Chromosome fusions shaped karyotype evolution and evolutionary relationships in the model family Brassicaceae
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40389407
PubMed Central
PMC12089291
DOI
10.1038/s41467-025-59640-2
PII: 10.1038/s41467-025-59640-2
Knihovny.cz E-zdroje
- MeSH
- Brassicaceae * genetika klasifikace MeSH
- chromozomy rostlin * genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- karyotyp * MeSH
- karyotypizace MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
The ancestral crucifer karyotype and 22 conserved genomic blocks (CGBs) facilitate phylogenomic analyses in the Brassicaceae. Chromosomal rearrangements reshuffled CGBs of ancestral chromosomes during karyotype evolution. Here, we identify eight protochromosomes representing the common ancestral karyotype (ACBK) of the two Brassicoideae supertribes: Camelinodae (Lineage I) and Brassicodae (Lineage II). The characterization of multiple cascading fusion events allows us to infer evolutionary relationships based on these events. In the Camelinodae, the ACBK first evolved into the AKI genome, which remained conserved in the Cardamineae, whereas it was altered to tAKI by a reciprocal translocation that preceded the diversification of most Camelinodae tribes. The identified fusion breakpoints largely overlap with CGB boundaries, suggesting that CGBs are mainly disrupted by chromosome fusions. Our results demonstrate the stable inheritance of chromosome fusions and their importance for reconstructing evolutionary relationships. The chromosomal breakpoint approach provides a basis for ancestral state reconstruction based on chromosome-level genome assemblies.
Missouri Botanical Garden St Louis MO USA
School of Life Sciences North China University of Science and Technology Tangshan Hebei China
Zobrazit více v PubMed
Al-Shehbaz, I. A. A. generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon61, 931–954 (2012).
Walden, N., Nguyen, T. P., Mandáková, T., Lysak, M. A. & Schranz, M. E. Genomic blocks in Aethionema arabicum support arabideae as next diverging clade in Brassicaceae. Front. Plant Sci.11, 719 (2020). PubMed PMC
Hendriks, K. P. et al. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr. Biol.33, 4052–4068 (2023). PubMed
Schranz, M. E., Lysak, M. A. & Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci.11, 535–542 (2006). PubMed
Lysak, M. A., Mandáková, T. & Schranz, M. E. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol.30, 108–115 (2016). PubMed
German, D. A. et al. An updated classification of the Brassicaceae (Cruciferae). PhytoKeys220, 127–144 (2023). PubMed PMC
Mandáková, T. & Lysak, M. A. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell20, 2559–2570 (2008). PubMed PMC
Peruzzi, L. x” is not a bias, but a number with real biological significance. Plant Biosyst.147, 1238–1241 (2013).
Schranz, M. E., Windsor, A. J., Song, B. H., Lawton-Rauh, A. & Mitchell-Olds, T. Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol.144, 286–298 (2007). PubMed PMC
Mandáková, T. et al. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell22, 2277–2290 (2010). PubMed PMC
Burrell, A. M. et al. A comparative genomic map for Caulanthus amplexicaulis and related species (Brassicaceae). Mol. Ecol.20, 784–798 (2011). PubMed
Wu, H. et al. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. USA109, 12219–12224 (2012). PubMed PMC
Slotte, T. et al. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat. Genet.45, 831–835 (2013). PubMed
Mandáková, T. et al. The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell25, 3280–3295 (2013). PubMed PMC
Hay, A. et al. Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J.78, 1–15 (2014). PubMed
Kagale, S. et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat. Commun.5, 3706 (2014). PubMed PMC
Parkin, I. A. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol.15, R77 (2014). PubMed PMC
Mandáková, T., Singh, V., Krämer, U. & Lysak, M. A. Genome structure of the heavy metal hyperaccumulator Noccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol.169, 674–689 (2015). PubMed PMC
