Plant kleptomaniacs: geographical genetic patterns in the amphi-apomictic Rubus ser. Glandulosi (Rosaceae) reveal complex reticulate evolution of Eurasian brambles
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Czech Republic
PubMed
38549558
PubMed Central
PMC11161565
DOI
10.1093/aob/mcae050
PII: 7637283
Knihovny.cz E-zdroje
- Klíčová slova
- Rubus subgen. Rubus, Apomixis, ddRADseq, geographical parthenogenesis, introgression, private alleles,
- MeSH
- apomixie genetika MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- fylogeografie * MeSH
- genetická variace MeSH
- partenogeneze genetika MeSH
- Rosaceae * genetika fyziologie MeSH
- tok genů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
BACKGROUND AND AIMS: Rubus ser. Glandulosi provides a unique model of geographical parthenogenesis on a homoploid (2n = 4x) level. We aim to characterize evolutionary and phylogeographical patterns in this taxon and shed light on the geographical differentiation of apomicts and sexuals. Ultimately, we aim to evaluate the importance of phylogeography in the formation of geographical parthenogenesis. METHODS: Rubus ser. Glandulosi was sampled across its Eurasian range together with other co-occurring Rubus taxa (587 individuals in total). Double-digest restriction site-associated DNA sequencing (ddRADseq) and modelling of suitable climate were used for evolutionary inferences. KEY RESULTS: Six ancestral species were identified that contributed to the contemporary gene pool of R. ser. Glandulosi. Sexuals were introgressed from Rubus dolichocarpus and Rubus moschus in West Asia and from Rubus ulmifolius agg., Rubus canescens and Rubus incanescens in Europe, whereas apomicts were characterized by alleles of Rubus subsect. Rubus. Gene flow between sexuals and apomicts was also detected, as was occasional hybridization with other taxa. CONCLUSIONS: We hypothesize that sexuals survived the last glacial period in several large southern refugia, whereas apomicts were mostly restricted to southern France, whence they quickly recolonized Central and Western Europe. The secondary contact of sexuals and apomicts was probably the principal factor that established geographical parthenogenesis in R. ser. Glandulosi. Sexual populations are not impoverished in genetic diversity along their borderline with apomicts, and maladaptive population genetic processes probably did not shape the geographical patterns.
Zobrazit více v PubMed
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545.
Alonge M, Lebeigle L, Kirsche M, et al.. 2022. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biology 23: 258. PubMed PMC
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (5 April 2024, date last accessed)
Angert AL, Bontrager MG, Ågren J. 2020. What do we really know about adaptation at range edges? Annual Review of Ecology, Evolution, and Systematics 51: 341–361.
Baldwin R. 2009. Use of maximum entropy modeling in wildlife research. Entropy 11: 854–866.
Beaudouin C, Jouet G, Suc JP, Berné S, Escarguel G. 2007. Vegetation dynamics in southern France during the last 30 ky BP in the light of marine palynology. Quaternary Science Reviews 26: 1037–1054.
Binney H, Edwards M, Macias-Fauria M, et al.. 2017. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quaternary Science Reviews 157: 80–97.
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population genomics. Molecular Ecology 22: 3124–3140. PubMed PMC
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34: 2666–2669. PubMed PMC
de Lafontaine G, Amasifuen Guerra CA, Ducousso A, Petit RJ. 2014. Cryptic no more: soil macrofossils uncover Pleistocene forest microrefugia within a periglacial desert. The New Phytologist 204: 715–729. PubMed
Delhon C, Thiébault S. 2005. The migration of beech (Fagus sylvatica L.) up the Rhone: the Mediterranean history of a ‘mountain’ species. Vegetation History and Archaeobotany 14: 119–132.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.
Eaton DAR, Overcast I. 2020. Ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics 36: 2592–2594. PubMed
Eckert CG, Samis KE, Lougheed SC. 2008. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Molecular Ecology 17: 1170–1188. PubMed
Elith J, Graham CH, Anderson RP, et al.. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620. PubMed
Fukasawa Y, Ermini L, Wang H, Carty K, Cheung M-S. 2020. LongQC: a quality control tool for third generation sequencing long read data. G3 (Bethesda, Md.) 10: 1193–1196. PubMed PMC
García-Ramos G, Kirkpatrick M. 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51: 21–28. PubMed
Gent PR, Danabasoglu G, Donner LJ, et al.. 2011. The Community climate system model version 4. Journal of Climate 24: 4973–4991.
