The genome of Draba nivalis shows signatures of adaptation to the extreme environmental stresses of the Arctic

. 2021 Apr ; 21 (3) : 661-676. [epub] 20201112

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33058468

Grantová podpora
LQ1601 Central European Institute of Technology
240223/F20 Norges Forskningsråd
15-18545S Grantová Agentura České Republiky

The Arctic is one of the most extreme terrestrial environments on the planet. Here, we present the first chromosome-scale genome assembly of a plant adapted to the high Arctic, Draba nivalis (Brassicaceae), an attractive model species for studying plant adaptation to the stresses imposed by this harsh environment. We used an iterative scaffolding strategy with data from short-reads, single-molecule long reads, proximity ligation data, and a genetic map to produce a 302 Mb assembly that is highly contiguous with 91.6% assembled into eight chromosomes (the base chromosome number). To identify candidate genes and gene families that may have facilitated adaptation to Arctic environmental stresses, we performed comparative genomic analyses with nine non-Arctic Brassicaceae species. We show that the D. nivalis genome contains expanded suites of genes associated with drought and cold stress (e.g., related to the maintenance of oxidation-reduction homeostasis, meiosis, and signaling pathways). The expansions of gene families associated with these functions appear to be driven in part by the activity of transposable elements. Tests of positive selection identify suites of candidate genes associated with meiosis and photoperiodism, as well as cold, drought, and oxidative stress responses. Our results reveal a multifaceted landscape of stress adaptation in the D. nivalis genome, offering avenues for the continued development of this species as an Arctic model plant.

Komentář v

PubMed

Zobrazit více v PubMed

Alexa, A. , Rahnenführer, J. , & Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics, 22(13), 1600–1607. 10.1093/bioinformatics/btl140 PubMed DOI

Apel, K. , & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. 10.1146/annurev.arplant.55.031903.141701 PubMed DOI

Arends, D. , Prins, P. , Jansen, R. C. , & Broman, K. W. (2010). R/qtl: High‐throughput multiple QTL mapping. Bioinformatics, 26, 2990–2992. PubMed PMC

Birkeland, S. , Gustafsson, A. L. S. , Brysting, A. K. , Brochmann, C. , & Nowak, M. D. (2020). Multiple genetic trajectories to extreme abiotic stress adaptation in Arctic Brassicaceae. Molecular Biology and Evolution, 37(7), 2052–2068. 10.1093/molbev/msaa068 PubMed DOI PMC

Boetzer, M. , & Pirovano, W. (2014). SSPACE‐LongRead: Scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics, 15, 211. 10.1186/1471-2105-15-211 PubMed DOI PMC

Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Bomblies, K. , Higgins, J. D. , & Yant, L. (2015). Meiosis evolves: Adaptation to external and internal environments. New Phytologist, 208, 306–323. 10.1111/nph.13499 PubMed DOI

Brochmann, C. (1993). Reproductive strategies of diploid and polyploid populations of arctic Draba (Brassicaceae). Plant Systematics and Evolution, 185, 55–83. 10.1007/BF00937720 DOI

Brochmann, C. , Soltis, P. S. , & Soltis, D. E. (1992). Multiple origins of the octoploid Scandinavian endemic Draba cacuminum: Electrophoretic and morphological evidence. Nordic Journal of Botany, 12, 257–272. 10.1111/j.1756-1051.1992.tb01303.x DOI

Broman, K. W. , Wu, H. , Sen, S. , & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19, 889–890. 10.1093/bioinformatics/btg112 PubMed DOI

Caldwell, M. M. , Bornman, J. F. , Ballaré, C. L. , Flint, S. D. , & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical, Photobiological Sciences, 6, 252–266. 10.1039/b700019g PubMed DOI

Choudhury, R. R. , Neuhaus, J.‐M. , & Parisod, C. (2017). Resolving fine‐grained dynamics of retrotransposons: Comparative analysis of inferential methods and genomic resources. The Plant Journal, 90, 979–993. 10.1111/tpj.13524 PubMed DOI

Colella, J. P. , Talbot, S. L. , Brochmann, C. , Taylor, E. B. , Hoberg, E. P. , & Cook, J. A. (2020). Conservation genomics in a changing Arctic. Trends in Ecology, Evolution, 35, 149–162. 10.1016/j.tree.2019.09.008 PubMed DOI

