Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering

. 2019 Nov ; 31 (11) : 2596-2612. [epub] 20190826

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31451448

Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.

Komentář v

PubMed

Zobrazit více v PubMed

Augustin J.M., Higashi Y., Feng X., Kutchan T.M. (2015). Production of mono- and sesquiterpenes in Camelina sativa oilseed. Planta 242: 693–708. PubMed

Augustin M.M., Shukla A.K., Starks C.M., O’Neil-Johnson M., Han L., Holland C.K., Kutchan T.M. (2017). Biosynthesis of Veratrum californicum specialty chemicals in Camelina sativa seeds. Plant Biotechnol. Rep. 11: 29–41.

Beilstein M.A., Al-Shehbaz I.A., Kellogg E.A. (2006). Brassicaceae phylogeny and trichome evolution. Am. J. Bot. 93: 607–619. PubMed

Beilstein M.A., Al-Shehbaz I.A., Mathews S., Kellogg E.A. (2008). Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: Tribes and trichomes revisited. Am. J. Bot. 95: 1307–1327. PubMed

Bird K.A., VanBuren R., Puzey J.R., Edger P.P. (2018). The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 220: 87–93. PubMed

Bolger A.M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC

Brock J.R., Dönmez A.A., Beilstein M.A., Olsen K.M. (2018). Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Mol. Phylogenet. Evol. 127: 834–842. PubMed

Brock J.R., Mandáková T., Lysak M.A., Al-Shehbaz I.A. (2019). Camelinaneglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys 115: 51–57. PubMed PMC

Clark J.W., Donoghue P.C.J. (2017). Constraining the timing of whole genome duplication in plant evolutionary history. Proc. Biol. Sci. 284: 20170912. PubMed PMC

Douglas G.M., et al. (2015). Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl. Acad. Sci. USA 112: 2806–2811. PubMed PMC

Edger P.P., et al. (2019). Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51: 541–547. PubMed PMC

El Baidouri M., Murat F., Veyssiere M., Molinier M., Flores R., Burlot L., Alaux M., Quesneville H., Pont C., Salse J. (2017). Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytol. 213: 1477–1486. PubMed

Endo T.R. (1990). Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn. J. Genet. 65: 135–152.

Forment J.V., Kaidi A., Jackson S.P. (2012). Chromothripsis and cancer: Causes and consequences of chromosome shattering. Nat. Rev. Cancer 12: 663–670. PubMed

Franzke A., Lysak M.A., Al-Shehbaz I.A., Koch M.A., Mummenhoff K. (2011). Cabbage family affairs: The evolutionary history of Brassicaceae. Trends Plant Sci. 16: 108–116. PubMed

Freeling M., Woodhouse M.R., Subramaniam S., Turco G., Lisch D., Schnable J.C. (2012). Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant Biol. 15: 131–139. PubMed

Fukami M., Shima H., Suzuki E., Ogata T., Matsubara K., Kamimaki T. (2017). Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin. Genet. 91: 653–660. PubMed

Gaebelein R., Mason A.S. (2018). Allohexaploids in the genus Brassica. Crit. Rev. Plant Sci. 37: 422–437.

Gaeta R.T., Chris Pires J. (2010). Homoeologous recombination in allopolyploids: The polyploid ratchet. New Phytol. 186: 18–28. PubMed

Garsmeur O., Schnable J.C., Almeida A., Jourda C., D’Hont A., Freeling M. (2014). Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31: 448–454. PubMed

Gehringer A., Friedt W., Lühs W., Snowdon R.J. (2006). Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49: 1555–1563. PubMed

Hu Y., et al. (2019). Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51: 739–748. PubMed

Huson D.H., Scornavacca C. (2012). Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61: 1061–1067. PubMed

Hutcheon C., Ditt R.F., Beilstein M., Comai L., Schroeder J., Goldstein E., Shewmaker C.K., Nguyen T., De Rocher J., Kiser J. (2010). Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol. 10: 233. PubMed PMC

Iskandarov U., Kim H.J., Cahoon E.B. (2014). Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials In Plants and Bioenergy, McCann M.C., Buckeridge M.S., and Carpita N.C., eds (Berlin: Springer; ), pp. 131–140.

