The best of both worlds: Combining lineage-specific and universal bait sets in target-enrichment hybridization reactions

. 2021 Jul ; 9 (7) : . [epub] 20210707

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34336398

PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.

Zobrazit více v PubMed

Alexander, P. J. , Rajanikanth G., Bacon C., and Bailey C. D.. 2006. Rapid inexpensive recovery of high quality plant DNA using a reciprocating saw and silica‐based columns. Molecular Ecology Notes 7: 5–9.

Baker, W. , Barker A., Botigué L., Dodsworth S., Eiserhardt W., Gaya E., Kim J., et al. 2017. PAFTOL First Annual Report. Available from: https://www.kew.org/sites/default/files/2019‐07/PAFTOL%201st%20annual%20report.pdf [accessed 21 April 2021].

Baker, W. J. , Bailey P., Barber V., Barker A., Bellot S., Bishop D., Botigué L. R., et al. 2021. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology: syab035. 10.1093/sysbio/syab035 PubMed DOI PMC

Bankevich, A. , Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing. Journal of Computational Biology 19: 455–477. PubMed PMC

Bolger, A. M. , Lohse M., and Usadel B.. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC

Buddenhagen, C. , Lemmon A. R., Lemmon E. M., Bruhl J., Cappa J., Clement W. L., Donoghue M. J., et al. 2016. Anchored phylogenomics of angiosperms I: Assessing the robustness of phylogenetic estimates. bioRxiv 086298 [Preprint]. Posted 28 November 2016 [accessed 21 April 2021]. Available from: 10.1101/086298. DOI

Cock, P. J. A. , Antao T., Chang J. T., Chapman B. A., Cox C. J., Dalke A., Friedberg I., et al. 2009. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. PubMed PMC

Couvreur, T. L. P. , Helmstetter A. J., Koenen E. J. M., Bethune K., Brandão R. D., Little S. A., Sauquet H., and Erkens R. H. J.. 2019. Phylogenomics of the major tropical plant family Annonaceae using targeted enrichment of nuclear genes. Frontiers in Plant Science 9: 1941. PubMed PMC

Dodsworth, S. , Pokorny L., Johnson M. G., Kim J. T., Maurin O., Wickett N. J., Forest F., and Baker W. J.. 2019. Hyb‐seq for flowering plant systematics. Trends in Plant Science 24: 887–891. PubMed

Folk, R. A. , Mandel J. R., and Freudenstein J. V.. 2015. A protocol for targeted enrichment of intron‐containing sequence markers for recent radiations: A phylogenomic example from Heuchera (Saxifragaceae). Applications in Plant Sciences 3: 1500039. PubMed PMC

Gardiner, L.‐J. , Brabbs T., Akhunov A., Jordan K., Budak H., Richmond T., Singh S., et al. 2019. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. GigaScience 8: giz018. PubMed PMC

Hale, H. , Gardner E. M., Viruel J., Pokorny L., and Johnson M. G.. 2020. Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants. Applications in Plant Sciences 8: e11337. PubMed PMC

Johnson, M. G. , Pokorny L., Dodsworth S., Botigué L. R., Cowan R. S., Devault A., Eiserhardt W. L., et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k‐medoids clustering. Systematic Biology 68: 594–606. PubMed PMC

Koenen, E. J. M. , Ojeda D. I., Steeves R., Migliore J., Bakker F. T., Wieringa J. J., Kidner C., et al. 2020. Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies. New Phytologist 225: 1355–1369. PubMed PMC

Larridon, I. , Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., Fairlie I., et al. 2020. Tackling rapid radiations with targeted sequencing. Frontiers in Plant Science 10: 1655. PubMed PMC

Li, H. , and Durbin R.. 2010. Fast and accurate long‐read alignment with Burrows‐Wheeler transform. Bioinformatics 26: 589–595. PubMed PMC

Li, H. , Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., and Durbin R.. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 27: 2078–2079. PubMed PMC

Mandel, J. R. , Dikow R. B., Funk V. A., Masalia R. R., Staton S. E., Kozik A., Michelmore R. W., et al. 2014. A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences 2: 1300085. PubMed PMC

Mitchell, N. , Lewis P. O., Lemmon E. M., Lemmon A. R., and Holsinger K. E.. 2017. Anchored phylogenomics improves the resolution of evolutionary relationships in the rapid radiation of Protea L. American Journal of Botany 104: 102–115. PubMed

Nikolov, L. A. , Shushkov P., Nevado B., Gan X., Al‐Shehbaz I. A., Filatov D., Bailey C. D., and Tsiantis M.. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist 222: 1638–1651. PubMed

Slimp, M. , Williams L. D., Hale H., and Johnson M. G.. 2020. On the potential of Angiosperms353 for population genomics. Applications in Plant Sciences 9(7): e11419. PubMed PMC

Soto Gomez, M. , Pokorny L., Kantar M. B., Forest F., Leitch I. J., Gravendeel B., Wilkin P., et al. 2019. A customized nuclear target enrichment approach for developing a phylogenomic baseline for Dioscorea yams (Dioscoreaceae). Applications in Plant Sciences 7: e11254. PubMed PMC

Tange, O. 2011. GNU Parallel: The command‐line power tool. USENIX Magazine 36: 42–47.

Thiers, B. 2021. (continuously updated). Index Herbariorum. Website http://sweetgum.nybg.org/science/ih/ [accessed 21 May 2021].

Vatanparast, M. , Powell A., Doyle J. J., and Egan A. N.. 2018. Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Applications in Plant Sciences 6: e1036. PubMed PMC

Wanke, S. , Granados Mendoza C., Müller S., Paizanni Guillén A., Neinhuis C., Lemmon A. R., Lemmon E. M., and Samain M.‐S.. 2017. Recalcitrant deep and shallow nodes in Aristolochia (Aristolochiaceae) illuminated using anchored hybrid enrichment. Molecular Phylogenetics and Evolution 117: 111–123. PubMed

Weitemier, K. , Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., and Liston A.. 2014. Hyb‐Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2: 1400042. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...