New insights into the variability of reproduction modes in European populations of Rubus subgen. Rubus: how sexual are polyploid brambles?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- apomixie MeSH
- délka genomu MeSH
- diploidie MeSH
- druhová specificita MeSH
- endosperm embryologie genetika fyziologie MeSH
- partenogeneze MeSH
- polyploidie * MeSH
- průtoková cytometrie MeSH
- Rosaceae embryologie genetika fyziologie MeSH
- rozmnožování MeSH
- semena rostlinná embryologie genetika fyziologie MeSH
- tetraploidie MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rubus subgen. Rubus includes common European species with highly complicated taxonomy, ongoing hybridisation and facultative apomixis. Out of approximately 750 species recognised in Europe, only 3 diploid sexual species are known, along with numerous apomictic brambles that are highly connected to polyploidy. One exception of a tetraploid taxon is R. ser. Glandulosi, which is known for prevalent sexuality. This taxon highly hybridises with tetraploid members of R. ser. Discolores and leads to the origin of many hybridogenous populations and individuals. In this study, we verify reproduction modes in different diploid, triploid and tetraploid species of subgen. Rubus, with focus on taxa putatively involved in such hybridisation by applying flow cytometric seed screen analysis. We found 100 % sexuality of diploid species, whereas triploid species had obligate unreduced embryo sac development. In contrast, tetraploid plants had varying degrees of sexuality. Additionally, we discovered that R. bifrons has the ability to undergo a reproduction mode switch as a reaction to environmental conditions. These results provide insight into reproductive modes of European brambles and shed light on their reticulate evolution and speciation.
Zobrazit více v PubMed
Oecologia. 1987 Jul;72(4):562-568 PubMed
Am J Bot. 2000 Nov;87(11):1592-8 PubMed
Theory Biosci. 2009 May;128(2):121-38 PubMed
Plant Cell. 1993 Oct;5(10):1425-1437 PubMed
Plant Cell. 2005 Jan;17(1):13-24 PubMed
Nature. 2007 Mar 15;446(7133):279-83 PubMed
Ann Bot. 2011 Mar;107(3):467-590 PubMed
BMC Plant Biol. 2009 Jun 27;9:80 PubMed
Genome Biol. 2002 Aug 30;3(9):reviews1026 PubMed
Hereditas. 2003;138(1):11-20 PubMed
New Phytol. 2007;173(2):231-49 PubMed
Sex Plant Reprod. 2011 Mar;24(1):47-61 PubMed
Plant J. 2000 Jan;21(1):97-108 PubMed
BMC Plant Biol. 2011 Jan 11;11:9 PubMed
Science. 1983 Jun 3;220(4601):1049-51 PubMed
Plant J. 2001 May;26(3):275-82 PubMed
Am J Bot. 2001 Dec;88(12):2243-51 PubMed
Annu Rev Plant Biol. 2003;54:547-74 PubMed
Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1113-21 PubMed
Trends Ecol Evol. 2005 Sep;20(9):495-502 PubMed
Sex Plant Reprod. 2001 Dec;14(4):213-7 PubMed
Nat Rev Genet. 2005 Nov;6(11):836-46 PubMed
Mol Ecol. 2010 Apr;19(8):1675-90 PubMed
Ann Bot. 2009 Jul;104(1):81-9 PubMed
Cytometry A. 2005 Apr;64(2):72-9 PubMed
Sex Plant Reprod. 2001 Dec;14(4):189-94 PubMed
Am J Bot. 1999 Jan;86(1):81-97 PubMed
New Phytol. 2006;171(3):525-38 PubMed
Cytometry. 1995 Dec 1;21(4):387-93 PubMed
Science. 1967 Jul 21;157(3786):325-6 PubMed
Annu Rev Genet. 2007;41:509-37 PubMed
Sex Plant Reprod. 2001 Dec;14(4):201-6 PubMed
Mol Ecol. 2000 Apr;9(4):443-55 PubMed
Nature. 1988 Dec 1;336(6198):435-40 PubMed
A novel strategy to study apomixis, automixis, and autogamy in plants