The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33566095
PubMed Central
PMC7875004
DOI
10.1093/gbe/evaa220
PII: 5923296
Knihovny.cz E-zdroje
- Klíčová slova
- chromosome numbers, cytogenomics, dysploidy, genome evolution, phylogenetic models, polyploidy,
- MeSH
- chromozomy rostlin * MeSH
- genom rostlinný MeSH
- genomika MeSH
- malování chromozomů MeSH
- modely genetické * MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chromosome numbers have been widely used to describe the most fundamental genomic attribute of an organism or a lineage. Although providing strong phylogenetic signal, chromosome numbers vary remarkably among eukaryotes at all levels of taxonomic resolution. Changes in chromosome numbers regularly serve as indication of major genomic events, most notably polyploidy and dysploidy. Here, we review recent advancements in our ability to make inferences regarding historical events that led to alterations in the number of chromosomes of a lineage. We first describe the mechanistic processes underlying changes in chromosome numbers, focusing on structural chromosomal rearrangements. Then, we focus on experimental procedures, encompassing comparative cytogenomics and genomics approaches, and on computational methodologies that are based on explicit models of chromosome-number evolution. Together, these tools offer valuable predictions regarding historical events that have changed chromosome numbers and genome structures, as well as their phylogenetic and temporal placements.
Zobrazit více v PubMed
Ahola V, et al. 2014. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun. 5:4737. PubMed PMC
Albert P, et al. 2019. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci U S A. 116(5):1679–1685. PubMed PMC
Alfaro ME, et al. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A. 106(32):13410–13414. PubMed PMC
Anisimova M, Yang Z. 2007. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol. 24(5):1219–1228. PubMed
Báez M, et al. 2019. Together but different: the subgenomes of the bimodal eleutherine karyotypes are differentially organized. Front Plant Sci. 10:1170. PubMed PMC
Beaulieu JM, O’Meara BC. 2016. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol. 65(4):583–601. PubMed
Belser C, et al. 2018. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants. 4(11):879–887. PubMed
Betekhtin A, Jenkins G, Hasterok R. 2014. Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One 9(12):e115108. PubMed PMC
Bi Y, et al. 2020. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. Plant J. 102(1):178–186. PubMed
Birchler JA, Han F. 2018. Barbara McClintock’s unsolved chromosomal mysteries: parallels to common rearrangements and karyotype evolution. Plant Cell 30(4):771–779. PubMed PMC
Blackmon H, Justison J, Mayrose I, Goldberg EE. 2019. Meiotic drive shapes rates of karyotype evolution in mammals. Evolution 73(3):511–523. PubMed PMC
Cao HX, et al. 2016. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol. 209(1):354–363. PubMed
Carta A, Bedini G, Peruzzi L. 2020. A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytol. 228: 1097–1106. PubMed
Castiglione M, Cremonini R. 2012. A fascinating island: 2n= 4. Plant Biosyst. 146:711–726.
Chamala S, et al. 2013. Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342(6165):1516–1517. PubMed
Chen F, et al. 2019. Genome sequences of horticultural plants: past, present, and future. Hortic Res. 6:112. PubMed PMC
Clark JW, Donoghue PCJ. 2018. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 23(10):933–945. PubMed
Clausen RE, Cameron DR. 1944. Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–44777. PubMed PMC
Comai L. 2005. The advantages and disadvantages of being polyploid. Nat Rev Genet. 6(11):836–846. PubMed
Coyne JA, Orr HA. 2004. Speciation. Sunderland (MA: ): Sinauer Associates.
Dassanayake M, et al. 2011. The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 43(9):913–918. PubMed PMC
Edger PP, et al. 2018. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaScience 7(2):1–7. PubMed PMC
Edger PP, et al. 2020. Reply to: revisiting the origin of octoploid strawberry. Nat Genet. 52(1):5–7. PubMed PMC
Emadzade K, et al. 2014. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot. 114(8):1597–1608. PubMed PMC
Felenstein J. 2004. Inferring phylogenies. Sundeland (MA: ): Sinauer Associates.
Filiault DL, et al. 2018. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. Elife 7:e36426. PubMed PMC
Freyman WA, Höhna S. 2018. Cladogenetic and anagenetic models of chromosome number evolution: a Bayesian model averaging approach. Syst Biol. 67(2):195–215. PubMed
Geiser C, Mandáková T, Arrigo N, Lysak MA, Parisod C. 2016. Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in buckler mustard. Plant Cell 28(1):17–27. PubMed PMC
Glick L, Mayrose I. 2014. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol. 31(7):1914–1922. PubMed
Goldberg EE, Igic B. 2012. Tempo and mode in plant breeding system evolution. Evolution 66(12):3701–3709. PubMed
Guerra M. 2016. Agmatoploidy and symploidy: a critical review. Genet Mol Biol. 39(4):492–496. PubMed PMC
Guerra M. 2008. Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res. 120(3–4):339–350. PubMed
Hallinan NM, Lindberg DR. 2011. Comparative analysis of chromosome counts infers three paleopolyploidies in the mollusca. Genome Biol Evol. 3:1150–1163. PubMed PMC
Han J, Zhang Z, Wang K. 2018. 3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Mol Cytogenet. 11:21. PubMed PMC
Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J. 2015. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200(3):771–779. PubMed PMC
Hansen AK, et al. 2006. Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot. 31(1):138–150.
Hanson RE, et al. 1995. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome 38(4):646–651. PubMed
Hardigan MA, et al. 2020. Genome synteny has been conserved among the octoploid progenitors of cultivated strawberry over millions of years of evolution. Front Plant Sci. 10:1789. PubMed PMC
Hipp AL. 2007. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61(9):2175–2194. PubMed
Hloušková P, Mandáková T, Pouch M, Trávníček P, Lysak MA. 2019. The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Ann Bot. 124(1):103–120. PubMed PMC
Ho SS, Urban AE, Mills RE. 2020. Structural variation in the sequencing era. Nat Rev Genet. 21(3):171–189. PubMed PMC
Hoang PNT, et al. 2018. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. Plant J. 96(3):670–684. PubMed
Höhna S, et al. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst Biol. 65(4):726–736. PubMed PMC
Hu Q, Maurais EG, Ly P. 2020. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res. 2020:1–12. PubMed PMC
Huelsenbeck JP, Crandall KA. 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Syst. 28(1):437–466.
Idziak D, et al. 2011. Painting the chromosomes of Brachypodium – current status and future prospects. Chromosoma 120(5):469–479. PubMed PMC
Jankowska M, et al. 2015. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124(4):519–528. PubMed
Jiang J. 2019. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 27(3):153–165. PubMed
Jiang J, Gill BS. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49(9):1057–1068. PubMed
Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A. 92(10):4487–4491. PubMed PMC
Kersey P. 2019. Plant genome sequences: past, present, future. Curr Opin Plant Biol. 48:1–8. PubMed
Khandelwal S. 1990. Chromosome evolution in the genus Ophioglossum L. Bot J Linn Soc. 102(3):205–217.
Koshi JM, Goldstein RA. 1996. Probabilistic reconstruction of ancestral protein sequences. J Mol Evol. 42(2):313–320. PubMed
Kurzhals RL, et al. 2017. Chromosome healing is promoted by the telomere cap component Hiphop in Drosophila. Genetics 207(3):949–959. PubMed PMC
Levy Karin E, Wicke S, Pupko T, Mayrose I. 2017. An integrated model of phenotypic trait changes and site-specific sequence evolution. Syst Biol. 66(6):917–933. PubMed
Liu PL, Wan Q, Guo YP, Yang J, Rao GY. 2012. Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS One 7(11):e48970. PubMed PMC
Liu X, et al. 2020. Dual-color oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant J. 101(1):112–121. PubMed
Louca S, Pennell MW. 2020. Extant timetrees are consistent with a myriad of diversification histories. Nature 580(7804):502–505. PubMed
Luo MC, et al. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci U S A. 106(37):15780–15785. PubMed PMC
Lysak MA. 2014. Live and let die: centromere loss during evolution of plant chromosomes. New Phytol. 203(4):1082–1089.
Lysak MA, et al. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A. 103(13):5224–5229. PubMed PMC
Lysak MA, Fransz PF, Ali HBM, Schubert I. 2001. Chromosome painting in Arabidopsis thaliana. Plant J. 28(6):689–697. PubMed
Lysak MA, Koch MA, Pecinka A, Schubert I. 2005. Chromosome triplication found across the tribe Brassiceae. Genome Res. 15(4):516–525. PubMed PMC
Macas J, et al. 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One 10(11):e0143424. PubMed PMC
Mandáková T, Lysak MA. 2016. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr Protoc Plant Biol. 1(2):359–371. PubMed
Mandáková T, et al. 2017. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol Ecol. 26(22):6445–6462. PubMed
Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA. 2019. Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell 31:2596–2612. PubMed PMC
Mandáková T, Singh V, Kraemer U, Lysak MA. 2015. Genome structure of the heavy metal hyperaccumulator Noccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol. 169(1):674–689. PubMed PMC
Márquez-Corro JI, Martín-Bravo S, Spalink D, Luceño M, Escudero M. 2019. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae). Mol Phylogenet Evol. 135:203–209. PubMed
Mayr E. 1982. Speciation and macroevolution. Evolution 36(6):1119–1132. PubMed
Mayrose I, et al. 2011. Recently formed polyploid plants diversify at lower rates. Science 333(6047):1257–1257. PubMed
Mayrose I, Barker MS, Otto SP. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol. 59(2):132–144. PubMed
Mayrose I, Otto SP. 2011. A likelihood method for detecting trait-dependent shifts in the rate of molecular evolution. Mol Biol Evol. 28(1):759–770. PubMed
Michael TP, VanBuren R. 2020. Building near-complete plant genomes. Curr Opin Plant Biol. 54:26–33. PubMed
Nowak M, et al. 2020. The genome of Draba nivalis shows signatures of adaptation to the extreme environmental stresses of the Arctic. Mol Ecol Resour. Advance Access published October 15, 2020, 10.1111/1755-0998.13280. PubMed DOI PMC
Oginuma K, Munzinger J, Tobe H. 2006. Exceedingly high chromosome number in Strasburgeriaceae, a monotypic family endemic to New Caledonia. Plant Syst Evol. 262(1–2):97–101.
