Genomic Blocks in Aethionema arabicum Support Arabideae as Next Diverging Clade in Brassicaceae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32582250
PubMed Central
PMC7286309
DOI
10.3389/fpls.2020.00719
Knihovny.cz E-zdroje
- Klíčová slova
- Aethionema, Arabideae, Brassicaceae, comparative genomics, genomic blocks, synteny,
- Publikační typ
- časopisecké články MeSH
The tribe Aethionemeae is sister to all other crucifers, making it a crucial group for unraveling genome evolution and phylogenetic relationships within the crown group Brassicaceae. In this study, we extend the analysis of Brassicaceae genomic blocks (GBs) to Aethionema whereby we identified unique block boundaries shared only with the tribe Arabideae. This was achieved using bioinformatic methods to analyze synteny between the recently updated genome sequence of Aethionema arabicum and other high-quality Brassicaceae genome sequences. We show that compared to the largely conserved genomic structure of most non-polyploid Brassicaceae lineages, GBs are highly rearranged in Aethionema. Furthermore, we detected similarities between the genomes of Aethionema and Arabis alpina, in which also a high number of genomic rearrangements compared to those of other Brassicaceae was found. These similarities suggest that tribe Arabideae, a clade showing conflicting phylogenetic position between studies, may have diverged before diversification of the other major lineages, and highlight the potential of synteny information for phylogenetic inference.
Biosystematics Group Wageningen University Wageningen Netherlands
Central European Institute of Technology Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Beilstein M. A., Nagalingum N. S., Clements M. D., Manchester S. R., Mathews S. (2010). Dated molecular phylogenies indicate a miocene origin for PubMed DOI PMC
Cheng F., Mandáková T., Wu J., Xie Q., Lysak M. A., Wang X. (2013). Deciphering the diploid ancestral genome of the mesohexaploid PubMed DOI PMC
Drillon G., Champeimont R., Oteri F., Fischer G., Carbone A. (2020). Phylogenetic reconstruction based on synteny block and gene adjacencies. PubMed DOI PMC
Edger P. P., Hall J. C., Harkess A., Tang M., Coombs J., Mohammadin S., et al. (2018). PubMed DOI
Edger P. P., Heidel-Fischer H. M., Bekaert M., Rota J., Glöckner G., Platts A. E., et al. (2015). The butterfly plant arms-race escalated by gene and genome duplications. PubMed DOI PMC
Franzke A., Lysak M. A., Al-Shehbaz I. A., Koch M. A., Mummenhoff K. (2011). Cabbage family affairs: the evolutionary history of PubMed DOI
Guo X., Liu J., Hao G., Zhang L., Mao K., Wang X., et al. (2017). Plastome phylogeny and early diversification of PubMed DOI PMC
Haas B. J., Delcher A. L., Wortman J. R., Salzberg S. L. (2004). DAGchainer: a tool for mining segmental genome duplications and synteny. PubMed DOI
Hofberger J. A., Lyons E., Edger P. P., Chris Pires J., Eric Schranz M. (2013). Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. PubMed DOI PMC
Hohmann N., Wolf E. M., Lysak M. A., Koch M. A. (2015). A time-calibrated road map of PubMed DOI PMC
Huang C.-H., Sun R., Hu Y., Zeng L., Zhang N., Cai L., et al. (2016). Resolution of PubMed DOI PMC
Kiefer C., Willing E.-M., Jiao W.-B., Sun H., Piednoël M., Hümann U., et al. (2019). Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. PubMed DOI
Koch M. A., Al-Shehbaz I. A. (2009). “Molecular systematics and evolution of ‘wild’ crucifers (
Koch M. A., German D. A., Kiefer M., Franzke A. (2018). Database taxonomics as key to modern plant biology. PubMed DOI
Lenser T., Graeber K., Cevik O. S., Adiguzel N., Donmez A. A., Grosche C., et al. (2016). Developmental control and plasticity of fruit and seed dimorphism in PubMed DOI PMC
Lenser T., Tarkowská D., Novák O., Wilhelmsson P. K. I., Bennett T., Rensing S. A., et al. (2018). When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in PubMed DOI
Lyons E., Pedersen B., Kane J., Alam M., Ming R., Tang H., et al. (2008). Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with Rosids. PubMed DOI PMC
Lysak M. A., Mandáková T., Schranz M. E. (2016). Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. PubMed DOI
Mabry M. E., Brose J. M., Blischak P. D., Sutherland B., Dismukes W. T., Bottoms C. A., et al. (2019). Phylogeny and multiple independent whole-genome duplication events in the PubMed DOI PMC
Mandáková T., Hloušková P., German D. A., Lysak M. A. (2017a). Monophyletic origin and evolution of the largest crucifer genomes. PubMed DOI PMC
Mandáková T., Li Z., Barker M. S., Lysak M. A. (2017b). Diverse genome organization following 13 independent mesopolyploid events in PubMed DOI
Mandáková T., Hloušková P., Koch M. A., Lysak M. A. (2020). Genome evolution in Arabideae was marked by frequent centromere repositioning. PubMed DOI PMC
Mandáková T., Lysak M. A. (2008). Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species ( PubMed DOI PMC
Mandáková T., Pouch M., Brock J. R., Al-Shehbaz I. A., Lysak M. A. (2019). Origin and evolution of diploid and allopolyploid PubMed DOI PMC
Mérai Z., Graeber K., Wilhelmsson P., Ullrich K. K., Arshad W., Grosche C., et al. (2019). PubMed DOI PMC
Mohammadin S., Peterse K., Kerke S. J., van de Chatrou L. W., Dönmez A. A., Mummenhoff K., et al. (2017). Anatolian origins and diversification of PubMed DOI
Nguyen T.-P., Mühlich C., Mohammadin S., van den Bergh E., Platts A. E., Haas F. B., et al. (2019). Genome improvement and genetic map construction for PubMed DOI PMC
Nikolov L. A., Shushkov P., Nevado B., Gan X., Al-Shehbaz I. A., Filatov D., et al. (2019). Resolving the backbone of the PubMed DOI
One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. PubMed DOI PMC
Schranz M., Lysak M., Mitchellolds T. (2006). The ABC’s of comparative genomics in the PubMed DOI
Schranz M. E., Mitchell-Olds T. (2006). Independent ancient polyploidy events in the sister families PubMed DOI PMC
Schranz M. E., Mohammadin S., Edger P. P. (2012). Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. PubMed DOI
Tang H., Lyons E. (2012). Unleashing the genome of brassica rapa. PubMed DOI PMC
Tang H., Lyons E., Pedersen B., Schnable J. C., Paterson A. H., Freeling M. (2011). Screening synteny blocks in pairwise genome comparisons through integer programming. PubMed DOI PMC
Tank D. C., Eastman J. M., Pennell M. W., Soltis P. S., Soltis D. E., Hinchliff C. E., et al. (2015). Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. PubMed DOI
Vanneste K., Van de Peer Y., Maere S. (2013). Inference of genome duplications from age distributions revisited. PubMed DOI
Wilhelmsson P. K. I., Chandler J. O., Fernandez-Pozo N., Graeber K., Ullrich K. K., Arshad W., et al. (2019). Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on PubMed DOI PMC
Willing E.-M., Rawat V., Mandáková T., Maumus F., James G. V., Nordström K. J. V., et al. (2015). Genome expansion of PubMed DOI
Yang Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. PubMed DOI
Zhao T., Xue J., Kao S., Li Z., Zwaenepoel A., Schranz M. E., et al. (2020). Novel phylogeny of angiosperms inferred from whole-genome microsynteny analysis. PubMed DOI PMC
Complementing model species with model clades