Complementing model species with model clades

. 2024 May 01 ; 36 (5) : 1205-1226.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37824826

Grantová podpora
1923589/2019610 National Science Foundation, USA, and The United States-Israel Binational Science Foundation
The Goldinger Trust Jewish Fund
BER-DE-SC0020358 US Department of Energy

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

ACEBB and SGC School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia

Ben Gurion University of the Negev French Associates Institute for Agriculture and Biotechnology of Drylands Jacob Blaustein Institutes for Desert Research Midreshet Ben Gurion 8499000 Israel

Bioinformatics and Analytics Core University of Missouri Columbia MO 65211 USA

Biology Department Miami University Oxford OH 45056 USA

Biosystematics Group Wageningen University 6708 PB Wageningen the Netherlands

Cancer and Cell Biology Division Translational Genomics Research Institute Phoenix AZ 85004 USA

CEITEC and NCBR Faculty of Science Masaryk University 625 00 Brno Czech Republic

Centre for Organismal Studies Heidelberg University 69120 Heidelberg Germany

Daniel K Inouye U S Pacific Basin Agricultural Research Center Agricultural Research Service United States Department of Agriculture Hilo HI 96720 USA

Department of Biochemistry Purdue University West Lafayette IN 47906 USA

Department of Biological Sciences Bioinformatics Research Center Program in Genetics North Carolina State University Raleigh NC 27695 USA

Department of Biological Sciences Louisiana State University Baton Rouge LA 70803 USA

Department of Biological Sciences University of Alberta Edmonton Alberta T6G 2E9 Canada

Department of Biology Botany University of Osnabrück D 49076 Osnabrück Germany

Department of Biology Indiana University Bloomington IN 47405 USA

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA

Department of Ecology and Evolutionary Biology Yale University New Haven CT 06520 USA

Department of Horticulture Michigan State University East Lansing MI 48864 USA

Department of Plant Sciences UC Davis Davis CA 95616 USA

Department of Plant Sciences University of Cambridge Cambridge CB2 1TN UK

Department of Psychiatry Washington University in Saint Louis School of Medicine St Louis MO 63110 USA

Department of Soil and Crop Sciences Colorado State University Fort Collins CO 80523 1170 USA

Division of Biological Sciences University of Missouri Columbia MO 65211 USA

Division of Plant Sciences University of Missouri Columbia MO 65211 USA

Florida Museum of Natural History University of Florida Gainesville FL 32611 USA

Functional Traits Naturalis Biodiversity Center PO Box 9517 Leiden 2300 RA the Netherlands

HudsonAlpha Institute for Biotechnology Huntsville AL 35806 USA

Institute of Biology Leiden Plant Sciences Leiden University 2333 BE Leiden the Netherlands

Institute of Economic Botany New York Botanical Garden The Bronx NY 10458 USA

Missouri Botanical Garden Shaw Boulevard St Louis MO 63110 USA

National Herbarium of New South Wales Australian Botanic Garden Locked Bag 6002 Mount Annan NSW 2567 Australia

National Research Council Palermo 90129 Italy

NeuroGenomics and Informatics Center Washington University in Saint Louis School of Medicine St Louis MO 63108 USA

Royal Botanic Gardens Kew Richmond Surrey TW9 3AE UK

Royal Botanic Gardens Victoria Melbourne VIC 3004 Australia

School of Biological Sciences Washington State University Pullman WA 99164 4236 USA

Southern Cross Plant Science Southern Cross University Lismore NSW 2480 Australia

Zobrazit více v PubMed

Abrahams RS, Pires JC, Schranz ME. Genomic origin and diversification of the glucosinolate MAM locus. Front Plant Sci. 2020:11:711. 10.3389/fpls.2020.00711 PubMed DOI PMC

Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, Kataoka I, Tao R. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell. 2018:30(4):780–795. 10.1105/tpc.17.00787 PubMed DOI PMC

Al-Shehbaz IA. The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor. 1984:65(3):343–373. 10.5962/p.36696 DOI

Andersson L, Andersson S. A molecular phylogeny of Tropaeolaceae and its systematic implications. Taxon. 2000:49(4):721–736. 10.2307/1223973 DOI

Antonelli A, Clarkson JJ, Kainulainen K, Maurin O, Brewer GE, Davis AP, Epitawalage N, Goyder DJ, Livshultz T, Persson C, et al. . Settling a family feud: a high-level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial plastomes. Am J Bot. 2021:108(7):1143–1165. 10.1002/ajb2.1697 PubMed DOI

Apel P, Horstmann C, Pfeffer M. The Moricandia syndrome in species of the Brassicaceae - evolutionary aspects. Photosynthetica. 1997:33(2):205–215. 10.1023/A:1022108229082 DOI

Arias T, Pires JC. A fully resolved chloroplast phylogeny of the brassica crops and wild relatives (Brassicaceae: Brassiceae): novel clades and potential taxonomic implications. Taxon. 2012:61(5):980–988. 10.1002/tax.615005 DOI

Armstrong CG, McAlvay AC. Introduction to special section on action ethnobiology. J Ethnobiol. 2019:39(1):3–13. 10.2993/0278-0771-39.1.3 DOI

Arshad W, Sperber K, Steinbrecher T, Nichols B, Jansen VAA, Leubner-Metzger G, Mummenhoff K. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol. 2019:221(3):1434–1446. 10.1111/nph.15490 PubMed DOI PMC

Aryal R, Jagadeeswaran G, Zheng Y, Yu Q, Sunkar R, Ming R. Sex specific expression and distribution of small RNAs in papaya. BMC Genomics. 2014:15(1):20. 10.1186/1471-2164-15-20 PubMed DOI PMC

Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Gen Genomics. 2003:268(5):656–665. 10.1007/s00438-002-0782-2 PubMed DOI

Baker WJ, Bailey P, Barber V, Barker A, Bellot S, Bishop D, Botigué LR, Brewer G, Carruthers T, Clarkson JJ, et al. . A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Syst Biol. 2022:71(2):301–319. 10.1093/sysbio/syab035 PubMed DOI PMC

Baker WJ, Dodsworth S, Forest F, Graham SW, Johnson MG, McDonnell A, Pokorny L, Tate JA, Wicke S, Wickett NJ. Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants. Am J Bot. 2021:108(7):1059–1065. 10.1002/ajb2.1703 PubMed DOI

Baker K, Eichhorn MP, Griffiths M. Decolonizing field ecology. Biotropica. 2019:51(3):288–292. 10.1111/btp.12663 DOI

Baker KS, Steadman KJ, Plummer JA, Dixon KW. Seed dormancy and germination responses of nine Australian fire ephemerals. Plant Soil. 2005:277(1–2):345–358. 10.1007/s11104-005-7971-9 DOI

Barker MS, Vogel H, Schranz ME. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol. 2009:1:391–399. 10.1093/gbe/evp040 PubMed DOI PMC

Barragan AC, Collenberg M, Schwab R, Kerstens M, Bezrukov I, Bemm F, Požárová D, Kolář F, Weigel D. Homozygosity at its limit: inbreeding depression in wild Arabidopsis arenosa populations. bioRxiv. 2021. 10.1101/2021.01.24.427284, 25 January 2021, preprint: not peer reviewed. PubMed DOI PMC

Barrett RL, Roalson EH, Ottewell K, Byrne M, Govindwar SP, Yadav SR, Tamboli AS, Gholave AR. Resolving generic boundaries in Indian-Australasian Cleomaceae: circumscription of Areocleome, Arivela, and Corynandra as distinct genera. Syst Bot. 2017:42(4):694–708. 10.1600/036364417X696401 DOI

Bayat S, Schranz ME, Roalson EH, Hall JC. Lessons from Cleomaceae, the sister of crucifers. Trends Plant Sci. 2018:23(9):808–821. 10.1016/j.tplants.2018.06.010 PubMed DOI

Bayer C, Appel O. Bataceae. In: Kubitzki K, Bayer C, editors. Flowering plants · dicotyledons: Malvales, Capparales and non-Betalain Caryophyllales. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. p. 30–32.

Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol. 2016:65(4):583–601. 10.1093/sysbio/syw022 PubMed DOI

Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, et al. . The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One. 2008:3(4):e2068. 10.1371/journal.pone.0002068 PubMed DOI PMC

Beric A, Mabry ME, Harkess AE, Brose J, Schranz ME, Conant GC, Edger PP, Meyers BC, Pires JC. Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). G3 (Bethesda). 2021:11:jkab140. 10.1093/g3journal/jkab140 PubMed DOI PMC

Bewick AJ, Ji L, Niederhuth CE, Willing E-M, Hofmeister BT, Shi X, Wang L, Lu Z, Rohr NA, Hartwig B, et al. . On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci USA. 2016:113(32):9111–9116. 10.1073/pnas.1604666113 PubMed DOI PMC

Bhattacharya S, Mayland-Quellhorst S, Müller C, Mummenhoff K. Two-tier morpho-chemical defence tactic in Aethionema via fruit morph plasticity and glucosinolates allocation in diaspores. Plant Cell Environ. 2019b:42(4):1381–1392. 10.1111/pce.13462 PubMed DOI

Bhattacharya S, Sperber K, Özüdoğru B, Leubner-Metzger G, Mummenhoff K. Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization. Sci Rep. 2019a:9(1):16108. 10.1038/s41598-019-52520-y PubMed DOI PMC

Birchler JA, Veitia RA. The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell. 2007:19(2):395–402. 10.1105/tpc.106.049338 PubMed DOI PMC

Birchler JA, Veitia RA. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA. 2012:109(37):14746–14753. 10.1073/pnas.1207726109 PubMed DOI PMC

Bird KA, Niederhuth C, Ou S, Gehan M, Pires JC, Xiong Z, VanBuren R, Edger PP. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. New Phytol. 2020:230(1):354–371. 10.1111/nph.17137 PubMed DOI PMC

Bird KA, Pires JC, VanBuren R, Xiong Z, Edger PP. Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus. Genetics. 2023:225(1):iyad114. 10.1093/genetics/iyad114 PubMed DOI PMC

Birkeland S, Gustafsson ALS, Brysting AK, Brochmann C, Nowak MD. Multiple genetic trajectories to extreme abiotic stress adaptation in arctic Brassicaceae. Mol Biol Evol. 2020:37(7):2052–2068. 10.1093/molbev/msaa068 PubMed DOI PMC

Blakeney M. Remedying the misappropriation of genetic resources. In: Singh HBKeswani C, Singh SP, editors. Intellectual property issues in microbiology. Singapore: Springer Singapore; 2019. p. 147–161.

Blischak PD, Mabry ME, Conant GC, Pires JC. Integrating networks, phylogenomics, and population genomics for the study of polyploidy. Annu Rev Ecol Evol Syst. 2018:49(1):253–278. 10.1146/annurev-ecolsys-121415-032302 DOI

Bowman JL, Drews GN, Meyerowitz EM. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell. 1991a:3(8):749–758. 10.1105/tpc.3.8.749 PubMed DOI PMC

Bowman JL, Smyth DR, Meyerowitz EM. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991b:112(1):1–20. 10.1242/dev.112.1.1 PubMed DOI

Brassica rapa Genome Sequencing Project Consortium . The genome of the mesopolyploid crop species Brassica rapa. Nat Genetics. 2011:43(10):1035–1039. 10.1038/ng.919 PubMed DOI

Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Maß J, Lercher MJ, et al. . An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol. 2011:155(1):142–156. 10.1104/pp.110.159442 PubMed DOI PMC

Brewer GE, Clarkson JJ, Maurin O, Zuntini AR, Barber V, Bellot S, Biggs N, Cowan RS, Davies NMJ, Dodsworth S, et al. . Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms. Front Plant Sci. 2019:10:e01102. 10.3389/fpls.2019.01102 PubMed DOI PMC

Briskine RV, Paape T, Shimizu-Inatsugi R, Nishiyama T, Akama S, Sese J, Shimizu KK. Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Mol Ecol Resour. 2017:17(5):1025–1036. 10.1111/1755-0998.12604 PubMed DOI

Brown JE, Bauman JM, Lawrie JF, Rocha OJ, Moore RC. The structure of morphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica. 2012:44(2):179–188. 10.1111/j.1744-7429.2011.00779.x DOI

Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science. 2011:331(6023):1436–1439. 10.1126/science.1201248 PubMed DOI

Buck M, Hamilton C. The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Rev Eur Community Int Environ Law. 2011:20(1):47–61. 10.1111/j.1467-9388.2011.00703.x DOI

Byng JW. The flowering plants handbook: a practical guide to families and genera of the world. United Kingdom: Plant Gateway Ltd; 2014.

Cacho NI, Kliebenstein DJ, Strauss SY. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. New Phytol. 2015:208(3):915–927. 10.1111/nph.13561 PubMed DOI

Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Ann Bot. 2021:127(7):887–902. 10.1093/aob/mcab028 PubMed DOI PMC

Cardinal-McTeague WM, Sytsma KJ, Hall JC. Biogeography and diversification of Brassicales: a 103 million year tale. Mol Phylogenet Evol. 2016:99:204–224. 10.1016/j.ympev.2016.02.021 PubMed DOI

Carey S, Yu Q, Harkess A. The diversity of plant sex chromosomes highlighted through advances in genome sequencing. Genes. 2021:12(3):381. 10.3390/genes12030381 PubMed DOI PMC

Carroll SR, Garba I, Figueroa-Rodríguez OL, Holbrook J, Lovett R, Materechera S, Parsons M, Raseroka K, Rodriguez-Lonebear D, Rowe R, et al. . The CARE principles for indigenous data governance. Data Sci J. 2020:19:43. 10.5334/dsj-2020-043 DOI

Carvalho FA, Renner SS. IV. A dated phylogeny of the papaya family (Caricaceae) reveals the crop's closest relatives and the family's biogeographic history. In: Carvalho FA ed., Molecular phylogeny, biogeography and an e-monograph of the papaya family (Caricaceae) as an example of taxonomy in the electronic age. Wiesbaden, Germany: Springer; 2015. p. 49–81.