Conesa, A. , Götz, S. , García‐Gómez, J. M. , Terol, J. , Talón, M. , & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676. 10.1093/bioinformatics/bti610 PubMed DOI

Danecek, P. , Auton, A. , Abecasis, G. , Albers, C. A. , Banks, E. , DePristo, M. A. , Handsaker, R. E. , Lunter, G. , Marth, G. T. , Sherry, S. T. , McVean, G. , Durbin, R. , … 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC

Dunning, L. T. , Olofsson, J. K. , Parisod, C. , Choudhury, R. R. , Moreno‐Villena, J. J. , Yang, Y. , Dionora, J. , Quick, W. P. , Park, M. , Bennetzen, J. L. , Besnard, G. , Nosil, P. , Osborne, C. P. , & Christin, P.‐A. (2019). Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the United States of America, 116, 4416–4425. 10.1073/pnas.1810031116 PubMed DOI PMC

Eaton, D. A. R. (2014). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30, 1844–1849. 10.1093/bioinformatics/btu121 PubMed DOI

El‐Baidouri, M. , & Panaud, O. (2013). Comparative genomic paleontology across plant kingdom reveals the dynamics of TE‐driven genome evolution. Genome Biology and Evolution, 5, 954–965. 10.1093/gbe/evt025 PubMed DOI PMC

El‐Gebali, S. , Mistry, J. , Bateman, A. , Eddy, S. R. , Luciani, A. , Potter, S. C. , & Finn, R. D. (2018). The Pfam protein families database in 2019. Nucleic Acids Research, 47, D427–D432. PubMed PMC

Ellinghaus, D. , Kurtz, S. , & Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9, 18. 10.1186/1471-2105-9-18 PubMed DOI PMC

Emms, D. M. , & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16, 157. 10.1186/s13059-015-0721-2 PubMed DOI PMC

Emms, D. M. , & Kelly, S. (2017). STRIDE: Species tree root inference from gene duplication events. Molecular Biology and Evolution, 34, 3267–3278. 10.1093/molbev/msx259 PubMed DOI PMC

Emms, D. , & Kelly, S. (2018). STAG: Species tree inference from all genes. Retrieved from https://www.biorxiv.org/content/10.1101/267914v1 DOI

Emms, D. M. , & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238. 10.1186/s13059-019-1832-y PubMed DOI PMC

Gentleman, R. C. , Carey, V. J. , Bates, D. M. , Bolstad, B. , Dettling, M. , Dudoit, S. , Ellis, B. , Gautier, L. , Ge, Y. , Gentry, J. , Hornik, K. , Hothorn, T. , Huber, W. , Iacus, S. , Irizarry, R. , Leisch, F. , Li, C. , Maechler, M. , Rossini, A. J. , … Zhang, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80. PubMed PMC

Grabherr, M. G. , Haas, B. J. , Yassour, M. , Levin, J. Z. , Thompson, D. A. , Amit, I. , Adiconis, X. , Fan, L. , Raychowdhury, R. , Zeng, Q. , Chen, Z. , Mauceli, E. , Hacohen, N. , Gnirke, A. , Rhind, N. , di Palma, F. , Birren, B. W. , Nusbaum, C. , Lindblad‐Toh, K. , … Regev, A. (2011). Full‐length transcriptome assembly from RNA‐Seq data without a reference genome. Nature Biotechnology, 29, 644–652. 10.1038/nbt.1883 PubMed DOI PMC

Gremme, G. , Steinbiss, S. , & Kurtz, S. (2013). GenomeTools: A comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(3), 645–656. 10.1109/TCBB.2013.68 PubMed DOI

Grundt, H. H. , Kjølner, S. , Borgen, L. , Rieseberg, L. H. , & Brochmann, C. (2006). High biological species diversity in the arctic flora. Proceedings of the National Academy of Sciences of the United States of America, 103, 972–975. 10.1073/pnas.0510270103 PubMed DOI PMC

Grundt, H. H. , Obermayer, R. , & Borgen, L. (2005). Ploidal levels in the arctic‐alpine polyploid Draba lactea (Brassicaceae) and its low‐ploid relatives. Botanical Journal of the Linnean Society, 147, 333–347. 10.1111/j.1095-8339.2005.00377.x DOI

Guo, X. , Liu, J. , Hao, G. , Zhang, L. , Mao, K. , Wang, X. , Zhang, D. , Ma, T. , Hu, Q. , Al‐Shehbaz, I. A. , & Koch, M. A. (2017). Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics, 18, 176. 10.1186/s12864-017-3555-3 PubMed DOI PMC

Gupta, S. K. (2016). Biology and breeding of crucifers. CRC Press.