Gustafsson A. 1943. The genesis of the European blackberry flora. Lunds Universitets Årsskrift 39: 1–199.
Haag CR, Ebert D. 2004. A new hypothesis to explain geographic parthenogenesis. Annales Zoologici Fennici 41: 539–544.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
Holub J. 1997. Some considerations and thoughts on the pragmatic classification of apomictic Rubus taxa. Osnabrücker Naturwissenschaftliche Mitteilungen 23: 147–155.
Hu J, Fan J, Sun Z, Liu S. 2020. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36: 2253–2255. PubMed
Janko K. 2014. Let us not be unfair to asexuals: their ephemerality may be explained by neutral models without invoking any evolutionary constraints of asexuality. Evolution 68: 569–576. PubMed
Jankovská V, Pokorný P. 2008. Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80: 307–324.
Janská V, Jiménez-Alfaro B, Chytrý M, et al.. 2017. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: prospects and limitations. Quaternary Science Reviews 159: 103–115.
Jin J-J, Yu W-B, Yang J-B, et al.. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241. PubMed PMC
Juzepczuk SV. 1925. Material dlja izuchenia jezhevik kavkaza. Trudy po Prikladnoj Botanike i Selekktsii 14: 139–169.
Juzepczuk SV. 1941. Genus 734. Rubus. In: Komarov VL, ed. Flora SSSR, vol. 10. Moskva, Leningrad: Izdatelstvo Akademii Nauk SSSR, 5–58.
Kasalkheh R, Afsharzadeh S, Sochor M. 2024. A complex biosystematic approach to reveal evolutionary and diversity patterns in West Asian brambles (Rubus subgen. Rubus, Rosaceae). Perspectives in Plant Ecology, Evolution and Systematics 63: 125789. doi:10.1016/j.ppees.2024.125789 DOI
Kass JM, Muscarella R, Galante PJ, et al.. 2021. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12: 1602–1608.
Kass JM, Pinilla-Buitrago GE, Paz A, et al.. 2023. Wallace 2: a shiny app for modeling species niches and distributions redesigned to facilitate expansion via module contributions. Ecography 2023: e06547.
Keller LF, Waller DM. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution 17: 230–241.
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15: 1179–1191. PubMed PMC
Krahulcová A, Trávníček B, Šarhanová P. 2013. Karyological variation in the genus Rubus, subgenus Rubus (brambles, Rosaceae): new data from the Czech Republic and synthesis of the current knowledge of European species. Preslia 85: 19–39.
Kurtto A, Weber HE, Lampinen R, Sennikov AN (Eds.). 2010. Atlas florae Europaeae. Distribution of vascular plants in Europe, Vol. 15, Rosaceae (Rubus). Helsinki: Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo.
Lehmkuhl F, Nett J, Pötter S, et al.. 2020. Geodata of continuous and discontinuous permafrost during the last glacial maximum in Europe. CRC806-Database. https://crc806db.uni-koeln.de/dataset/show/1608051128/ (5 April 2024, date last accessed)
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094–3100. PubMed PMC
Li H, Handsaker B, Wysoker A, et al.; 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Liu H, Wu S, Li A, Ruan J. 2021. SMARTdenovo: a de novo assembler using long noisy reads. GigaByte 2021: gigabyte15. PubMed PMC
Ložek V. 2006. Last Glacial paleoenvironments of the West Carpathians in the light of fossil malacofauna. Sborník Geologických Věd – Antropozoikum 26: 73–84.
Magyari EK, Veres D, Wennrich V, et al.. 2014. Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quaternary Science Reviews 106: 278–298.
Malinsky M, Trucchi E, Lawson DJ, Falush D. 2018. RADpainter and fineRADstructure: population inference from RADseq data. Molecular Biology and Evolution 35: 1284–1290. PubMed PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution 38: 4647–4654. PubMed PMC
Molnár AP, Demeter L, Biró M, et al.. 2023. Is there a massive glacial–Holocene flora continuity in Central Europe? Biological Reviews 98: 2307–2319. PubMed
Monasterio-Huelin E, Weber HE. 1996. Taxonomy and nomenclature of Rubus ulmifolius and Rubus sanctus (Rosaceae). Edinburgh Journal of Botany 53: 311–322.
