The best of both worlds: Combining lineage-specific and universal bait sets in target-enrichment hybridization reactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34336398
PubMed Central
PMC8312739
DOI
10.1002/aps3.11438
PII: APS311438
Knihovny.cz E-zdroje
- Klíčová slova
- Brassicaceae, Hyb‐Seq, combining probes, enrichment, phylogenomics, phylogeny, population biology, target enrichment,
- Publikační typ
- časopisecké články MeSH
PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.
CEITEC Masaryk University Brno CZ 625 00 Czech Republic
Departamento de Botánica Universidad de Concepción Concepción Chile
Department of Biology Botany Osnabrück University Osnabrück 49076 Germany
Department of Biology Duke University Durham North Carolina 27708 USA
Department of Biology New Mexico State University Las Cruces New Mexico 88001 USA
Division of Biological Sciences University of Missouri Columbia Missouri 65211 USA
Royal Botanic Gardens Kew Richmond Surrey TW9 3AE United Kingdom
Zobrazit více v PubMed
Alexander, P. J. , Rajanikanth G., Bacon C., and Bailey C. D.. 2006. Rapid inexpensive recovery of high quality plant DNA using a reciprocating saw and silica‐based columns. Molecular Ecology Notes 7: 5–9.
Baker, W. , Barker A., Botigué L., Dodsworth S., Eiserhardt W., Gaya E., Kim J., et al. 2017. PAFTOL First Annual Report. Available from: https://www.kew.org/sites/default/files/2019‐07/PAFTOL%201st%20annual%20report.pdf [accessed 21 April 2021].
Baker, W. J. , Bailey P., Barber V., Barker A., Bellot S., Bishop D., Botigué L. R., et al. 2021. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology: syab035. 10.1093/sysbio/syab035 PubMed DOI PMC
Bankevich, A. , Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing. Journal of Computational Biology 19: 455–477. PubMed PMC
Bolger, A. M. , Lohse M., and Usadel B.. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Buddenhagen, C. , Lemmon A. R., Lemmon E. M., Bruhl J., Cappa J., Clement W. L., Donoghue M. J., et al. 2016. Anchored phylogenomics of angiosperms I: Assessing the robustness of phylogenetic estimates. bioRxiv 086298 [Preprint]. Posted 28 November 2016 [accessed 21 April 2021]. Available from: 10.1101/086298. DOI
Cock, P. J. A. , Antao T., Chang J. T., Chapman B. A., Cox C. J., Dalke A., Friedberg I., et al. 2009. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. PubMed PMC
Couvreur, T. L. P. , Helmstetter A. J., Koenen E. J. M., Bethune K., Brandão R. D., Little S. A., Sauquet H., and Erkens R. H. J.. 2019. Phylogenomics of the major tropical plant family Annonaceae using targeted enrichment of nuclear genes. Frontiers in Plant Science 9: 1941. PubMed PMC
Dodsworth, S. , Pokorny L., Johnson M. G., Kim J. T., Maurin O., Wickett N. J., Forest F., and Baker W. J.. 2019. Hyb‐seq for flowering plant systematics. Trends in Plant Science 24: 887–891. PubMed
Folk, R. A. , Mandel J. R., and Freudenstein J. V.. 2015. A protocol for targeted enrichment of intron‐containing sequence markers for recent radiations: A phylogenomic example from Heuchera (Saxifragaceae). Applications in Plant Sciences 3: 1500039. PubMed PMC
Gardiner, L.‐J. , Brabbs T., Akhunov A., Jordan K., Budak H., Richmond T., Singh S., et al. 2019. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. GigaScience 8: giz018. PubMed PMC
Hale, H. , Gardner E. M., Viruel J., Pokorny L., and Johnson M. G.. 2020. Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants. Applications in Plant Sciences 8: e11337. PubMed PMC
Johnson, M. G. , Pokorny L., Dodsworth S., Botigué L. R., Cowan R. S., Devault A., Eiserhardt W. L., et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k‐medoids clustering. Systematic Biology 68: 594–606. PubMed PMC
Koenen, E. J. M. , Ojeda D. I., Steeves R., Migliore J., Bakker F. T., Wieringa J. J., Kidner C., et al. 2020. Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies. New Phytologist 225: 1355–1369. PubMed PMC
Larridon, I. , Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., Fairlie I., et al. 2020. Tackling rapid radiations with targeted sequencing. Frontiers in Plant Science 10: 1655. PubMed PMC
Li, H. , and Durbin R.. 2010. Fast and accurate long‐read alignment with Burrows‐Wheeler transform. Bioinformatics 26: 589–595. PubMed PMC
Li, H. , Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., and Durbin R.. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 27: 2078–2079. PubMed PMC
Mandel, J. R. , Dikow R. B., Funk V. A., Masalia R. R., Staton S. E., Kozik A., Michelmore R. W., et al. 2014. A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences 2: 1300085. PubMed PMC
Mitchell, N. , Lewis P. O., Lemmon E. M., Lemmon A. R., and Holsinger K. E.. 2017. Anchored phylogenomics improves the resolution of evolutionary relationships in the rapid radiation of Protea L. American Journal of Botany 104: 102–115. PubMed
Nikolov, L. A. , Shushkov P., Nevado B., Gan X., Al‐Shehbaz I. A., Filatov D., Bailey C. D., and Tsiantis M.. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist 222: 1638–1651. PubMed
Slimp, M. , Williams L. D., Hale H., and Johnson M. G.. 2020. On the potential of Angiosperms353 for population genomics. Applications in Plant Sciences 9(7): e11419. PubMed PMC
Soto Gomez, M. , Pokorny L., Kantar M. B., Forest F., Leitch I. J., Gravendeel B., Wilkin P., et al. 2019. A customized nuclear target enrichment approach for developing a phylogenomic baseline for Dioscorea yams (Dioscoreaceae). Applications in Plant Sciences 7: e11254. PubMed PMC
Tange, O. 2011. GNU Parallel: The command‐line power tool. USENIX Magazine 36: 42–47.
Thiers, B. 2021. (continuously updated). Index Herbariorum. Website http://sweetgum.nybg.org/science/ih/ [accessed 21 May 2021].
Vatanparast, M. , Powell A., Doyle J. J., and Egan A. N.. 2018. Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Applications in Plant Sciences 6: e1036. PubMed PMC
Wanke, S. , Granados Mendoza C., Müller S., Paizanni Guillén A., Neinhuis C., Lemmon A. R., Lemmon E. M., and Samain M.‐S.. 2017. Recalcitrant deep and shallow nodes in Aristolochia (Aristolochiaceae) illuminated using anchored hybrid enrichment. Molecular Phylogenetics and Evolution 117: 111–123. PubMed
Weitemier, K. , Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., and Liston A.. 2014. Hyb‐Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2: 1400042. PubMed PMC
Complementing model species with model clades