The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella

. 2023 ; 14 () : 1165140. [epub] 20230508

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37223809

The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.

Zobrazit více v PubMed

Al-Shehbaz I. A. (1986). The genera of lepidieae (Cruciferae; brassicaceae) in the southeastern united states. J. Arnold Arbor. 67 (3), 265–311. doi: 10.5962/bhl.part.27392 DOI

Al-Shehbaz I. A. (2003). Transfer of most north American species of Arabis to Boechera (Brassicaceae). Novon 13, 381–391. doi: 10.2307/3393366 DOI

Al-Shehbaz I. A. (2005). Nomenclatural notes on Eurasian Arabis (Brassicaceae). Novon 15, 519–524.

Al-Shehbaz I. A., Beilstein M. A., Kellogg E. A. (2006). Systematics and phylogeny of the brassicaceae (Cruciferae): an overview. Plant Syst. Evol. 259, 89–120. doi: 10.1007/s00606-006-0415-z DOI

Anand L., Rodriguez Lopez C. M. (2022). ChromoMap: an r package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinform. 23 (1), 1–9. doi: 10.1186/s12859-021-04556-z PubMed DOI PMC

Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408 (6814), 796–815. doi: 10.1038/35048692 PubMed DOI

Bailey C. D., Koch M. A., Mayer M., Mummenhoff K., O’Kane S. L., Jr, Warwick S. I., et al. . (2006). Towards a global phylogeny of the brassicaceae. Molec Biol. Evol. 23 (11), 2142–2160. doi: 10.1093/molbev/msl087 PubMed DOI

Beilstein M. A., Al-Shehbaz I. A., Kellogg E. A. (2006). Brassicaceae phylogeny and trichome evolution. Amer J. Bot. 93, 607–619. doi: 10.3732/ajb.93.4.607 PubMed DOI

Beilstein M. A., Al-Shehbaz I. A., Mathews S., Kellogg E. A. (2008). Brassicaceae phylogeny inferred from phytochrome a and ndhF sequence data: tribes and trichomes revisited. Amer J. Bot. 95, 1307–1327. doi: 10.3732/ajb.0800065 PubMed DOI

Berkutenko A. N., Gurzenkov N. N. (1976). Chromosome numbers and distribution of cruciferae in the south of the magadan region. I. Bot. Zhurn. (Moscow Leningrad) 61, 1595–1603.

Berkutenko A. N., Tzyutlenok S. I., Pulkina S. V. (1984). Chromosome numbers and dispersal of the brassicaceae family in the magadan district. Bot. Zhurn. (Moscow Leningrad) 69, 75–80.

Borowiec M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4, e1660. doi: 10.7717/peerj.1660 PubMed DOI PMC

Brock J. R., Mandáková T., McKain M., Lysak M. A., Olsen K. M. (2022). Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa . Hortic. Res. 9, uhab050. doi: 10.1093/hr/uhab050 PubMed DOI PMC

Brown L. J., Hill J. D., Dolan M. A., Carnaval C. A., Haywood M. A. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 18025. doi: 10.1038/sdata.2018.254 PubMed DOI PMC

Cabanettes F., Klopp C. (2018). D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958. doi: 10.7717/peerj.4958 PubMed DOI PMC

Delmas M., Gunnell Y., Calvet M., Reixach T., Oliva M. (2022). “Chapter 40 - the pyrenees: glacial landforms prior to the last glacial maximum,” in European Glacial landscapes. Eds. Palacios D., Hughes P. D., García-Ruiz J. M., Andrés N. (Netherlands: Elsevier; ), 295–307.

Divíšek J., Večeřa M., Welk E., Danihelka J., Chytrý K., Douda J., et al. . (2022). Origin of the central European steppe flora: insights from palaeodistribution modelling and migration simulations. Ecography 12, e06293. doi: 10.1111/ecog.06293 DOI

Dogan M., Mandáková T., Guo X., Lysak M. A. (2022). Idahoa and Subularia: the concealed polyploid origin of two enigmatic crucifer genera. Am. J. Bot. 109 (8), 1–17. doi: 10.1002/ajb2.16042 PubMed DOI

Dong Y., Østergaard L. (2019). Fruit development and diversification. Curr. Biol. 29, 781–785. doi: 10.1016/j.cub.2019.07.010 PubMed DOI