Müller UC, Pross J, Bibus E. 2003. Vegetation response to rapid climate change in central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record. Quaternary Research 59: 235–245.
Muscarella R, Galante PJ, Soley-Guardia M, et al.. 2014. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198–1205.
Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37: 191–203.
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7: e37135. PubMed PMC
Phillips S, Dudík M. 2008. Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecography 31: 161–175.
Phillips SJ, Dudík M, Elith J, et al.. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications : A Publication of the Ecological Society of America 19: 181–197. PubMed
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PubMed PMC
Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467–501.
Sagarin RD, Gaines SD. 2002. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology Letters 5: 137–147.
Šarhanová P, Vašut RJ, Dančák M, Bureš P, Trávníček B. 2012. New insights into the variability of reproduction modes in European populations of Rubus subgen. Rubus: how sexual are polyploid brambles? Sexual Plant Reproduction 25: 319–335. PubMed
Šarhanová P, Sharbel TF, Sochor M, Vašut RJ, Dančák M, Trávníček B. 2017. Hybridization drives evolution of apomicts in Rubus subgenus Rubus: evidence from microsatellite markers. Annals of Botany 120: 317–328. PubMed PMC
Sochor M, Trávníček B. 2016. Melting pot of biodiversity: first insights into the evolutionary patterns of the Colchic bramble flora (Rubus subgenus Rubus, Rosaceae). Botanical Journal of the Linnean Society 181: 610–620.
Sochor M, Vašut RJ, Sharbel TF, Trávníček B. 2015. How just a few makes a lot: speciation via reticulation and apomixis on example of European brambles (Rubus subgen. Rubus, Rosaceae). Molecular Phylogenetics and Evolution 89: 13–27. PubMed
Sochor M, Šarhanová P, Pfanzelt S, Trávníček B. 2017. Is evolution of apomicts driven by the phylogeography of the sexual ancestor? Insights from European and Caucasian brambles (Rubus, Rosaceae). Journal of Biogeography 44: 2717–2728.
Sochor M, Duchoslav M, Forejtová V, Hroneš M, Konečná M, Trávníček B. 2024. Distinct geographic parthenogenesis in spite of niche conservatism and a single ploidy level: a case of Rubus ser. Glandulosi (Rosaceae). New Phytologist. doi:10.1111/nph.19618. in press. PubMed DOI
Sturm M, Schroeder C, Bauer P. 2016. SeqPurge: highly-sensitive adapter trimming for paired-end NGS data. BMC Bioinformatics 17: 208. PubMed PMC
Svenning J-C, Normand S, Kageyama M. 2008. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. Journal of Ecology 96: 1117–1127.
Svenning JC, Fløjgaard C, Marske KA, Nógues-Bravo D, Normand S. 2011. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews 30: 2930–2947.
Thompson MM. 1997. Survey of chromosome numbers in Rubus (Rosaceae: Rosoideae). Annals of the Missouri Botanical Garden 84: 128–164.
Tilquin A, Kokko H. 2016. What does the geography of parthenogenesis teach us about sex? Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150538. PubMed PMC
VanBuren R, Wai CM, Colle M, et al.. 2018. A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. GigaScience 7: giy094. PubMed PMC
van de Beek A. 2021. Rubi Capenses: a further contribution to the knowledge of the genus Rubus (Rosaceae) in South Africa. Phytotaxa 515: 1–71.
Warren DL, Seifert SN. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications : A Publication of the Ecological Society of America 21: 335–342. PubMed
Warren DL, Wright AN, Seifert SN, Shaffer HB. 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions 20: 334–343.
Watanabe S, Hajima T, Sudo K, et al.. 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4: 845–872.
Willi Y, Griffin P, Van Buskirk J. 2013. Drift load in populations of small size and low density. Heredity 110: 296–302. PubMed PMC
Zickel M, Becker D, Verheul J, Ener Y, Willmes C. 2016. Paleocoastlines GIS dataset. CRC806-Database. https://crc806db.uni-koeln.de/dataset/show/paleocoastlines-gis-dataset1462293239/ (5 April 2024, date last accessed).