Guo, X. et al. Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol. Biol. Evol.38, 1695–1714 (2021). PubMed PMC
Yang, W. et al. The chromosome-level genome sequence and karyotypic evolution of Megadenia pygmaea (Brassicaceae). Mol. Ecol. Resour.21, 871–879 (2021). PubMed
Huang, Y. et al. The meso-octoploid Heliophila variabilis genome sheds a new light on the impact of polyploidization and diploidization on the diversity of the Cape flora. Plant J.116, 446–466 (2023). PubMed
Liu, J. et al. Genomes of Meniocus linifolius and Tetracme quadricornis unveil the ancestral karyotype and genomic features of core Brassicaceae. Plant Commun.5, 100878 (2024). PubMed PMC
Schubert, I. & Lysak, M. A. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet.27, 207–216 (2011). PubMed
Mayrose, I. & Lysak, M. A. The evolution of chromosome numbers: mechanistic models and experimental approaches. Genome Biol. Evol.13, evaa220 (2021). PubMed PMC
Sun, P. et al. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol. Plant15, 1841–1851 (2022). PubMed
Sun, P. et al. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl. Acad. Sci. USA121, e2313921121 (2024). PubMed PMC
Lysak, M. A. Celebrating Mendel, McClintock, and Darlington: on end-to-end chromosome fusions and nested chromosome fusions. Plant Cell34, 2475–2491 (2022). PubMed PMC
Lysak, M. A. et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA103, 5224–5229 (2006). PubMed PMC
Mandáková, T., Marhold, K. & Lysak, M. A. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol.201, 982–992 (2014). PubMed
Kamm, A., Galasso, I., Schmidt, T. & Heslop-Harrison, J. S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol. Biol.27, 853–862 (1995). PubMed
Comai, L., Tyagi, A. P. & Lysak, M. A. FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res.11, 217–226 (2003). PubMed
Jakobsson, M. et al. A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Mol. Biol. Evol.23, 1217–1231 (2006). PubMed
Novikova, P. Y. et al. Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Mol. Biol. Evol.34, 957–968 (2017). PubMed PMC
Mandáková, T., Pouch, M., Brock, J. R., Al-Shehbaz, I. A. & Lysak, M. A. Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell31, 2596–2612 (2019). PubMed PMC
Zhang, Z. et al. An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes. BMC Genom.21, 705 (2020). PubMed PMC
Burns, R. et al. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat. Ecol. Evol.5, 1367–1381 (2021). PubMed PMC
Mandáková, T. & Lysak, M. A. The identification of the missing maternal genome of the allohexaploid camelina (Camelina sativa). Plant J.112, 622–629 (2022). PubMed
Martin, S. L., Toro, B. L., James, T., Sauder, C. A. & Laforest, M. Insights from the genomes of 4 diploid Camelina spp.G3-Genes Genom. Genet.12, jkac182 (2022). PubMed PMC
Chaudhary, R. et al. Sequencing of Camelina neglecta, a diploid progenitor of the hexaploid oilseed Camelina sativa. Plant Biotechnol. J.21, 521–535 (2023). PubMed PMC
Murat, F. et al. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet.49, 490–496 (2017). PubMed
Aköz, G. & Nordborg, M. The Aquilegia genome reveals a hybrid origin of core eudicots. Genome Biol.20, 1–12 (2019). PubMed PMC
Shi, T. et al. The slow-evolving Acorus tatarinowii genome sheds light on ancestral monocot evolution. Nat. Plants8, 764–777 (2022). PubMed PMC
Ma, L. et al. Diploid and tetraploid genomes of Acorus and the evolution of monocots. Nat. Commun.14, 3661 (2023). PubMed PMC
Wang, Z. et al. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol.20, 216–232 (2022). PubMed PMC
Xu, X., Sun, P., Gao, C., Zheng, W. & Chen, S. Assembly of the poorly differentiated Verasper variegatus W chromosome by different sequencing technologies. Sci. Data10, 893 (2023). PubMed PMC
Carta, A., Bedini, G. & Peruzzi, L. A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytol.228, 1097–1106 (2020). PubMed
Yin, Y. et al. Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat. Commun.12, 6858 (2021). PubMed PMC
Shao, Y. et al. Phylogenomic analyses provide insights into primate evolution. Science380, 913–924 (2023). PubMed
Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics38, 4949–4950 (2022). PubMed