Douda J., Doudová J., Drašnarová A., Kuneš P., Hadincová V., Krak K., et al. . (2014). Migration patterns of subgenus Alnus in Europe since the last glacial maximum: a systematic review. PloS One 9 (2), e88709. doi: 10.1371/journal.pone.0088709 PubMed DOI PMC

Douglas G. M., Gos G., Steige K. A., Salcedo A., Holm K., Josephs E. B., et al. . (2015). Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris . Proc. Natl. Acad. Sci. U.S.A. 112 (9), 2806–2811. doi: 10.1073/pnas.141227711 PubMed DOI PMC

Durand E. Y., Patterson N., Reich D., Slatkin M. (2011). Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252. doi: 10.1093/molbev/msr048 PubMed DOI PMC

Earl D. A., VonHoldt B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the evanno method. Conserv. Genet. Resour. 4, 359–361. doi: 10.1007/s12686-011-9548-7 DOI

Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. Resour. 14, 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x PubMed DOI

Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (4), 783–791. doi: 10.2307/2408678 PubMed DOI

Fielding A. H., Bell J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24 (1), 38–49. doi: 10.1017/S0376892997000088 DOI

Foxe J. P., Slotte T., Stahl E. A., Neuffer B., Hurka H., Wright S. I. (2009). Recent speciation associated with the evolution of selfing in Capsella . Proc. Natl. Acad. Sci. U.S.A. 106 (13), 5241–5245. doi: 10.1073/pnas.0807679106 PubMed DOI PMC

Gallagher T. M., Serach L., Sekhon N., Zhang H., Wang H., Ji S., et al. . (2021). Regional patterns in Miocene-pliocene aridity across the Chinese loess plateau revealed by high resolution records of paleosol carbonate and occluded organic matter. Paleoceanography Paleoclimatol. 36, e2021PA004344. doi: 10.1029/2021PA004344 DOI

GBIF.org (2022. a). GBIF occurrence download. Available at: 10.15468/dl.ha6uuu (Accessed September 08, 2022). DOI

GBIF.org (2022. b). GBIF occurrence download. Available at: 10.15468/dl.akbser (Accessed November 21, 2022). DOI

GBIF.org (2022. c). GBIF occurrence download. Available at: 10.15468/dl.hjpcjd (Accessed November 21, 2022). DOI

GBIF.org (2022. d). GBIF occurrence download. Available at: 10.15468/dl.39538u (Accessed November 21, 2022). DOI

GBIF.org (2022. e). GBIF occurrence download. Available at: 10.15468/dl.j52scr (Accessed November 29, 2022). DOI

German D. A., Hendriks K. P., Koch M. A., Lens F., Lysak M. A., Bailey C. D., et al. . (2023). An updated classification of the brassicaceae (Cruciferae). Phytokeys 220, 127–144. doi: 10.3897/phytokeys.220.97724 PubMed DOI PMC

Green R. E., Krause J., Briggs A. W., Maricic T., Stenzel U., Kircher M., et al. . (2010). A draft sequence of the neandertal genome. Science 328, 710–722. doi: 10.1126/science.1188021 PubMed DOI PMC

Greiner S., Lehwark P., Bock R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47 (1), 59–64. doi: 10.1093/nar/gkz238 PubMed DOI PMC

Guisan A., Thuiller W., Zimmermann N. (2017). Habitat suitability and distribution models: with applications in r (Ecology, biodiversity and conservation) (Cambridge, UK: Cambridge University Press; ), 463. doi: 10.1017/9781139028271 DOI

Guo Y. L., Bechsgaard J. S., Slotte T., Neuffer B., Lascoux M., Weigel D., et al. . (2009). Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc. Natl. Acad. Sci. U.S.A. 106 (13), 5246–5251. doi: 10.1073/pnas.0808012106 PubMed DOI PMC

Güzel Y. (2022). Current nomenclature and systematics of Capsella medik. with lectotypifications: towards solving the puzzle. Turk. J. Bot. 46 (2), 142–159. doi: 10.55730/1300-008X.2678 DOI

Han T. S., Wu Q., Hou X. H., Li Z. W., Zou Y. P., Ge S., et al. . (2015). Frequent introgressions from diploid species contribute to the adaptation of the tetraploid shepherd’s purse (Capsella bursa-pastoris). Mol. Plant 8 (3), 427–438. doi: 10.1016/j.molp.2014.11.016 PubMed DOI

Hendriks K. P., Kiefer C., Al-Shehbaz I. A., Bailey C. D., van Huysduynen A. A. H., Nikolov L., et al. . (2022). Global phylogeny of the brassicaceae provides important insights into gene discordance. bioRxiv. doi: 10.1101/2022.09.01.506188 DOI