Iven T., Hornung E., Heilmann M., Feussner I. (2016). Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Plant Biotechnol. J. 14: 252–259. PubMed PMC

Ivkov R., Bunz F. (2015). Pathways to chromothripsis. Cell Cycle 14: 2886–2890. PubMed PMC

Jiang W.Z., Henry I.M., Lynagh P.G., Comai L., Cahoon E.B., Weeks D.P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 15: 648–657. PubMed PMC

Jiao Y., et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed

Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega NJC, Wickett NJ. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant. Sci. 4: apps.1600016. PubMed PMC

Junier T., Zdobnov E.M. (2010). The Newick utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26: 1669–1670. PubMed PMC

Kagale S., et al. (2014). The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat. Commun. 5: 3706. PubMed PMC

Katoh K., Standley D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780. PubMed PMC

Kocsis E., Trus B.L., Steer C.J., Bisher M.E., Steven A.C. (1991). Image averaging of flexible fibrous macromolecules: The clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107: 6–14. PubMed

Korbel J.O., Campbell P.J. (2013). Criteria for inference of chromothripsis in cancer genomes. Cell 152: 1226–1236. PubMed

Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. (2009). Circos: An information aesthetic for comparative genomics. Genome Res. 19: 1639–1645. PubMed PMC

Kyriakidou M., Tai H.H., Anglin N.L., Ellis D., Strömvik M.V. (2018). Current strategies of polyploid plant genome sequence assembly. Front. Plant Sci. 9: 1660. PubMed PMC

Landis J.B., Soltis D.E., Li Z., Marx H.E., Barker M.S., Tank D.C., Soltis P.S. (2018). Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105: 348–363. PubMed

Lu C., Kang J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep. 27: 273–278. PubMed

Luo Z., Brock J., Dyer J.M., Kutchan T., Schachtman D., Augustin M., Ge Y., Fahlgren N., Abdel-Haleem H. (2019). Genetic diversity and population structure of Camelina sativa spring panel. Front. Plant Sci. 10: 184. PubMed PMC

Lysak M.A., Berr A., Pecinka A., Schmidt R., McBreen K., Schubert I. (2006). Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. USA 103: 5224–5229. PubMed PMC

Lysak M.A., Mandáková T., Schranz M.E. (2016). Comparative paleogenomics of crucifers: Ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30: 108–115. PubMed

Maher C.A., Wilson R.K. (2012). Chromothripsis and human disease: Piecing together the shattering process. Cell 148: 29–32. PubMed PMC

Mandáková T., Kovarík A., Zozomová-Lihová J., Shimizu-Inatsugi R., Shimizu K.K., Mummenhoff K., Marhold K., Lysak M.A. (2013). The more the merrier: Recent hybridization and polyploidy in cardamine. Plant Cell 25: 3280–3295. PubMed PMC

Mandáková T., Lysak M.A. (2016a). Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr. Protoc. Plant Biol. 1: 43–51. PubMed

Mandáková T., Lysak M.A. (2016b). Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr. Protoc. Plant Biol. 1: 359–371. PubMed

Mandáková T., Marhold K., Lysak M.A. (2014). The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. New Phytol. 201: 982–992. PubMed

Mandáková T., Pouch M., Harmanová K., Zhan S.H., Mayrose I., Lysak M.A. (2017). Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 26: 6445–6462. PubMed

Mandáková T., Schranz M.E., Sharbel T.F., de Jong H., Lysak M.A. (2015). Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant J. 82: 785–793. PubMed

Mandáková T., Zozomová-Lihová J., Kudoh H., Zhao Y., Lysak M.A., Marhold K. (2019). The story of promiscuous crucifers: Origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Ann. Bot. 124: 209–220. PubMed PMC

Marcussen T., Sandve S.R., Heier L., Spannagl M., Pfeifer M., Jakobsen K.S., Wulff B.B., Steuernagel B., Mayer K.F., Olsen O.A.; International Wheat Genome Sequencing Consortium (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science 345: 1250092. PubMed

Mason A.S., Snowdon R.J. (2016). Oilseed rape: Learning about ancient and recent polyploid evolution from a recent crop species. Plant Biol (Stuttg) 18: 883–892. PubMed

Morineau C., Bellec Y., Tellier F., Gissot L., Kelemen Z., Nogué F., Faure J.D. (2017). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol. J. 15: 729–739. PubMed PMC

Martin S.L., Lujan-Toro B.E., Sauder C.A., James T., Ohadi S., Hall L.M. (2018). Hybridization rate and hybrid fitness for Camelina microcarpa Andrz. ex DC (♀) and Camelina sativa (L.) Crantz (Brassicaceae) (♂). Evol. Appl. 12: 443–455. PubMed PMC

Moser B.R. (2012). Biodiesel from alternative oilseed feedstocks: Camelina and field pennycress. Biofuels 3: 193–209.

Nagaharu U., Nagaharu N. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7: 389–452.