Gustafsson, A. L. S. , Skrede, I. , Rowe, H. C. , Gussarova, G. , Borgen, L. , Rieseberg, L. H. , Brochmann, C. , & Parisod, C. (2014). Genetics of cryptic Speciation within an Arctic mustard, Draba nivalis . PLoS One, 9, e93834. 10.1371/journal.pone.0093834 PubMed DOI PMC

Haas, B. J. , Papanicolaou, A. , Yassour, M. , Grabherr, M. , Blood, P. D. , Bowden, J. , Couger, M. B. , Eccles, D. , Li, B. O. , Lieber, M. , MacManes, M. D. , Ott, M. , Orvis, J. , Pochet, N. , Strozzi, F. , Weeks, N. , Westerman, R. , William, T. , Dewey, C. N. , … Regev, A. (2013). De novo transcript sequence reconstruction from RNA‐seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8, 1494–1512. 10.1038/nprot.2013.084 PubMed DOI PMC

Han, M. V. , Thomas, G. W. C. , Lugo‐Martinez, J. , & Hahn, M. W. (2013). Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular Biology and Evolution, 30, 1987–1997. 10.1093/molbev/mst100 PubMed DOI

Holt, C. , & Yandell, M. (2011). MAKER2: An annotation pipeline and genome‐database management tool for second‐generation genome projects. BMC Bioinformatics, 12, 491. 10.1186/1471-2105-12-491 PubMed DOI PMC

Hou, Q. , & Bartels, D. (2014). Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Annals of Botany, 115, 465–479. 10.1093/aob/mcu152 PubMed DOI PMC

Hu, K. , Xu, K. , Wen, J. , Yi, B. , Shen, J. , Ma, C. , Fu, T. , Ouyang, Y. , & Tu, J. (2019). Helitron distribution in Brassicaceae and whole genome Helitron density as a character for distinguishing plant species. BMC Bioinformatics, 20, 354–420. 10.1186/s12859-019-2945-8 PubMed DOI PMC

Ito, H. , Gaubert, H. , Bucher, E. , Mirouze, M. , Vaillant, I. , & Paszkowski, J. (2011). An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472, 115–120. 10.1038/nature09861 PubMed DOI

Jones, P. , Binns, D. , Chang, H.‐Y. , Fraser, M. , Li, W. , McAnulla, C. , McWilliam, H. , Maslen, J. , Mitchell, A. , Nuka, G. , Pesseat, S. , Quinn, A. F. , Sangrador‐Vegas, A. , Scheremetjew, M. , Yong, S.‐Y. , Lopez, R. , & Hunter, S. (2014). InterProScan 5: Genome‐scale protein function classification. Bioinformatics, 30, 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC

Jordan, G. , & Goldman, N. (2012). The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Molecular Biology and Evolution, 29(4), 1125–1139. 10.1093/molbev/msr272 PubMed DOI

Jordon‐Thaden, I. E. , Al‐Shehbaz, I. A. , & Koch, M. A. (2013). Species richness of the globally distributed, arctic–alpine genus Draba L. (Brassicaceae). Alpine Botany, 123, 97–106. 10.1007/s00035-013-0120-9 DOI

Katoh, K. , Kuma, K. , Toh, H. , & Miyata, T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518. 10.1093/nar/gki198 PubMed DOI PMC

Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press.

Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5, 59. PubMed PMC

Kurtz, S. , Phillippy, A. , Delcher, A. L. , Smoot, M. , Shumway, M. , Antonescu, C. , & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology, 5, R12. PubMed PMC

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. Preprint at https://arxiv.org/abs/1303.3997

Li, H. , & Durbin, R. (2010). Fast and accurate long‐read alignment with Burrows‐Wheeler transform. Bioinformatics, 26, 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC

Li, W. , & Godzik, A. (2006). Cd‐hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659. 10.1093/bioinformatics/btl158 PubMed DOI

Llorens, C. , Futami, R. , Covelli, L. , Domínguez‐Escribá, L. , Viu, J. M. , Tamarit, D. , Aguilar‐Rodríguez, J. , Vicente‐Ripolles, M. , Fuster, G. , Bernet, G. P. , Maumus, F. , Munoz‐Pomer, A. , Sempere, J. M. , Latorre, A. , & Moya, A. (2011). The Gypsy Database (GyDB) of mobile genetic elements: Release 2.0. Nucleic Acids Research, 39, D70–D74. PubMed PMC

