ, van Dijk PJ, Falque M, Trávniček B, de Jong JH (2004) Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae). Mol Ecol Notes 4:645–64810.1111/j.1471-8286.2004.00760.x DOI
Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–1110.1002/j.1537-2197.1954.tb14297.x DOI
Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham J (2008) Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breeding 22:555–56310.1007/s11032-008-9198-y DOI
Woodhead M, Williamson S, Smith K, McCallum S, Jennings N, Hackett C, Graham J (2013) Identification of quantitative trait loci for cane splitting in red raspberry (Rubus idaeus). Mol Breeding 31:111–12210.1007/s11032-012-9775-y DOI