Chan EKF, Rowe HC, Kliebenstein DJ. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics. 2010:185(3):991–1007. 10.1534/genetics.109.108522 PubMed DOI PMC

Cheng F, Sun C, Wu J, Schnable J, Woodhouse MR, Liang J, Cai C, Freeling M, Wang X. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa. New Phytol. 2016:211(1):288–299. 10.1111/nph.13884 PubMed DOI

Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One. 2012:7(5):e36442. 10.1371/journal.pone.0036442 PubMed DOI PMC

Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc Natl Acad Sci USA. 2013:110(4):1381–1386. 10.1073/pnas.1216777110 PubMed DOI PMC

Christin P-A, Salamin N, Savolainen V, Duvall MR, Besnard G. C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol. 2007:17(14):1241–1247. 10.1016/j.cub.2007.06.036 PubMed DOI

Conant GC. Comparative genomics as a time machine: how relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy. Mol Biol Evol. 2014:31(12):3184–3193. 10.1093/molbev/msu250 PubMed DOI

Conant GC. The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One. 2020:15(4):e0231356. 10.1371/journal.pone.0231356 PubMed DOI PMC

Conant GC, Birchler JA, Pires JC. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr Opin Plant Biol. 2014:19:91–98. 10.1016/j.pbi.2014.05.008 PubMed DOI

Conant GC, Wolfe KH. Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics. 2008:179(3):1681–1692. 10.1534/genetics.107.074450 PubMed DOI PMC

Cornwell WK, Westoby M, Falster DS, FitzJohn RG, O’Meara BC, Pennell MW, McGlinn DJ, Eastman JM, Moles AT, Reich PB, et al. . Functional distinctiveness of major plant lineages. J Ecol. 2014:102(2):345–356. 10.1111/1365-2745.12208 DOI

Czerniawski P, Piasecka A, Bednarek P. Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. Phytochemistry. 2021:181:112571. 10.1016/j.phytochem.2020.112571 PubMed DOI

Damerval C, Becker A. Genetics of flower development in Ranunculales - a new, basal eudicot model order for studying flower evolution. New Phytol. 2017:216(2):361–366. 10.1111/nph.14401 PubMed DOI

Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, Yun D-J, Bressan RA, Zhu J-K, Bohnert HJ, et al. . The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 2011:43(9):913–918. 10.1038/ng.889 PubMed DOI PMC

Davin N, Edger PP, Hefer CA, Mizrachi E, Schuetz M, Smets E, Myburg AA, Douglas CJ, Schranz ME, Lens F. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants. Plant J. 2016:86(5):376–390. 10.1111/tpj.13157 PubMed DOI

Debez A, Saadaoui D, Slama I, Huchzermeyer B, Abdelly C. Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity. J Plant Nutr Soil Sci. 2010:173(2):291–299. 10.1002/jpln.200900222 DOI

Dickinson PJ, Kneřová J, Szecówka M, Stevenson SR, Burgess SJ, Mulvey H, Bågman A-M, Gaudinier A, Brady SM, Hibberd JM. A bipartite transcription factor module controlling expression in the bundle sheath of Arabidopsis thaliana. Nat Plants. 2020:6(12):1468–1479. 10.1038/s41477-020-00805-w PubMed DOI

Dodsworth S, Pokorny L, Johnson MG, Kim JT, Maurin O, Wickett NJ, Forest F, Baker WJ. Hyb-Seq for flowering plant systematics. Trends Plant Sci. 2019:24(10):887–891. 10.1016/j.tplants.2019.07.011 PubMed DOI

Dória LC, Podadera DS, del Arco M, Chauvin T, Smets E, Delzon S, Lens F. Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought-induced hydraulic failure than their herbaceous relatives. Funct Ecol. 2018:32(6):1467–1478. 10.1111/1365-2435.13085 DOI

Drews GN, Bowman JL, Meyerowitz EM. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991:65(6):991–1002. 10.1016/0092-8674(91)90551-9 PubMed DOI

Dwivedy AK, Singh VK, Das S, Chaudhari AK, Upadhyay N, Singh A, Singh A, Dubey NK. Biodiversity bioprospection with respect to medicinal plants. In: Kumar Patra J, Das G, Kumar S, Thatoi H, editors. Ethnopharmacology and biodiversity of medicinal plants. Boca Raton: Apple Academic Press; 2019. p. 3–30.

Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, Schranz ME, Xiong Z, Leebens-Mack J, Meyers BC, et al. . Brassicales Phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Am J Bot. 2018a:105(3):463–469. 10.1002/ajb2.1040 PubMed DOI

Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M, et al. . The butterfly plant arms-race escalated by gene and genome duplications. Proc Natl Acad Sci USA. 2015:112(27):8362–8366. 10.1073/pnas.1503926112 PubMed DOI PMC

Edger PP, McKain MR, Bird KA, VanBuren R. Subgenome assignment in allopolyploids: challenges and future directions. Curr Opin Plant Biol. 2018b:42:76–80. 10.1016/j.pbi.2018.03.006 PubMed DOI

Edwards EJ. Evolutionary trajectories, accessibility and other metaphors: the case of C4 and CAM photosynthesis. New Phytol. 2019:223(4):1742–1755. 10.1111/nph.15851 PubMed DOI

Elmer KR, Meyer A. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol. 2011:26(6):298–306. 10.1016/j.tree.2011.02.008 PubMed DOI

Eserman LA, Thomas SK, Coffey EED, Leebens-Mack JH. Target sequence capture in orchids: developing a kit to sequence hundreds of single-copy loci. Appl Plant Sci. 2021:9(7):e11416. 10.1002/aps3.11416 PubMed DOI PMC

Eshel G, Duppen N, Wang G, Oh D-H, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa-Caspi V, Oscar MA, et al. . Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. New Phytol. 2022:236(3):1006–1026. 10.1111/nph.18411 PubMed DOI PMC

Eshel G, Shaked R, Kazachkova Y, Khan A, Eppel A, Cisneros A, Acuna T, Gutterman Y, Tel-Zur N, Rachmilevitch S, et al. . Anastatica hierochuntica, an Arabidopsis desert relative, is tolerant to multiple abiotic stresses and exhibits Species-specific and common stress tolerance strategies with its halophytic relative, Eutrema (Thellungiella) salsugineum. Front Plant Sci. 2017:7:1992. 10.3389/fpls.2016.01992 PubMed DOI PMC

Fei Q, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell. 2013:25(7):2400–2415. 10.1105/tpc.113.114652 PubMed DOI PMC

Forsythe ES, Nelson ADL, Beilstein MA. Biased gene retention in the face of introgression obscures species relationships. Genome Biol Evol. 2020:12(9):1646–1663. 10.1093/gbe/evaa149 PubMed DOI PMC

Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2011:16(2):108–116. 10.1016/j.tplants.2010.11.005 PubMed DOI

Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr Opin Plant Biol. 2012:15(2):131–139. 10.1016/j.pbi.2012.01.015 PubMed DOI

Fuentes G, Santamaría JM. Papaya (Carica papaya L.): origin, domestication, and production. In: Ming R, Moore PH, editors. Genetics and genomics of papaya. New York: (NY: ): Springer New York; 2014. p. 3–15.

Fujii S, Kubo K-I, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. Nat Plants. 2016:2(9):16130. 10.1038/nplants.2016.130 PubMed DOI

Gallego-Bartolomé J, Liu W, Kuo PH, Feng S, Ghoshal B, Gardiner J, Zhao JM-C, Park SY, Chory J, Jacobsen SE. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell. 2019:176(5):1068–1082.e19. 10.1016/j.cell.2019.01.029 PubMed DOI PMC

Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, Hofhuis H, Pieper B, Cartolano M, Neumann U, et al. . Erratum: the Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat Plants. 2016:2(12):16189. 10.1038/nplants.2016.189 PubMed DOI PMC

Garassino F, Wijfjes RY, Boesten R, Reyes Marquez F, Becker FFM, Clapero V, van den Hatert I, Holmer R, Schranz ME, Harbinson J, et al. . The genome sequence of Hirschfeldia incana, a new Brassicaceae model to improve photosynthetic light-use efficiency. Plant J. 2022:112(5):1298–1315. 10.1111/tpj.16005 PubMed DOI PMC

Gebrekirstos A, Teketay D, Mitlöhner R. Responses of Dobera glabra and eight co-occurring species to drought and salinity stress at a savanna-scrub ecotone: implications in the face of climate change. Open J For. 2014:4(4):327–337. 10.4236/ojf.2014.44039 DOI

Gendrel A-V, Lippman Z, Yordan C, Colot V, Martienssen RA. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science. 2002:297(5588):1871–1873. 10.1126/science.1074950 PubMed DOI