Löytynoja, A. , & Goldman, N. (2005). An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10557–10562. PubMed PMC

Lütz, C. (2010). Cell physiology of plants growing in cold environments. Protoplasma, 244, 53–73. 10.1007/s00709-010-0161-5 PubMed DOI

Lysak, M. A. , Mandáková, T. , & Schranz, M. E. (2016). Paleogenomics of crucifers: Ancestral genomic blocks revisited. Current Opinion in Plant Biology, 30, 108–115. PubMed

Mandáková, T. , Hloušková, P. , Koch, M. A. , & Lysak, M. A. (2020). Genome evolution in Arabideae was marked by frequent centromere repositioning. The Plant Cell, 32(3), 650–665. 10.1105/tpc.19.00557 PubMed DOI PMC

Mandáková, T. , & Lysak, M. A. (2016a). Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology, 1, 1–9. PubMed

Mandáková, T. , & Lysak, M. A. (2016b). Painting of Arabidopsis chromosomes with chromosome‐specific BAC clones. Current Protocols in Plant Biology, 1, 359–371. PubMed

McKenna, A. , Hanna, M. , Banks, E. , Sivachenko, A. , Cibulskis, K. , Kernytsky, A. , Garimella, K. , Altshuler, D. , Gabriel, S. , Daly, M. , & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Research, 20(9), 1297–1303. 10.1101/gr.107524.110 PubMed DOI PMC

Mittler, R. (2017). ROS are good. Trends in Plant Science, 22, 11–19. 10.1016/j.tplants.2016.08.002 PubMed DOI

Neill, S. J. , Desikan, R. , Clarke, A. , Hurst, R. D. , & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247. 10.1093/jexbot/53.372.1237 PubMed DOI

Planas‐Riverola, A. , Gupta, A. , Betegón‐Putze, I. , Bosch, N. , Ibañes, M. , & Caño‐Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146, dev151894. 10.1242/dev.151894 PubMed DOI PMC

Privman, E. , Penn, O. , & Pupko, T. (2012). Improving the performance of positive selection inference by filtering unreliable alignment regions. Molecular Biology Evolution, 29(1), 1–5. 10.1093/molbev/msr177 PubMed DOI

Qiao, X. , Li, Q. , Yin, H. , Qi, K. , Li, L. , Wang, R. , Zhang, S. , & Paterson, A. H. (2019). Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology, 20, 1–23. 10.1186/s13059-019-1650-2 PubMed DOI PMC

Quadrana, L. , Bortolini Silveira, A. , Mayhew, G. F. , LeBlanc, C. , Martienssen, R. A. , Jeddeloh, J. A. , & Colot, V. (2016). The Arabidopsis thaliana mobilome and its impact at the species level. eLife, 5, 6919. 10.7554/eLife.15716 PubMed DOI PMC

Rice, P. , Longden, I. , & Bleasby, A. (2000). EMBOSS : The European Molecular Biology Open Software Suite. Trends in Genetics, 16(6), 2–3. PubMed

Sanderson, M. (2003). r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19, 301–302. 10.1093/bioinformatics/19.2.301 PubMed DOI

Schranz, M. , Lysak, M. , & Mitchell‐Olds, T. (2006). The ABC's of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends in Plant Science, 11, 535–542. 10.1016/j.tplants.2006.09.002 PubMed DOI

Sela, I. , Ashkenazy, H. , Katoh, K. , & Pupko, T. (2015). GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research, 43, W7–W14. 10.1093/nar/gkv318 PubMed DOI PMC

Simao, F. A. , Waterhouse, R. M. , Ioannidis, P. , Kriventseva, E. V. , & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single‐copy orthologs. Bioinformatics, 31, 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI

Skrede, I. , Brochmann, C. , Borgen, L. , & Rieseberg, L. H. (2008). Genetics of intrinsic postzygotic isolation in a circumpolar plant species, Draba nivalis (Brassicaceae). Evolution, 62, 1840–1851. PubMed

Stanke, M. , Diekhans, M. , Baertsch, R. , & Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24, 637–644. 10.1093/bioinformatics/btn013 PubMed DOI