Nasuda S., Friebe B., Gill B.S. (1998). Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149: 1115–1124. PubMed PMC

Nikolov L.A., Shushkov P., Nevado B., Gan X., Al-Shehbaz I.A., Filatov D., Bailey C.D., Tsiantis M. (2019). Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 222: 1638–1651. PubMed

Novikova P.Y., et al. (2017). Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Mol. Biol. Evol. 34: 957–968. PubMed PMC

Ozseyhan M.E., Kang J., Mu X., Lu C. (2018). Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol. Biochem. 123: 1–7. PubMed

Parisod C., Holderegger R., Brochmann C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186: 5–17. PubMed

Paterson A.H., et al. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423–427. PubMed

Pellestor F., Gatinois V. (2019). Chromothripsis, a credible chromosomal mechanism in evolutionary process. Chromosoma 128: 1–6. PubMed

Rabiee M., Sayyari E., Mirarab S. (2019). Multi-allele species reconstruction using ASTRAL. Mol. Phylogenet. Evol. 130: 286–296. PubMed

Renny-Byfield S., Kovarik A., Kelly L.J., Macas J., Novak P., Chase M.W., Nichols R.A., Pancholi M.R., Grandbastien M.A., Leitch A.R. (2013). Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J. 74: 829–839. PubMed

Ruiz-Lopez N., Haslam R.P., Napier J.A., Sayanova O. (2014). Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 77: 198–208. PubMed PMC

Salmon A., Ainouche M.L., Wendel J.F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14: 1163–1175. PubMed

Séguin‐Swartz G., Nettleton J.A., Sauder C., Warwick S.I., Gugel R.K. (2013). Hybridization between Camelina sativa (L.) Crantz (false flax) and North American Camelina species. Plant Breed. 132: 390–396.

Shaw T.I., Ruan Z., Glenn T.C., Liu L. (2013). STRAW: Species TRee Analysis Web server. Nucleic Acids Res. 41: W238-41. PubMed PMC

Shonnard D.R., Williams L., Kalnes T.M. (2010). Camelina-derived jet fuel and diesel: Sustainable advanced biofuels. Environ. Prog. Sustain. Energy 29: 382–392.

Sierro N., Battey J.N., Ouadi S., Bakaher N., Bovet L., Willig A., Goepfert S., Peitsch M.C., Ivanov N.V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 5: 3833. PubMed PMC

Smith S.A., Dunn C.W. (2008). Phyutility: A phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: 715–716. PubMed

Stamatakis A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. PubMed PMC

Stebbins G.L. (1971). Chromosomal Evolution in Higher Plants.. (London: Edward Arnold; ).

Stephens P.J., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144: 27–40. PubMed PMC

Stockenhuber R., Zoller S., Shimizu-Inatsugi R., Gugerli F., Shimizu K.K., Widmer A., Fischer M.C. (2015). Efficient detection of novel nuclear markers for Brassicaceae by transcriptome sequencing. PLoS One 10: e0128181. PubMed PMC

Sun H., et al. (2017). Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita Genomes. Mol. Plant 10: 1293–1306. PubMed

Symonds V.V., Soltis P.S., Soltis D.E. (2010). Dynamics of polyploid formation in Tragopogon (Asteraceae): Recurrent formation, gene flow, and population structure. Evolution 64: 1984–2003. PubMed

Tan E.H., Henry I.M., Ravi M., Bradnam K.R., Mandakova T., Marimuthu M.P., Korf I., Lysak M.A., Comai L., Chan S.W. (2015). Catastrophic chromosomal restructuring during genome elimination in plants. eLife 4: e06516. PubMed PMC

VanBuren R., Wai C.M., Pardo J., Yocca A.E., Wang X., Wang H., Chaluvadi S.R., Bryant D., Edger P.E., Bennetzen J.L., Mockler T.C., Michael T.P. (2019). Exceptional subgenome stability and functional divergence in allotetraploid teff, the primary cereal crop in Ethiopia. bioRxiv (preprint) 10.1101/580720. PubMed PMC

Vollmann J., Grausgruber H., Stift G., Dryzhyruk C., Lelley T. (2005). Genetic diversity in Camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed. 124: 446–453.

Waltz E. (2018). With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 36: 6–7. PubMed

Wang X., et al. ; Brassica rapa Genome Sequencing Project Consortium (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43: 1035–1039. PubMed

Wen D., Yu Y., Zhu J., Nakhleh L. (2018). Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67: 735–740. PubMed PMC

Yang J., et al. (2016). The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48: 1225–1232. PubMed

Zhang P., Li W., Friebe B., Gill B.S. (2008). The origin of a “zebra” chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number. Genetics 179: 1169–1177. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phased Assembly of Neo-Sex Chromosomes Reveals Extensive Y Degeneration and Rapid Genome Evolution in Rumex hastatulus

. 2024 Apr 02 ; 41 (4) : .

The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella

. 2023 ; 14 () : 1165140. [epub] 20230508

Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions

. 2022 Jul 04 ; 34 (7) : 2475-2491.

Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa

. 2022 Jan 05 ; 9 () : .

Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe

. 2021 May 04 ; 38 (5) : 1695-1714.

The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches

. 2021 Feb 03 ; 13 (2) : .

Genomic Blocks in Aethionema arabicum Support Arabideae as Next Diverging Clade in Brassicaceae

. 2020 ; 11 () : 719. [epub] 20200603

Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning

. 2020 Mar ; 32 (3) : 650-665. [epub] 20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace