Genomic Blocks in Aethionema arabicum Support Arabideae as Next Diverging Clade in Brassicaceae

. 2020 ; 11 () : 719. [epub] 20200603

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32582250

The tribe Aethionemeae is sister to all other crucifers, making it a crucial group for unraveling genome evolution and phylogenetic relationships within the crown group Brassicaceae. In this study, we extend the analysis of Brassicaceae genomic blocks (GBs) to Aethionema whereby we identified unique block boundaries shared only with the tribe Arabideae. This was achieved using bioinformatic methods to analyze synteny between the recently updated genome sequence of Aethionema arabicum and other high-quality Brassicaceae genome sequences. We show that compared to the largely conserved genomic structure of most non-polyploid Brassicaceae lineages, GBs are highly rearranged in Aethionema. Furthermore, we detected similarities between the genomes of Aethionema and Arabis alpina, in which also a high number of genomic rearrangements compared to those of other Brassicaceae was found. These similarities suggest that tribe Arabideae, a clade showing conflicting phylogenetic position between studies, may have diverged before diversification of the other major lineages, and highlight the potential of synteny information for phylogenetic inference.

Zobrazit více v PubMed

Beilstein M. A., Nagalingum N. S., Clements M. D., Manchester S. R., Mathews S. (2010). Dated molecular phylogenies indicate a miocene origin for PubMed DOI PMC

Cheng F., Mandáková T., Wu J., Xie Q., Lysak M. A., Wang X. (2013). Deciphering the diploid ancestral genome of the mesohexaploid PubMed DOI PMC

Drillon G., Champeimont R., Oteri F., Fischer G., Carbone A. (2020). Phylogenetic reconstruction based on synteny block and gene adjacencies. PubMed DOI PMC

Edger P. P., Hall J. C., Harkess A., Tang M., Coombs J., Mohammadin S., et al. (2018). PubMed DOI

Edger P. P., Heidel-Fischer H. M., Bekaert M., Rota J., Glöckner G., Platts A. E., et al. (2015). The butterfly plant arms-race escalated by gene and genome duplications. PubMed DOI PMC

Franzke A., Lysak M. A., Al-Shehbaz I. A., Koch M. A., Mummenhoff K. (2011). Cabbage family affairs: the evolutionary history of PubMed DOI

Guo X., Liu J., Hao G., Zhang L., Mao K., Wang X., et al. (2017). Plastome phylogeny and early diversification of PubMed DOI PMC

Haas B. J., Delcher A. L., Wortman J. R., Salzberg S. L. (2004). DAGchainer: a tool for mining segmental genome duplications and synteny. PubMed DOI

Hofberger J. A., Lyons E., Edger P. P., Chris Pires J., Eric Schranz M. (2013). Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. PubMed DOI PMC

Hohmann N., Wolf E. M., Lysak M. A., Koch M. A. (2015). A time-calibrated road map of PubMed DOI PMC

Huang C.-H., Sun R., Hu Y., Zeng L., Zhang N., Cai L., et al. (2016). Resolution of PubMed DOI PMC

Kiefer C., Willing E.-M., Jiao W.-B., Sun H., Piednoël M., Hümann U., et al. (2019). Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. PubMed DOI

Koch M. A., Al-Shehbaz I. A. (2009). “Molecular systematics and evolution of ‘wild’ crucifers (

Koch M. A., German D. A., Kiefer M., Franzke A. (2018). Database taxonomics as key to modern plant biology. PubMed DOI

Lenser T., Graeber K., Cevik O. S., Adiguzel N., Donmez A. A., Grosche C., et al. (2016). Developmental control and plasticity of fruit and seed dimorphism in PubMed DOI PMC

Lenser T., Tarkowská D., Novák O., Wilhelmsson P. K. I., Bennett T., Rensing S. A., et al. (2018). When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in PubMed DOI

Lyons E., Pedersen B., Kane J., Alam M., Ming R., Tang H., et al. (2008). Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with Rosids. PubMed DOI PMC

Lysak M. A., Mandáková T., Schranz M. E. (2016). Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. PubMed DOI

Mabry M. E., Brose J. M., Blischak P. D., Sutherland B., Dismukes W. T., Bottoms C. A., et al. (2019). Phylogeny and multiple independent whole-genome duplication events in the PubMed DOI PMC

Mandáková T., Hloušková P., German D. A., Lysak M. A. (2017a). Monophyletic origin and evolution of the largest crucifer genomes. PubMed DOI PMC

Mandáková T., Li Z., Barker M. S., Lysak M. A. (2017b). Diverse genome organization following 13 independent mesopolyploid events in PubMed DOI

Mandáková T., Hloušková P., Koch M. A., Lysak M. A. (2020). Genome evolution in Arabideae was marked by frequent centromere repositioning. PubMed DOI PMC

Mandáková T., Lysak M. A. (2008). Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species ( PubMed DOI PMC

Mandáková T., Pouch M., Brock J. R., Al-Shehbaz I. A., Lysak M. A. (2019). Origin and evolution of diploid and allopolyploid PubMed DOI PMC

Mérai Z., Graeber K., Wilhelmsson P., Ullrich K. K., Arshad W., Grosche C., et al. (2019). PubMed DOI PMC

Mohammadin S., Peterse K., Kerke S. J., van de Chatrou L. W., Dönmez A. A., Mummenhoff K., et al. (2017). Anatolian origins and diversification of PubMed DOI

Nguyen T.-P., Mühlich C., Mohammadin S., van den Bergh E., Platts A. E., Haas F. B., et al. (2019). Genome improvement and genetic map construction for PubMed DOI PMC

Nikolov L. A., Shushkov P., Nevado B., Gan X., Al-Shehbaz I. A., Filatov D., et al. (2019). Resolving the backbone of the PubMed DOI

One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. PubMed DOI PMC

Schranz M., Lysak M., Mitchellolds T. (2006). The ABC’s of comparative genomics in the PubMed DOI

Schranz M. E., Mitchell-Olds T. (2006). Independent ancient polyploidy events in the sister families PubMed DOI PMC

Schranz M. E., Mohammadin S., Edger P. P. (2012). Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. PubMed DOI

Tang H., Lyons E. (2012). Unleashing the genome of brassica rapa. PubMed DOI PMC

Tang H., Lyons E., Pedersen B., Schnable J. C., Paterson A. H., Freeling M. (2011). Screening synteny blocks in pairwise genome comparisons through integer programming. PubMed DOI PMC

Tank D. C., Eastman J. M., Pennell M. W., Soltis P. S., Soltis D. E., Hinchliff C. E., et al. (2015). Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. PubMed DOI

Vanneste K., Van de Peer Y., Maere S. (2013). Inference of genome duplications from age distributions revisited. PubMed DOI

Wilhelmsson P. K. I., Chandler J. O., Fernandez-Pozo N., Graeber K., Ullrich K. K., Arshad W., et al. (2019). Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on PubMed DOI PMC

Willing E.-M., Rawat V., Mandáková T., Maumus F., James G. V., Nordström K. J. V., et al. (2015). Genome expansion of PubMed DOI

Yang Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. PubMed DOI

Zhao T., Xue J., Kao S., Li Z., Zwaenepoel A., Schranz M. E., et al. (2020). Novel phylogeny of angiosperms inferred from whole-genome microsynteny analysis. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...