Steinbiss, S. , Willhoeft, U. , Gremme, G. , & Kurtz, S. (2009). Fine‐grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Research, 37, 7002–7013. 10.1093/nar/gkp759 PubMed DOI PMC

Steinegger, M. , & Söding, J. M. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology, 35, 1026–1028. 10.1038/nbt.3988 PubMed DOI

Taylor, J. , & Butler, D. (2017). RPackage ASMap: Efficient genetic linkage map construction and diagnosis. Journal of Statistical Software, 79, 1–29. PubMed

Ueda, M. , & Seki, M. (2020). Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiology, 182, 15–26. 10.1104/pp.19.00988 PubMed DOI PMC

Vurture, G. W. , Sedlazeck, F. J. , Nattestad, M. , Underwood, C. J. , Fang, H. , Gurtowski, J. , & Schatz, M. C. (2017). GenomeScope: Fast reference‐free genome profiling from short reads. Bioinformatics, 33, 2202–2204. 10.1093/bioinformatics/btx153 PubMed DOI PMC

Wang, Y. , Tang, H. , DeBarry, J. D. , Tan, X. , Li, J. , Wang, X. , Lee, T.‐H. , Jin, H. , Marler, B. , Guo, H. , Kissinger, J. C. , & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49. 10.1093/nar/gkr1293 PubMed DOI PMC

Warren, R. L. , Yang, C. , Vandervalk, B. P. , Behsaz, B. , Lagman, A. , Jones, S. J. , & Birol, I. (2015). LINKS: Scalable, alignment‐free scaffolding of draft genomes with long reads. GigaScience, 4, 35. 10.1186/s13742-015-0076-3 PubMed DOI PMC

Wicker, T. , Sabot, F. , Hua‐Van, A. , Bennetzen, J. L. , Capy, P. , Chalhoub, B. , Flavell, A. , Leroy, P. , Morgante, M. , Panaud, O. , Paux, E. , SanMiguel, P. , & Schulman, A. H. (2009). Reply: A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nature Reviews Genetics, 10, 276. 10.1038/nrg2165-c4 PubMed DOI

Willing, E.‐M. , Rawat, V. , Mandáková, T. , Maumus, F. , James, G. V. , Nordström, K. J. V. , Becker, C. , Warthmann, N. , Chica, C. , Szarzynska, B. , Zytnicki, M. , Albani, M. C. , Kiefer, C. , Bergonzi, S. , Castaings, L. , Mateos, J. L. , Berns, M. C. , Bujdoso, N. , Piofczyk, T. , … Schneeberger, K. (2015). Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 1, 14023–14027. 10.1038/nplants.2014.23 PubMed DOI

Wong, W. S. W. , Yang, Z. , Goldman, N. , & Nielsen, R. (2004). Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics, 168(2), 1041–1051. 10.1534/genetics.104.031153 PubMed DOI PMC

Wullschleger, S. D. , Breen, A. L. , Iversen, C. M. , Olson, M. S. , Näsholm, T. , Ganeteg, U. , Wallenstein, M. D. , & Weston, D. J. (2015). Genomics in a changing arctic: Critical questions await the molecular ecologist. Molecular Ecology, 24, 2301–2309. 10.1111/mec.13166 PubMed DOI

Xiong, W. , He, L. , Lai, J. , Dooner, H. K. , & Du, C. (2014). HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 111, 10263–10268. 10.1073/pnas.1410068111 PubMed DOI PMC

Yang, L. , & Bennetzen, J. L. (2009). Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 106, 19922–19927. 10.1073/pnas.0908008106 PubMed DOI PMC

Yang, R. , Jarvis, D. E. , Chen, H. , Beilstein, M. A. , Grimwood, J. , Jenkins, J. , Shu, S. Q. , Prochnik, S. , Xin, M. , Ma, C. , Schmutz, J. , Wing, R. A. , Mitchell‐Olds, T. , Schumaker, K. S. , & Wang, X. (2013). The reference genome of the halophytic plant Eutrema salsugineum . Frontiers in Plant Science, 4, 46. 10.3389/fpls.2013.00046 PubMed DOI PMC

Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 13(5), 555–556. 10.1093/bioinformatics/13.5.555 PubMed DOI

Zhang, J. , Nielsen, R. , & Yang, Z. (2005). Evaluation of an improved branch‐site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12), 2472–2479. 10.1093/molbev/msi237 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...