Ohi-toma T, et al. 2006. Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst Bot. 31(3):481–492.
Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131(3):452–462. PubMed
Page SL, Shaffer LG. 1998. Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res. 6(2):115–122. PubMed
Pagel M. 1994. Detecting correlated evolution on phylogenies – a general-method for the comparative-analysis of discrete characters. Proc R Soc Lond B Biol Sci. 255:37–45.
Pecinka A, et al. 2004. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113(5):258–269. PubMed
Van De Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nat Rev Genet. 18(7):411–424. PubMed
Pellestor F. 2019. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet. 12:6. PubMed PMC
Pupko T, Pe’er I, Shamir R, Graur D. 2000. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol Biol Evol. 17(6):890–896. PubMed
Rabosky DL, Goldberg EE. 2015. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst Biol. 64(2):340–355. PubMed
Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annu Rev Ecol Syst. 33(1):589–639.
Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 29(1):467–501.
Rastogi S, Ohri D. 2020. Karyotype evolution in cycads. Nucleus 63(2):131–141.
Rice A, et al. 2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206(1):19–26. PubMed
Rockman MV, Rowell DM. 2002. Episodic chromosomal evolution in Planipapillus (Onychophora: Peripatopsidae): a phylogenetic approach to evolutionary dynamics and speciation. Evolution 56(1):58–69. PubMed
Röser M. 2015. Mitosis and interphase of the highly polyploid palm Voanioala gerardii (2n = 606 ± 3). Cytogenet Genome Res. 147:70–79. PubMed
Schmidt T, Heitkam T, Liedtke S, Schubert V, Menzel G. 2019. Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. New Phytol. 222(4):1965–1980. PubMed
Schubert I, Fransz PF, Fuchs J, De Jong JH. 2001. Chromosome painting in plants. Methods Cell Sci. 23(1/3):57–69. PubMed
Schultheis LM. 2001. Systematics of Downingia(Campanulaceae) based on molecular sequence data: implications for floral and chromosome evolution. Syst Bot. 26:603–621.
Shafir A, Azouri D, Goldberg EE, Mayrose I. 2020. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 74(8):1620–1639. PubMed
Šimoníková D, et al. 2019. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa spp.). Front Plant Sci. 10:1503. PubMed PMC
Soltis DE, Visger CJ, Marchant DB, Soltis PS. 2016. Polyploidy: pitfalls and paths to a paradigm. Am J Bot. 103(7):1146–1166. PubMed
Sousa A, Renner SS. 2015. Interstitial telomere-like repeats in the monocot family Araceae. Bot J Linn Soc. 177(1):15–26.
Souza G, Crosa O, Guerra M. 2015. Karyological, morphological, and phylogenetic diversification in Leucocoryne Lindl (Allioideae, Amaryllidaceae). Plant Syst Evol. 301(8):2013–2023.
Stebbins GL. 1938. Cytological characteristics associated with the different growth habits in the dicotyledons. Am J Bot. 25(3):189–198.
Suda J, Krahulcová A, Trávnícek P, Krahulec F. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55(2):447–450.
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815. PubMed
Tran TD, et al. 2017. Chromosome identification for the carnivorous plant Genlisea margaretae. Chromosoma 126(3):389–397. PubMed
Uhl C. 1978. Chromosomes of Mexican Sedum, II. Section Pachysedum Rhodora 80:491–512.
VanBuren R, et al. 2018. A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience 7(8):giy094. PubMed PMC
Wang W, et al. 2014. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun. 5(1):1–13. PubMed PMC
White TA, Bordewich M, Searle JB. 2010. A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol. 59(3):262–276. PubMed
Willing E, et al. 2015. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature 1:14023. PubMed
Woo S, et al. 1994. Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 22(23):4922–4931. PubMed PMC
Wood TE, et al. 2009. The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci U S A. 106(33):13875–13879. PubMed PMC
Xin H, et al. 2020. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J. 101(2):253–264. PubMed
Zenil-Ferguson R, Ponciano JM, Burleigh JG. 2016. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. Am J Bot. 103(7):1175–1186. PubMed
Zenil-Ferguson R, Ponciano JM, Burleigh JG. 2017. Testing the association of phenotypes with polyploidy: an example using herbaceous and woody eudicots. Evolution 71(5):1138–1148. PubMed
Zhan SH, Drori M, Goldberg EE, Otto SP, Mayrose I. 2016. Phylogenetic evidence for cladogenetic polyploidization in land plants. Am J Bot. 103(7):1252–1258. PubMed
Zhang P, Li W, Friebe B, Gill BS. 2008. The origin of a ‘zebra’ chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number. Genetics 179(3):1169–1177. PubMed PMC