Hendriks K. P., Mandáková T., Hay N. M., Ly E., Hooft van Huysduynen A., Tamrakar R., et al. . (2021). The best of both worlds: combining lineage-specific and universal bait sets in target-enrichment hybridization reactions. Appl. Plant Sci. 9 (7), e11438. doi: 10.1002/aps3.11438 PubMed DOI PMC

Herrando-Moraira S., Calleja J. A., Galbany-Casals M., Garcia-Jacas N., Liu J. Q., López-Alvarado J., et al. . (2019). Nuclear and plastid DNA phylogeny of tribe cardueae (Compositae) with hyb-seq data: a new subtribal classification and a temporal diversification framework. Mol. Phylogenet. Evol. 137, 313–332. doi: 10.1016/j.ympev.2019.05.001 PubMed DOI

Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh B. Q. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 (2), 518–522. doi: 10.1093/molbev/msx281 PubMed DOI PMC

Hohmann N., Wolf E. M., Lysak M. A., Koch M. A. (2015). A time-calibrated road map of brassicaceae species radiation and evolutionary history. Plant Cell. 27 (10), 2770–2784. doi: 10.1105/tpc.15.00482 PubMed DOI PMC

Hu Q., Ma Y., Mandáková T., Shi S., Chen C., Sun P., et al. . (2021). Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation. Proc. Nat. Acad. Sci. U. S. A. 118 (42), e2025711118. doi: 10.1073/pnas.2025711118 PubMed DOI PMC

Huang C. H., Sun R., Hu Y., Zeng L., Zhang N., Cai L., et al. . (2016). Resolution of brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 33 (2), 394–412. doi: 10.1093/molbev/msv226 PubMed DOI PMC

Jakobsson M., Rosenberg N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23 (14), 1801–1806. doi: 10.1093/bioinformatics/btm233 PubMed DOI

Jalas J., Suominen J., Lampinen R. (1996). Atlas florae europaeae Vol. 11 (Helsinki: Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo; ), 310.

Jin J. J., Yu W. B., Yang J. B., Song Y., DePamphilis C. W., Yi T. S., et al. . (2020). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1–31. doi: 10.1186/s13059-020-02154-5 PubMed DOI PMC

Johnson M. G., Pokorny L., Dodsworth S., Botigué L. R., Cowan R. S., Devault A., et al. . (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 68 (4), 594–606. doi: 10.1093/sysbio/syy086 PubMed DOI PMC

Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. . (2017). Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20. doi: 10.1038/sdata.2017.122 PubMed DOI PMC

Koch M. A., Dobeš C., Kiefer C., Schmickl R., Klimes L., Lysak M. A. (2007). Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the brassicaceae. Mol. Biol. Evol. 24 (1), 63–73. doi: 10.1093/molbev/msl130 PubMed DOI

Koch M. A., Dobeš C., Mitchell-Olds T. (2003). Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in north American Arabis divaricarpa (Brassicaceae). Mol. Biol. Evol. 20 (3), 338–350. doi: 10.1093/molbev/msg046 PubMed DOI

Koch M., Mummenhoff K. (2001). Thlaspi s. str. (Brassicaceae) versus thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst. Evol., 227, 209–225. doi: 10.1007/s006060170049 DOI

Koch M. A., Wernisch M., Schmickl R. (2008). Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57, 933–93E. doi: 10.1002/tax.573021 DOI

Koenig D., Weigel D. (2015). Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat. Rev. Genet. 16, 285–298. doi: 10.1038/nrg3883 PubMed DOI

Kryvokhyzha D., Salcedo A., Eriksson M. C., Duan T., Tawari N., Chen J., et al. . (2019). Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PloS Genet. 15 (2), e1007949. doi: 10.1371/journal.pgen.1007949 PubMed DOI PMC

Kück P., Longo G. C. (2014). FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 1–8. doi: 10.1186/s12983-014-0081-x PubMed DOI PMC

Laibach F. (1943). Arabidopsis thaliana (L.) heynh. als objekt für genetische und entwicklungsphysiologische untersuchungen. Bot. Archiv. 44, 439–455.

Larridon I., Villaverde T., Zuntini A. R., Pokorny L., Brewer G. E., Epitawalage N., et al. . (2020). Tackling rapid radiations with targeted sequencing. Front. Plant Sci. 10, 1655. doi: 10.3389/fpls.2019.01655 PubMed DOI PMC

Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (1), 293–296. doi: 10.1093/nar/gkab301 PubMed DOI PMC

Lysak M. A., Koch M. A., Beaulieu J. M., Meister A., Leitch I. J. (2009). The dynamic ups and downs of genome size evolution in brassicaceae. Mol. Biol. Evol. 26 (1), 85–98. doi: 10.1093/molbev/msn223 PubMed DOI

Lysak M. A., Mandáková T., Schranz M. E. (2016). Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30, 108–115. doi: 10.1016/j.pbi.2016.02.001 PubMed DOI

Madeira F., Pearce M., Tivey A. R., Basutkar P., Lee J., Edbali O., et al. . (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50 (1), 276–279. doi: 10.1093/nar/gkac240 PubMed DOI PMC

Malinsky M., Matschiner M., Svardal H. (2021). Dsuite-fast d-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21 (2), 584–595. doi: 10.1111/1755-0998.13265 PubMed DOI PMC

Mandáková T., Gloss A. D., Whiteman N. K., Lysak M. A. (2016). How diploidization turned a tetraploid into a pseudotriploid. Am. J. Bot. 103, 1–10. doi: 10.3732/ajb.1500452 PubMed DOI

Mandáková T., Heenan P. B., Lysak M. A. (2010. b). Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol. Biol. 10, 367. doi: 10.1186/1471-2148-10-367 PubMed DOI PMC

Mandáková T., Joly S., Krzywinski M., Mummenhoff K., Lysak M. A. (2010. a). Fast diploidization in close mesopolyploid relatives of arabidopsis. Plant Cell 22 (7), 2277–2290. doi: 10.1105/tpc.110.074526 PubMed DOI PMC

Mandáková T., Lysak M. A. (2016. a). Chromosome preparation for cytogenetic analyses in Arabidopsis . Curr. Protoc. Plant Biol. 1, 43–51. doi: 10.1002/cppb.20009 PubMed DOI

Mandáková T., Lysak M. A. (2016. b). Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 1, 359–371. doi: 10.1002/cppb.20022 PubMed DOI

Mandáková T., Lysak M. A. (2018). Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 55–65. doi: 10.1016/j.pbi.2018.03.001 PubMed DOI

Mandáková T., Pouch M., Brock J. R., Al-Shehbaz I. A., Lysak M. A. (2019). Origin and evolution of diploid and allopolyploid Camelina genomes was accompanied by chromosome shattering. Plant Cell 31 (11), 2596–2612. doi: 10.1105/tpc.19.00366 PubMed DOI PMC

Mandáková T., Pouch M., Harmannová K., Zhan S. H., Mayrose I., Lysak M. A. (2017). Multi-speed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 26, 1–18. doi: 10.1111/mec.14379 PubMed DOI

Melichárková A., Šlenker M., Zozomová-Lihová J., Skokanová K., Šingliarová B., Kacmárová T., et al. . (2020). So closely related and yet so different: strong contrasts between the evolutionary histories of species of the Cardamine pratensis polyploid complex in central Europe. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.588856 PubMed DOI PMC

Merow C., Smith M. J., Silander J. A. C.OMMAJ.R.X.X.X. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x DOI

Mummenhoff K., Franzke A., Koch M. (1997). Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s. l. (Brassicaceae). Bot. J. Linn. Soc 125 (3), 183–199. doi: 10.1111/j.1095-8339.1997.tb02253.x DOI

Nikolov L. A., Shushkov P., Nevado B., Gan X., Al-Shehbaz I. A., Filatov D., et al. . (2019). Resolving the backbone of the brassicaceae phylogeny for investigating trait diversity. New Phytol. 222, 1638–1651. doi: 10.1111/nph.15732 PubMed DOI

O’Kane S. L., Jr., Al-Shehbaz I. A. (2003). Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann. Missouri Bot. Gard. 90 (4), 603–612. doi: 10.2307/3298545 DOI

Omelchenko D. O., Makarenko M. S., Kasianov A. S., Schelkunov M. I., Logacheva M. D., Penin A. A. (2020). Assembly and analysis of the complete mitochondrial genome of Capsella bursa-pastoris . Plants 9 (4), 469. doi: 10.3390/plants9040469 PubMed DOI PMC

Orsucci M., Yang X., Vanikiotis T., Guerrina M., Duan T., Lascoux M., et al. . (2022). Competitive ability depends on mating system and ploidy level across Capsella species. Ann. Bot. 129 (6), 697–708. doi: 10.1093/aob/mcac044 PubMed DOI PMC

Page A. J., Taylor B., Delaney A. J., Soares J., Seemann T., Keane J. A., et al. . (2016). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom, 2, 1–5. doi: 10.1099/mgen.0.000056 PubMed DOI PMC

Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., et al. . (2012). Ancient admixture in human history. Genetics 192, 1065–1093. doi: 10.1534/genetics.112.145037 PubMed DOI PMC

Patton H., Winsborrow M. C., Esteves M. (2022). “Chapter 51 - the Eurasian Arctic: glacial landforms from the last glacial maximum,” in European Glacial landscapes. Eds. Palacios D., Hughes P. D., García-Ruiz J. M., Andrés N. (Netherlands: Elsevier; ), 395–399.

Petrone Mendoza S., Lascoux M., Glémin S. (2018). Competitive ability of Capsella species with different mating systems and ploidy levels. Ann. Bot. 121 (6), 1257–1264. doi: 10.1093/aob/mcy014 PubMed DOI PMC

Phillips S. J., Anderson R. P., Schapire R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. doi: 10.1016/j.ecolmodel.2005.03.026 DOI

Pritchard J. K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155 (2), 945–959. doi: 10.1534/genetics.116.195164 PubMed DOI PMC

Probatova N. S. (2014). Chromosome numbers in vascular plants of the primorskii territory (Russian far East) (Vladivostok, Russia: Dalnauka; ).

Puttick M. N. (2019). MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35 (24), 5321–5322. doi: 10.1093/bioinformatics/btz554 PubMed DOI

Rosenberg N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. doi: 10.1046/j.1471-8286.2003.00566.x DOI

Schranz M. E., Lysak M. A., Mitchell-Olds T. (2006). The ABC’s of comparative genomics in the brassicaceae: building blocks of crucifer genomes. Trends Pl. Sci. 11 (11), 535–542. doi: 10.1016/j.tplants.2006.09.002 PubMed DOI

Shah T., Schneider J. V., Zizka G., Maurin O., Baker W., Forest F., et al. . (2021). Joining forces in ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. Am. J. Bot. 108 (7), 1201–1216. doi: 10.1002/ajb2.1682 PubMed DOI

Shen X., Wan S., Colin C., Tada R., Shi X., Pei W., et al. . (2018). Increased seasonality and aridity drove the C4 plant expansion in central Asia since the Miocene–pliocene boundary. Earth Planet. Sci. Lett. 502, 74–83. doi: 10.1016/j.epsl.2018.08.056 DOI

Šlenker M., Kantor A., Marhold K., Schmickl R., Mandakova T., Lysak M. A., et al. . (2021). Allele sorting as a novel approach to resolving the origin of allotetraploids using hyb-seq data: a case study of the Balkan mountain endemic Cardamine barbaraeoides . Front. Plant Sci. 12. doi: 10.3389/fpls.2021.659275 PubMed DOI PMC

Slimp M., Williams L. D., Hale H., Johnson M. G. (2021). On the potential of Angiosperms353 for population genomic studies. Appl. Plant Sci. 9, e11419. doi: 10.1002/aps3.11419 PubMed DOI PMC

Straub S. C., Boutte J., Fishbein M., Livshultz T. (2020). Enabling evolutionary studies at multiple scales in apocynaceae through hyb-seq. Appl. Plant Sci. 8, e11400. doi: 10.1002/aps3.11400 PubMed DOI PMC

Su Q., Nie J., Meng Q., Heermance R., Gong L., Luo Z., et al. . (2019). Central Asian drying at 3.3 ma linked to tropical forcing? Geophys. Res. Lett. 46, 10561–10567. doi: 10.1029/2019GL084648 DOI

Swets J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240 (4857), 1285–1293. doi: 10.1126/science.3287615 PubMed DOI

Thomas G. W. C., Ather S. H., Hahn M. W. (2017). Gene tree reconciliation with MUL-trees to resolve polyploid analysis. Syst. Biol. 66 (6), 1007–1018. doi: 10.1093/sysbio/syx044 PubMed DOI

Tillich M., Lehwark P., Pellizzer T., Ulbricht-Jones E. S., Fischer A., Bock R., et al. . (2017). GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45 (1), 6–11. doi: 10.1093/nar/gkx391 PubMed DOI PMC

Van Andel T., Veltman M. A., Bertin A., Maat H., Polime T., Hille Ris Lambers D., et al. . (2019). Hidden rice diversity in the guianas. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01161 PubMed DOI PMC

Varela S., Anderson R. P., García-Valdés R., Fernández-González F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091. doi: 10.1111/j.1600-0587.2013.00441.x DOI

Vargas O. M., Ortiz E. M., Simpson B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: astereae: Diplostephium). New Phytol. 214, 1736–1750. doi: 10.1111/nph.14530 PubMed DOI

Villaverde T., Pokorny L., Olsson S., Rincón-Barrado M., Johnson M. G., Gardner E. M., et al. . (2018). Bridging the micro- and macroevolutionary levels in phylogenomics: hyb-seq solves relationships from populations to species and above. New Phytol. 220, 636–650. doi: 10.1111/nph.15312 PubMed DOI

Viruel J., Conejero M., Hidalgo O., Pokorny L., Powell R. F., Forest F., et al. . (2019). A target capture-based method to estimate ploidy from herbarium specimens. Front. Plant Sci. 10, 937. doi: 10.3389/fpls.2019.00937 PubMed DOI PMC

Warren D. L., Matzke N. J., Cardillo M., Baumgartner J. B., Beaumont L. J., Turelli M., et al. . (2021). ENMTools 1.0: an r package for comparative ecological biogeography. Ecography 44, 504–511. doi: 10.1111/ecog.05485 DOI

Warwick S. I., Al-Shehbaz I. A., Sauder C. (2006). Phylogenetic position of Arabis arenicola and generic limits of Eutrema and Aphragmus (Brassicaceae) based on sequences of nuclear ribosomal DNA. Canad. J. Bot. 84, 269–281. doi: 10.1139/b05-161 DOI

Weiß C. L., Pais M., Cano L. M., Kamoun S., Burbano H. A. (2018). nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 1–8. doi: 10.1186/s12859-018-2128-z PubMed DOI PMC

Weitemier K., Straub S. C., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. . (2014). Hyb-seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2, 1400042. doi: 10.3732/apps.1400042 PubMed DOI PMC

Wick R. R., Schultz M. B., Zobel J., Holt K. E. (2015). Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31 (20), 3350–3352. doi: 10.1093/bioinformatics/btv383 PubMed DOI PMC

Wu Z. (2016). The complete chloroplast genome of Capsella rubella . Mitochondrial DNA Part A 27 (4), 2561–2562. doi: 10.3109/19401736.2015.1038804 PubMed DOI

Wu Z., Ma Q. (2016). Limited variation across two chloroplast genomes with finishing chloroplast genome of Capsella grandiflora . Mitochondrial DNA Part A 27 (5), 3460–3461. doi: 10.3109/19401736.2015.1066347 PubMed DOI

Yang Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24 (8), 1586–1591. doi: 10.1093/molbev/msm088 PubMed DOI

Yardeni G., Viruel J., Paris M., Hess J., Groot Crego C., de la Harpe M., et al. . (2022). Taxon-specific or universal? using target capture to study the evolutionary history of rapid radiations. Mol. Ecol. Resour. 22, 927–945. doi: 10.1111/1755-0998.13523 PubMed DOI PMC

Žerdoner Čalasan A., Hurka H., German D. A., Pfanzelt S., Blattner F. R., Seidl A., et al. . (2021). Pleistocene dynamics of the Eurasian steppe as a driving force of evolution: phylogenetic history of the genus Capsella (Brassicaceae). Ecol. Evol. 11, 12697–12713. doi: 10.1002/ece3.8015 PubMed DOI PMC

Žerdoner Čalasan A., Seregin A. P., Hurka H., Hofford N. P., Neuffer B. (2019). The Eurasian steppe belt in time and space: phylogeny and historical biogeography of the false flax (Camelina crantz, camelineae, brassicaceae). Flora 260, 151477. doi: 10.1016/j.flora.2019.151477 DOI

Zhou T. Y., Lu L. L., Yang G., Al-Shehbaz I. A. (2001). “Brassicaceae (Cruciferae),” in Flora of china. vol. 8 (Brassicaceae through saxifragaceae). Eds. Wu Z. G., Raven P. H. (Beijing: Science Press; St. Louis: Missouri Botanical Garden Press; ), 1–193.

Zuo S., Guo X., Mandáková T., Edginton M., Al-Shehbaz I. A., Lysak M. A. (2022). Associates with cladogenesis, trait disparity, and plastid gene evolution. Plant Physiol. 190 (1), 403–420. doi: 10.1093/plphys/kiac268 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...