German DA, Hendriks KP, Koch MA, Lens F, Lysak MA, Bailey CD, Mummenhoff K, Al-Shehbaz IA. An updated classification of the Brassicaceae (Cruciferae). PhytoKeys. 2023:220:127–144. 10.3897/phytokeys.220.97724 PubMed DOI PMC

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. . Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012:40(D1):D1178–D1186. 10.1093/nar/gkr944 PubMed DOI PMC

Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, et al. . Plastome phylogeny and early diversification of Brassicaceae. BMC Genom. 2017:18(1):176. 10.1186/s12864-017-3555-3 PubMed DOI PMC

Hall JC. Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany. 2008:86(7):682–696. 10.1139/B08-026 DOI

Hall JC, Iltis HH, Sytsma KJ. Molecular phylogenetics of core Brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot. 2004:29(3):654–669. 10.1600/0363644041744491 DOI

Hall JC, Sytsma KJ, Iltis HH. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot. 2002:89(11):1826–1842. 10.3732/ajb.89.11.1826 PubMed DOI

Hansen BG, Kerwin RE, Ober JA, Lambrix VM, Mitchell-Olds T, Gershenzon J, Halkier BA, Kliebenstein DJ. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 2008:148(4):2096–2108. 10.1104/pp.108.129981 PubMed DOI PMC

Hao Y, Fleming J, Petterson J, Lyons E, Edger PP, Pires JC, Thorne JL, Conant GC. Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3 (Bethesda). 2022:12(6):jkac094. 10.1093/g3journal/jkac094 PubMed DOI PMC

Haribal M, Yang Z, Attygalle AB, Renwick JA, Meinwald J. A cyanoallyl glucoside from Alliaria petiolata, as a feeding deterrent for larvae of Pieris napi oleracea. J Nat Prod. 2001:64(4):440–443. 10.1021/np000534d PubMed DOI

Harkess A, Huang K, van der Hulst R, Tissen B, Caplan JL, Koppula A, Batish M, Meyers BC, Leebens-Mack J. Sex determination by two Y-linked genes in garden asparagus. Plant Cell. 2020:32(6):1790–1796. 10.1105/tpc.19.00859 PubMed DOI PMC

Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, et al. . An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013:45(8):891–898. 10.1038/ng.2684 PubMed DOI

Haug-Baltzell A, Stephens SA, Davey S, Scheidegger CE, Lyons E. Synmap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics. 2017:33(14):2197–2198. 10.1093/bioinformatics/btx144 PubMed DOI

Hawkins JS, Proulx SR, Rapp RA, Wendel JF. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA. 2009:106(42):17811–17816. 10.1073/pnas.0904339106 PubMed DOI PMC

He H, Liang G, Li Y, Wang F, Yu D. Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiol. 2014:164(2):853–865. 10.1104/pp.113.228635 PubMed DOI PMC

Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, et al. . Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr Biol. 2023:33(19):4052–4068.e6. 10.1016/j.cub.2023.08.026 PubMed DOI

Hendriks KP, Mandáková T, Hay NM, Ly E, Hooft van Huysduynen A, Tamrakar R, Thomas SK, Toro-Núñez O, Pires JC, Nikolov LA, et al. . The best of both worlds: combining lineage-specific and universal bait sets in target-enrichment hybridization reactions. Appl Plant Sci. 2021:9(7):e11438. 10.1002/aps3.11438 PubMed DOI PMC

Hloušková P, Mandáková T, Pouch M, Trávníček P, Lysak MA. The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Ann Bot. 2019:124(1):103–120. 10.1093/aob/mcz036 PubMed DOI PMC

Hoang NV, Deedi Sogbohossou EO, Xiong W, Simpson CJC, Singh P, Walden N, van den Bergh E, Becker FFM, Li F, Zhu X-G, et al. . The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae. Plant Cell. 2023:35(5):1334–1359. 10.1093/plcell/koad018 PubMed DOI PMC

Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009:19(8):1419–1428. 10.1101/gr.091678.109 PubMed DOI PMC

Holtum JAM, Hancock LP, Edwards EJ, Winter K. Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna. J Plant Physiol. 2017:214:91–96. 10.1016/j.jplph.2017.01.010 PubMed DOI

Honjo MN, Kudoh H. Arabidopsis halleri: a perennial model system for studying population differentiation and local adaptation. AoB Plants. 2019:11(6):plz076. 10.1093/aobpla/plz076 PubMed DOI PMC

Hu G, Wendel JF. Cis-trans controls and regulatory novelty accompanying allopolyploidization. New Phytol. 2019:221(4):1691–1700. 10.1111/nph.15515 PubMed DOI

Huang X-C, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann Bot. 2020:125(1):29–47. 10.1093/aob/mcz123 PubMed DOI PMC

Huang C-F, Liu W-Y, Lu M-YJ, Chen Y-H, Ku MSB, Li W-H. Whole-Genome duplication facilitated the evolution of C4 photosynthesis in Gynandropsis gynandra. Mol Biol Evol. 2021:38(11):4715–4731. 10.1093/molbev/msab200 PubMed DOI PMC

Huang C-H, Sun R, Hu Yi, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, et al. . Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol. 2016:33(2):394–412. 10.1093/molbev/msv226 PubMed DOI PMC

Igic B, Lande R, Kohn JR. Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci. 2008:169(1):93–104. 10.1086/523362 DOI

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, et al. . A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst Biol. 2019:68(4):594–606. 10.1093/sysbio/syy086 PubMed DOI PMC

Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, et al. . The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun. 2014:5(1):3706. 10.1038/ncomms4706 PubMed DOI PMC

Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J. 2012:69(1):47–56. 10.1111/j.1365-313X.2011.04769.x PubMed DOI

Kakrana A, Mathioni SM, Huang K, Hammond R, Vandivier L, Patel P, Arikit S, Shevchenko O, Harkess AE, Kingham B, et al. . Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots. Genome Res. 2018:28(9):1333–1344. 10.1101/gr.228163.117 PubMed DOI PMC

Kakutani T, Munakata K, Richards EJ, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics. 1999:151(2):831–838. 10.1093/genetics/151.2.831 PubMed DOI PMC

Kant S, Kant P, Raveh E, Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Env. 2006:29(7):1220–1234. 10.1111/j.1365-3040.2006.01502.x PubMed DOI

Kazachkova Y, Eshel G, Pantha P, Cheeseman JM, Dassanayake M, Barak S. Halophytism: what have we learnt from Arabidopsis thaliana relative model systems? Plant Physiol. 2018:178(3):972–988. 10.1104/pp.18.00863 PubMed DOI PMC

Kerwin R, Feusier J, Corwin J, Rubin M, Lin C, Muok A, Larson B, Li B, Joseph B, Francisco M, et al. . Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Elife. 2015:4: e05604.10.7554/eLife.05604 PubMed DOI PMC

Kerwin RE, Feusier J, Muok A, Lin C, Larson B, Copeland D, Corwin JA, Rubin MJ, Francisco M, Li B, et al. . Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field. New Phytol. 2017:215(3):1249–1263. 10.1111/nph.14646 PubMed DOI

Kiefer C, Willing E-M, Jiao W-B, Sun H, Piednoël M, Hümann U, Hartwig B, Koch MA, Schneeberger K. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nat Plants. 2019:5(8):846–855. 10.1038/s41477-019-0486-9 PubMed DOI

Koch MA, German DA, Kiefer M, Franzke A. Database taxonomics as key to modern plant biology. Trends Plant Sci. 2018:23(1):4–6. 10.1016/j.tplants.2017.10.005 PubMed DOI

Koteyeva NK, Voznesenskaya EV, Cousins AB, Edwards GE. Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy. J Exp Bot. 2014:65(13):3525–3541. 10.1093/jxb/eru042 PubMed DOI PMC

Koteyeva NK, Voznesenskaya EV, Roalson EH, Edwards GE. Diversity in forms of C4 in the genus Cleome (Cleomaceae). Ann Bot. 2011:107(2):269–283. 10.1093/aob/mcq239 PubMed DOI PMC

Kreiner JM, Kron P, Husband BC. Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. New Phytol. 2017:214(2):879–889. 10.1111/nph.14423 PubMed DOI

Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA. 2003:100(Suppl 2):14587–14592. 10.1073/pnas.1734046100 PubMed DOI PMC

Kumar R, Lee SG, Augustine R, Reichelt M, Vassão DG, Palavalli MH, Allen A, Gershenzon J, Jez JM, Bisht NC. Molecular basis of the evolution of methylthioalkylmalate synthase and the diversity of methionine-derived glucosinolates. Plant Cell. 2019:31(7):1633–1647. 10.1105/tpc.19.00046 PubMed DOI PMC

Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics. 1998:150(3):1217–1228. 10.1093/genetics/150.3.1217 PubMed DOI PMC

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al. . The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012:40(D1):D1202–D1210. 10.1093/nar/gkr1090 PubMed DOI PMC

Lankau RA, Strauss SY. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science. 2007:317(5844):1561–1563. 10.1126/science.1147455 PubMed DOI

Lee AK, Gilman IS, Srivastav M, Lerner AD, Donoghue MJ, Clement WL. Reconstructing Dipsacales phylogeny using Angiosperms353: issues and insights. Am J Bot. 2021:108(7):1122–1142. 10.1002/ajb2.1695 PubMed DOI PMC

Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett. Plant DNA C-values Database. Plant DNA C-values Database. Release 7.1, April 2019.

Lens F, Smets E, Melzer S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 2012:193(1):12–17. 10.1111/j.1469-8137.2011.03888.x PubMed DOI

Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S. Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Plant Biol. 2013:16(3):287–292. 10.1016/j.pbi.2013.02.005 PubMed DOI

Li ZQ, Li JX, Li HJ, Shi ZH, Zhang GF. Overexpression of TsApx1 from Thellungiella salsuginea improves abiotic stress tolerance in transgenic Arabidopsis thaliana. Biol Plant. 2015:59(3):497–506. 10.1007/s10535-015-0533-y DOI

Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and processes of diploidization in land plants. Annu Rev Plant Biol. 2021:72(1):387–410. 10.1146/annurev-arplant-050718-100344 PubMed DOI

Lippman Z, Gendrel A-V, Black M, Vaughn MW, Dedhia N, Richard McCombie W, Lavine K, Mittal V, May B, Kasschau KD, et al. . Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004:430(6998):471–476. 10.1038/nature02651 PubMed DOI

Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, et al. . A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature. 2004:427(6972):348–352. 10.1038/nature02228 PubMed DOI

Lovell JT, Jenkins J, Lowry DB, Mamidi S, Sreedasyam A, Weng X, Barry K, Bonnette J, Campitelli B, Daum C, et al. . The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat Commun. 2018:9(1):5213. 10.1038/s41467-018-07669-x PubMed DOI PMC

Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. GENESPACE Tracks regions of interest and gene copy number variation across multiple genomes. Elife. 2022:11: e78526. 10.7554/eLife.78526 PubMed DOI PMC

Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat Plants. 2019:5(12):1250–1259. 10.1038/s41477-019-0548-z PubMed DOI

Lundgren MR. C2 photosynthesis: a promising route towards crop improvement? New Phytol. 2020:228(6):1734–1740. 10.1111/nph.16494 PubMed DOI

Lyons EH. Coge, a new kind of comparative genomics platform: insights into the evolution of plant genomes. Berkeley, CA: University of California; 2008.

Lyons E, Pedersen B, Kane J, Freeling M. The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Tropical Plant Biology. 2008:1(3–4):181–190. 10.1007/s12042-008-9017-y DOI

Lysak MA. Brassicales: an update on chromosomal evolution and ancient polyploidy. Plant Syst Evol. 2018:304(6):757–762. 10.1007/s00606-018-1507-2 DOI

Lysak MA, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol. 2007:145(2):402–410. 10.1104/pp.107.104380 PubMed DOI PMC

Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005:15(4):516–525. 10.1101/gr.3531105 PubMed DOI PMC

Mabry ME, Brose JM, Blischak PD, Sutherland B, Dismukes WT, Bottoms CA, Edger PP, Washburn JD, An H, Hall JC, et al. . Phylogeny and multiple independent whole-genome duplication events in the Brassicales. Am J Bot. 2020:107(8):1148–1164. 10.1002/ajb2.1514 PubMed DOI PMC

Magallon S, Crane PR, Herendeen PS. Phylogenetic pattern, diversity, and diversification of eudicots. Ann Missouri Bot Gard. 1999:86(2):297. 10.2307/2666180 DOI

Mandáková T, Li Z, Barker MS, Lysak MA. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J. 2017:91(1):3–21. 10.1111/tpj.13553 PubMed DOI

Manzaneda AJ, Prasad KVSK, Mitchell-Olds T. Variation and fitness costs for tolerance to different types of herbivore damage in Boechera stricta genotypes with contrasting glucosinolate structures. New Phytol. 2010:188(2):464–477. 10.1111/j.1469-8137.2010.03385.x PubMed DOI PMC

Marcone MF. Batis maritima (Saltwort/Beachwort): a nutritious, halophytic, seed bearings, perennial shrub for cultivation and recovery of otherwise unproductive agricultural land affected by salinity. Food Res Int. 2003:36(2):123–130. 10.1016/S0963-9969(02)00117-5 DOI

Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF, Hibberd JM. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C(3) to C(4) photosynthesis. Plant J. 2007:51(5):886–896. 10.1111/j.1365-313X.2007.03188.x PubMed DOI

Martinez G, Choudury SG, Keith Slotkin R. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res. 2017:45(9):5142–5152. 10.1093/nar/gkx103 PubMed DOI PMC

Martín-Bravo S, Meimberg H, Luceño M, Märkl W, Valcárcel V, Bräuchler C, Vargas P, Heubl G. Molecular systematics and biogeography of Resedaceae based on ITS and trnL-F sequences. Mol Phylogenet Evol. 2007:44(3):1105–1120. 10.1016/j.ympev.2006.12.016 PubMed DOI

Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014:15(6):394–408. 10.1038/nrg3683 PubMed DOI

Maurin O, Anest A, Bellot S, Biffin E., Brewer G., Charles-Dominique T, Cowan RS, Dodsworth S, Epitawalage N, Gallego B, et al. . A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. Am J Bot. 2021:108(7):1087–1111. 10.1002/ajb2.1699 PubMed DOI

McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics. 1941:26(2):234–282. 10.1093/genetics/26.2.234 PubMed DOI PMC

McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 1950:36(6):344–355. 10.1073/pnas.36.6.344 PubMed DOI PMC

Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet. 2008:40(12):1489–1492. 10.1038/ng.253 PubMed DOI

Mercado Gómez JD, Escalante T. Areas of endemism of the neotropical species of Capparaceae. Biol J Linn Soc Lond. 2018:126(3):507–520. 10.1093/biolinnean/bly186 DOI

Mercati F, Fontana I, Gristina AS, Martorana A, El Nagar M, De Michele R, Fici S, Carimi F. Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value. Sci Rep. 2019:9(1):10411. 10.1038/s41598-019-46613-x PubMed DOI PMC

Meyers SC, Liston A, Meinke R. A molecular phylogeny of Limnanthes (Limnanthaceae) and investigation of an anomalous Limnanthes population from California, U.S.A. Syst Bot. 2010:35(3):552–558. 10.1600/036364410792495854 DOI

Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature. 2001:411(6834)212–214. 10.1038/35075612 PubMed DOI

Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Dönmez AA, Mummenhoff K, Pires JC, Edger PP, Al-Shehbaz IA, Schranz ME. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. Am J Bot. 2017:104(7):1042–1054. 10.3732/ajb.1700091 PubMed DOI

Mühlhausen A, Lenser T, Mummenhoff K, Theißen G. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Plant J. 2013:73(5):824–835. 10.1111/tpj.12079 PubMed DOI

Na J-K, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Pérez RN, Feltus FA, Chen C, Kubat Z, et al. . Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics. 2012:13(1):176. 10.1186/1471-2164-13-176 PubMed DOI PMC

Nasrallah JB. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Curr Opin Genet Dev. 2017:47:54–60. 10.1016/j.gde.2017.08.005 PubMed DOI

Nichols BS, Leubner-Metzger G, Jansen VAA. Between a rock and a hard place: adaptive sensing and site-specific dispersal. Ecol Lett. 2020:23(9):1370–1379. 10.1111/ele.13564 PubMed DOI

Nic Lughadha EN, Govaerts R, Belyaeva I, Black N, Lindon H, Allkin R, Magill RE, Nicolson N. Counting counts: revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa. 2016:272(1):82–88. 10.11646/phytotaxa.272.1.5 DOI

Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 2019:222(3):1638–1651. 10.1111/nph.15732 PubMed DOI

Oh D-H, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, et al. . Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol. 2010:154(3):1040–1052. 10.1104/pp.110.163923 PubMed DOI PMC

Oh D-H, Hong H, Lee SY, Yun D-J, Bohnert HJ, Dassanayake M. Genome structures and transcriptomes signify niche adaptation for the multi-ion tolerant extremophyte Schrenkiella parvula. Plant Physiol. 2014:164(4):2123–2138. 10.1104/pp.113.233551 PubMed DOI PMC

Olafsdottir ES, Bolt Jørgensen L, Jaroszewski JW. Cyanogenesis in glucosinolate-producing plants: Carica papaya and Carica quercifolia. Phytochemistry. 2002:60(3):269–273. 10.1016/S0031-9422(02)00106-1 PubMed DOI

O’Malley RC, Barragan CC, Ecker JR. A user's guide to the Arabidopsis T-DNA insertion mutant collections. Methods Mol Biol. 2015:1284:323–342. 10.1007/978-1-4939-2444-8_16 PubMed DOI PMC

One Thousand Plant Transcriptomes Initiative . One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019:574:679–685. 10.1038/s41586-019-1693-2 PubMed DOI PMC

Pantha P, Oh D-H, Longstreth D, Dassanayake M. Living with high potassium: a balance between nutrient acquisition and stress signaling during K-induced salt stress. bioRxiv. 2021.10.1101/2021.07.01.450778, 07 December 2021, preprint: not peer reviewed. PubMed DOI PMC

Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics. 2005:171(2):765–781. 10.1534/genetics.105.042093 PubMed DOI PMC

Parma DF, Vaz MGMV, Falquetto P, Silva JC, Clarindo WR, Westhoff P, van Velzen R, Schlüter U, Araújo WL, Schranz ME, et al. . New insights into the evolution of C4 photosynthesis offered by the Tarenaya cluster of Cleomaceae. Front Plant Sci. 2021:12:756505. 10.3389/fpls.2021.756505 PubMed DOI PMC

Patchell MJ, Roalson EH, Hall JC. Resolved phylogeny of Cleomaceae based on all three genomes. Taxon. 2014:63:315–328. 10.12705/632.17 DOI

Patel P, Mathioni S, Kakrana A, Shatkay H, Meyers BC. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs. New Phytol. 2018:220(3):851–864. 10.1111/nph.15349 PubMed DOI

Pellicer J, Leitch IJ. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist. 2020:226(2):301–305. 10.1111/nph.16261 PubMed DOI

Petersen A, Hansen LG, Mirza N, Crocoll C, Mirza O, Halkier BA. Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of Arabidopsis methylthioalkylmalate synthase 1. Biosci Rep. 2019:39(7):BSR20190446. 10.1042/BSR20190446 PubMed DOI PMC

Polydore S, Lunardon A, Axtell MJ. Several phased siRNA annotation methods can frequently misidentify 24 nucleotide siRNA-dominated PHAS loci. Plant Direct. 2018:2(12):e00101. 10.1002/pld3.101 PubMed DOI PMC

Qi X, An H, Hall TE, Di C, Blischak PD, McKibben MTW, Hao Y, Conant GC, Pires JC, Barker MS. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. New Phytol. 2021:230(1):372–386. 10.1111/nph.17194 PubMed DOI

Radcliffe SA. Decolonising geographical knowledges. Trans Inst Br Geogr. 2017:42(3):329–333. 10.1111/tran.12195 DOI

Rahimi A, Karami O, Lestari AD, de Werk T, Amakorová P, Shi D, Novák O, Greb T, Offringa R. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15. Curr Biol. 2022:32(8):1764–1775.e3. 10.1016/j.cub.2022.02.060 PubMed DOI

Rajniak J, Barco B, Clay NK, Sattely ES. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature. 2015:525(7569):376–379. 10.1038/nature14907 PubMed DOI PMC

Reeves G, Singh P, Rossberg TA, Deedi Sogbohossou EO, Schranz ME, Hibberd JM. Natural variation within a species for traits underpinning C4 photosynthesis. Plant Physiol. 2018:177(2):504–512. 10.1104/pp.18.00168 PubMed DOI PMC

Renner SS. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot. 2014:101(10):1588–1596. 10.3732/ajb.1400196 PubMed DOI

Reyna-Llorens I, Burgess SJ, Reeves G, Singh P, Stevenson SR, Williams BP, Stanley S, Hibberd JM. Ancient duons may underpin spatial patterning of gene expression in C4 leaves. Proc Natl Acad Sci. 2018:115(8):1931–1936. 10.1073/pnas.1720576115 PubMed DOI PMC

Roalson EH, Hall JC. New generic concepts for African Cleomaceae. Syst Bot. 2017:42(4):925–942. 10.1600/036364417X696393 DOI

Rodman JE, Karol KG, Price RA, Sytsma KJ. Molecules, morphology, and Dahlgren's expanded order Capparales. Syst Bot. 1996:21(3):289. 10.2307/2419660 DOI

Rodman J, Price RA, Karol K, Conti E, Systma KJ, Palmer JD. Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann Missouri Bot Gard. 1993:80(3):686. 10.2307/2399854 DOI

Román-Palacios C, Molina-Henao YF, Barker MS. Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae. Proc Biol Sci 2020:287(1934):20200962. 10.1098/rspb.2020.0962 PubMed DOI PMC

Ronse De Craene LP, Haston E. The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc. 2006:151(4):453–494. 10.1111/j.1095-8339.2006.00580.x DOI

Sage RF. The evolution of C4 photosynthesis. New Phytol. 2004:161(2):341–370. 10.1111/j.1469-8137.2004.00974.x PubMed DOI

Sage RF, Christin P-A, Edwards EJ. The C 4 plant lineages of planet earth. J Exp Bot. 2011:62(9):3155–3169. 10.1093/jxb/err048 PubMed DOI

Salariato DL, Zuloaga FO, Franzke A, Mummenhoff K, Al-Shehbaz IA. Diversification patterns in the CES clade (Brassicaceae tribes Cremolobeae, Eudemeae, Schizopetaleae) in Andean South America. Bot J Linn Soc. 2016:181(4):543–566. 10.1111/boj.12430 DOI

Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin P-A, Kurz S, Mettler-Altmann T, Weber AP. Photosynthesis in C3-C4 intermediate Moricandia species. J Exp Bot. 2017:68(2):191–206. 10.1093/jxb/erw391 PubMed DOI PMC

Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in Brassica. Science. 1999:286(5445):1697–1700. 10.1126/science.286.5445.1697 PubMed DOI

Schrager-Lavelle A, Klein H, Fisher A, Bartlett M. Grass flowers: an untapped resource for floral evo-devo. J Syst Evol. 2017:55(6):525–541. 10.1111/jse.12251 DOI

Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 2006:11(11):535–542. 10.1016/j.tplants.2006.09.002 PubMed DOI

Schranz ME, Manzaneda AJ, Windsor AJ, Clauss MJ, Mitchell-Olds T. Ecological genomics of Boechera stricta: identification of a QTL controlling the allocation of methionine- vs branched-chain amino acid-derived glucosinolates and levels of insect herbivory. Heredity. 2009:102(5):465–474. 10.1038/hdy.2009.12 PubMed DOI PMC

Schranz ME, Mitchell-Olds T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell. 2006:18(5):1152–1165. 10.1105/tpc.106.041111 PubMed DOI PMC

Schranz ME, Mohammadin S, Edger PP. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr Opin Plant Biol. 2012:15(2):147–153. 10.1016/j.pbi.2012.03.011 PubMed DOI

Seymour DK, Koenig D, Hagmann J, Becker C, Weigel D. Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet. 2014:10(11):e1004785. 10.1371/journal.pgen.1004785 PubMed DOI PMC

Shiba H, Kakizaki T, Iwano M, Tarutani Y, Watanabe M, Isogai A, Takayama S. Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nat Genet. 2006:38(3):297–299. 10.1038/ng1734 PubMed DOI

Shimizu KK, Shimizu-Inatsugi R, Tsuchimatsu T, Purugganan MD. Independent origins of self-compatibility in Arabidopsis thaliana. Mol Ecol. 2008:17(2):704–714. 10.1111/j.1365-294X.2007.03605.x PubMed DOI

Shimizu KK, Tsuchimatsu T. Evolution of selfing: recurrent patterns in molecular adaptation. Ann Rev Ecol. 2015:46(1):593–622. 10.1146/annurev-ecolsys-112414-054249 DOI

Soza VL, Le Huynh V, Di Stilio VS. Pattern and process in the evolution of the sole dioecious member of Brassicaceae. Evodevo. 2014:5(1):42. 10.1186/2041-9139-5-42 PubMed DOI PMC

Sperber K, Steinbrecher T, Graeber K, Scherer G, Clausing S, Wiegand N, Hourston JE, Kurre R, Leubner-Metzger G, Mummenhoff K. Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi. Nat Commun. 2017:8(1):1868. 10.1038/s41467-017-02051-9 PubMed DOI PMC

Sreedasyam A, Plott C, Hossain MS, Lovell JT, Grimwood J, Jenkins JW, Daum C, Barry K, Carlson J, Shu S, et al. . JGI Plant gene atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom. Nucleic Acid Res. 2023:51(16):8383–8401. 10.1093/nar/gkad616 PubMed DOI PMC

Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA. 1991:88(19):8816–8820. 10.1073/pnas.88.19.8816 PubMed DOI PMC

Stevens PF. Angiosperm phylogeny website. Version 14, July 2017. 2001; [accessed 2021 Jan 10] http://www.mobot.org/MOBOT/research/APweb/.

Sun Y, Oh D-H, Duan L, Ramachandran P, Ramirez A, Bartlett A, Tran K-N, Wang G, Dassanayake M, Dinneny JR. Divergence in the ABA gene regulatory network underlies differential growth control. Nat Plants. 2022:8(5):549–560. 10.1038/s41477-022-01139-5 PubMed DOI

Swanepoel W, Chase MW, Christenhusz MJM, Maurin O, Forest F, Van Wyk AE. From the frying pan: an unusual dwarf shrub from Namibia turns out to be a new Brassicalean family. Phytotaxa. 2020:439(3):171–185. 10.11646/phytotaxa.439.3.1 DOI

Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature. 2000:403(6772):913–916. 10.1038/35002628 PubMed DOI

Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA. 2000:97(4):1920–1925. 10.1073/pnas.040556397 PubMed DOI PMC

Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics. 2012:190(4):1563–1574. 10.1534/genetics.111.137349 PubMed DOI PMC

Tarutani Y, Shiba H, Iwano M, Kakizaki T, Suzuki G, Watanabe M, Isogai A, Takayama S. Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature. 2010:466(7309):983–986. 10.1038/nature09308 PubMed DOI

Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat Commun. 2020:11(1):1–9. 10.1038/s41467-020-16634-6 PubMed DOI PMC

The Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000:408(6814):796–815. 10.1038/35048692 PubMed DOI

The First Nations Information Governance Centre . The First Nations Information Governance Centre; 2022 [accessed 2022 Feb 1]. https://fnigc.ca/.

Thomas SK, Liu X, Du Z-Y, Dong Y, Cummings A, Pokorny L, Xiang Q-YJ, Leebens-Mack JH. Comprehending Cornales: phylogenetic reconstruction of the order using the Angiosperms353 probe set. Am J Bot. 2021:108(7):1112–1121. 10.1002/ajb2.1696 PubMed DOI PMC

Tran K-N, Pantha P, Wang G, Kumar N, Wijesinghege C, Oh DH, Duppen N, He J, Li H, Hong H, et al. . Balancing growth amidst salinity stress – lifestyle perspectives from the extremophyte model. bioRxiv. 2021. 10.1101/2021.08.27.457575, 2021, preprint: not peer reviewed. PubMed DOI

Tran K-N, Wang G, Oh D-H, Larkin JC, Smith AP, Dassanayake M. Multiple paths lead to salt tolerance - pre-adaptation vs dynamic responses from two closely related extremophytes. bioRxiv. 2022.10.1101/2021.10.23.465591, 08 February, 2022, preprint: not peer reviewed. DOI

Tsuchimatsu T, Goubet PM, Gallina S, Holl A-C, Fobis-Loisy I, Bergès H, Marande W, Prat E, Meng D, Long Q, et al. . Patterns of polymorphism at the self-incompatibility locus in 1,083 Arabidopsis thaliana genomes. Mol Biol Evol. 2017:34(8):1878–1889. 10.1093/molbev/msx122 PubMed DOI PMC

Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R, Isokawa S, Pavlidis P, Städler T, Suzuki G, Takayama S, Watanabe M, Shimizu KK. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature. 2010:464(7293):1342–1346. 10.1038/nature08927 PubMed DOI

Turner-Hissong SD, Mabry ME, Beissinger TM, Ross-Ibarra J, Pires JC. Evolutionary insights into plant breeding. Curr Opin Plant Biol. 2020:54:93–100. 10.1016/j.pbi.2020.03.003 PubMed DOI

Ueno O. Structural and biochemical characterization of the C3-C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of rubisco. J Exp Bot. 2011:62(15):5347–5355. 10.1093/jxb/err187 PubMed DOI PMC

Ueno O, Bang SW, Wada Y, Kondo A, Ishihara K, Kaneko Y, Matsuzawa Y. Structural and biochemical dissection of photorespiration in hybrids differing in genome constitution between Diplotaxis tenuifolia (C3-C4) and radish (C3). Plant Physiol. 2003:132(3):1550–1559. 10.1104/pp.103.021329 PubMed DOI PMC

Ueno O, Wada Y, Wakai M, Bang SW. Evidence from photosynthetic characteristics for the hybrid origin of Diplotaxis muralis from a C3-C4 intermediate and a C3 species. Plant Biol. 2006:8(2):253–259. 10.1055/s-2005-873050 PubMed DOI

Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell. 2021:33(1):11–26. 10.1093/plcell/koaa015 PubMed DOI PMC

Voznesenskaya EV, Koteyeva NK, Chuong SDX, Ivanova AN, Barroca J, Craven LA, Edwards GE. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae). Funct Plant Biol. 2007:34(4):247–267. 10.1071/FP06287 PubMed DOI

Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang X-C, Kiefer C, Schmickl R, Franzke A, Neuffer B, et al. . Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun. 2020a:11(1):1–12. 10.1038/s41467-020-17605-7 PubMed DOI PMC

Walden N, Nguyen T-P, Mandáková T, Lysak MA, Schranz ME. Genomic blocks in Aethionema arabicum support Arabideae as next diverging clade in Brassicaceae. Front Plant Sci. 2020b:11:719. 10.3389/fpls.2020.00719 PubMed DOI PMC

Wang G, DiTusa SF, Oh D-H, Herrmann AD, Mendoza-Cozatl DG, O’Neill MA, Smith AP, Dassanayake M. Cross species multi-omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. New Phytol. 2021:230(5):1985–2000. 10.1111/nph.17295 PubMed DOI

Wang J, Na J-K, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, et al. . Sequencing papaya X and yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA. 2012:109(34):13710–13715. 10.1073/pnas.1207833109 PubMed DOI PMC

Wang G, Pantha P, Tran K-NK-N, Oh D-HD-H, Dassanayake M. Plant growth and Agrobacterium-mediated floral-dip transformation of the extremophyte Schrenkiella parvula. J Vis Exp. 2019:143:e58544. PubMed

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al. . A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007:8:973–982. 10.1038/nrg2165 PubMed DOI

Wijesinghege C, Tran K-N, Dassanayake M. Alternative splicing preferentially increases transcript diversity associated with stress responses in the extremophyte Schrenkiella parvula. bioRxiv. 2022a.10.1101/2022.10.13.512046, 17 October 2022, preprint: not peer reviewed. DOI

Wijesinghege C, Wang G, Pantha P, Tran K-N, Dassanayake M. Spatiotemporal gene expression atlas of the extremophyte Schrenkiella parvula. bioRxiv. 2022b.10.1101/2022.10.24.513627, 26 October 2022, preprint: not peer reviewed. DOI

Williams BP, Burgess SJ, Reyna-Llorens I, Knerova J, Aubry S, Stanley S, Hibberd JM. An untranslated cis-element regulates the accumulation of multiple C4 enzymes in Gynandropsis gynandra mesophyll cells. Plant Cell. 2016:28(2):454–465. 10.1105/tpc.15.00570 PubMed DOI PMC

Williams BP, Johnston IG, Covshoff S, Hibberd JM. Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. Elife. 2013:2:e00961. 10.7554/eLife.00961 PubMed DOI PMC

Willing E-M, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C, Warthmann N, Chica C, Szarzynska B, et al. . Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants. 2015:1(2):1–7. 10.1038/nplants.2014.23 PubMed DOI

Winter K, Sage RF, Edwards EJ, Virgo A, Holtum JAM. Facultative crassulacean acid metabolism in a C3–C4 intermediate. J Exp Bot. 2019:70(22):6571–6579. 10.1093/jxb/erz085 PubMed DOI PMC

Wu H-J, Zhang Z, Wang J-Y, Oh D-HDassanayake M, Liu B, Huang Q, Sun H-X, Xia R, Wu Y, et al. . Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA. 2012:109(30):12219–12224. 10.1073/pnas.1209954109 PubMed DOI PMC

Xia R, Chen C, Pokhrel S, Ma W, Huang K, Patel P, Wang F, Xu J, Liu Z, Li J, et al. . 24-nt Reproductive phasiRNAs are broadly present in angiosperms. Nat Commun. 2019:10:627. 10.1038/s41467-019-08543-0 PubMed DOI PMC

Xiong Z, Gaeta RT, Pires JC. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA. 2011:108(19):7908–7913. 10.1073/pnas.1014138108 PubMed DOI PMC

Xu D, Marino G, Klingl A, Enderle B, Monte E, Kurth J, Hiltbrunner A, Leister D, Kleine T. Extrachloroplastic PP7L functions in chloroplast development and abiotic stress tolerance. Plant Physiol. 2019:180(1):323–341. 10.1104/pp.19.00070 PubMed DOI PMC

Yates AD, Allen J, Amode RM, Azov AG, Barba M, Becerra A, Bhai J, Campbell LI, Carbajo Martinez M, Chakiachvili M, et al. . Ensembl genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res. 2022:50(D1):D996–D1003. 10.1093/nar/gkab1007 PubMed DOI PMC

Yue J, VanBuren R, Liu J, Fang J, Zhang X, Liao Z, Wai CM, Xu X, Chen S, Zhang S, et al. . Sunup and sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nat Genet. 2022:54(5):715–724. 10.1038/s41588-022-01068-1 PubMed DOI

Zemach A, Yvonne Kim M, Hsieh P-H, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D. The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013:153(1):193–205. 10.1016/j.cell.2013.02.033 PubMed DOI PMC

Zhang J, Wang X, Cheng F, Wu J, Liang J, Yang W, Wang X. Lineage-specific evolution of methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis. Front Plant Sci. 2015:6:18. 10.3389/fpls.2015.00018 PubMed DOI PMC

Zhao H, Lu L, Su J, Chen Z. Phylogeny of Stixeae and Borthwickiaceae based on morphological and molecular data. Chin Bull Bot. 2015:50:473–481. 10.11983/CBB14152 DOI

Zhao M, Zhang B, Lisch D, Ma J. Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants. Plant Cell. 2017:29(12):2974–2994. 10.1105/tpc.17.00595 PubMed DOI PMC

Zhu JK. The next top models. Cell. 2015:163(1):18–20. 10.1016/j.cell.2015.09.005 DOI

Zizka A, Onstein RE, Rozzi R, Weigelt P, Kreft H, Steinbauer MJ, Bruelheide H, Lens F. The evolution of insular woodiness. Proc Natl Acad Sci. 2022:119(37):e2208629119. 10.1073/pnas.2208629119 PubMed DOI PMC

Zohoungbogbo HPF, Houdegbe CA, Sogbohossou DEO, Tossou MG, Maundu P, Schranz EM, Van Deynze A, Zoundjihekpon J, Achigan-Dako EG. Andromonoecy in Gynandropsis gynandra (L.) briq. (Cleomaceae) and effects on fruit and seed production. Genet Resour Crop Evol. 2018:65(8):2231–2239. 10.1007/s10722-018-0687-5 DOI

Zou Z, Li M, Jia R, Zhao H, He P, Zhang Y, Guo A. Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae. Gene. 2020:748:144685. 10.1016/j.gene.2020.144685 PubMed DOI

Zuntini AR, Frankel LP, Pokorny L, Forest F, Baker WJ. A comprehensive phylogenomic study of the monocot order Commelinales, with a new classification of Commelinaceae. Am J Bot. 2021:108(7):1066–1086. 10.1002/ajb2.1698 PubMed DOI

Zuo S, Mandáková T, Kubová M, Lysak MA. Genomes, repeatomes and interphase chromosome organization in the meadowfoam family (Limnanthaceae, Brassicales). Plant J. 2022:110(5):1462–1475. 10.1111/tpj.15750 PubMed DOI

Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA. Natural enemies drive geographic variation in plant defenses. Science. 2012:338(6103):116–119. 10.1126/science.1226397 PubMed DOI

Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, et al. . Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae). Elife. 2020:9:e51712. 10.7554/eLife.51712 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...