The genome of Draba nivalis shows signatures of adaptation to the extreme environmental stresses of the Arctic
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1601
Central European Institute of Technology
240223/F20
Norges Forskningsråd
15-18545S
Grantová Agentura České Republiky
PubMed
33058468
PubMed Central
PMC7983928
DOI
10.1111/1755-0998.13280
Knihovny.cz E-zdroje
- Klíčová slova
- Arctic, Brassicaceae, adaptation, chromosome-scale assembly, linkage map,
- MeSH
- Brassicaceae * genetika MeSH
- fyziologická adaptace * MeSH
- genom rostlinný * MeSH
- genomika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
The Arctic is one of the most extreme terrestrial environments on the planet. Here, we present the first chromosome-scale genome assembly of a plant adapted to the high Arctic, Draba nivalis (Brassicaceae), an attractive model species for studying plant adaptation to the stresses imposed by this harsh environment. We used an iterative scaffolding strategy with data from short-reads, single-molecule long reads, proximity ligation data, and a genetic map to produce a 302 Mb assembly that is highly contiguous with 91.6% assembled into eight chromosomes (the base chromosome number). To identify candidate genes and gene families that may have facilitated adaptation to Arctic environmental stresses, we performed comparative genomic analyses with nine non-Arctic Brassicaceae species. We show that the D. nivalis genome contains expanded suites of genes associated with drought and cold stress (e.g., related to the maintenance of oxidation-reduction homeostasis, meiosis, and signaling pathways). The expansions of gene families associated with these functions appear to be driven in part by the activity of transposable elements. Tests of positive selection identify suites of candidate genes associated with meiosis and photoperiodism, as well as cold, drought, and oxidative stress responses. Our results reveal a multifaceted landscape of stress adaptation in the D. nivalis genome, offering avenues for the continued development of this species as an Arctic model plant.
CEITEC Masaryk University Brno Czech Republic
Department of Botany The University of British Columbia Vancouver BC Canada
Institute of Plant Sciences University of Bern Bern Switzerland
Zobrazit více v PubMed
Alexa, A. , Rahnenführer, J. , & Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics, 22(13), 1600–1607. 10.1093/bioinformatics/btl140 PubMed DOI
Apel, K. , & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. 10.1146/annurev.arplant.55.031903.141701 PubMed DOI
Arends, D. , Prins, P. , Jansen, R. C. , & Broman, K. W. (2010). R/qtl: High‐throughput multiple QTL mapping. Bioinformatics, 26, 2990–2992. PubMed PMC
Birkeland, S. , Gustafsson, A. L. S. , Brysting, A. K. , Brochmann, C. , & Nowak, M. D. (2020). Multiple genetic trajectories to extreme abiotic stress adaptation in Arctic Brassicaceae. Molecular Biology and Evolution, 37(7), 2052–2068. 10.1093/molbev/msaa068 PubMed DOI PMC
Boetzer, M. , & Pirovano, W. (2014). SSPACE‐LongRead: Scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics, 15, 211. 10.1186/1471-2105-15-211 PubMed DOI PMC
Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bomblies, K. , Higgins, J. D. , & Yant, L. (2015). Meiosis evolves: Adaptation to external and internal environments. New Phytologist, 208, 306–323. 10.1111/nph.13499 PubMed DOI
Brochmann, C. (1993). Reproductive strategies of diploid and polyploid populations of arctic Draba (Brassicaceae). Plant Systematics and Evolution, 185, 55–83. 10.1007/BF00937720 DOI
Brochmann, C. , Soltis, P. S. , & Soltis, D. E. (1992). Multiple origins of the octoploid Scandinavian endemic Draba cacuminum: Electrophoretic and morphological evidence. Nordic Journal of Botany, 12, 257–272. 10.1111/j.1756-1051.1992.tb01303.x DOI
Broman, K. W. , Wu, H. , Sen, S. , & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19, 889–890. 10.1093/bioinformatics/btg112 PubMed DOI
Caldwell, M. M. , Bornman, J. F. , Ballaré, C. L. , Flint, S. D. , & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical, Photobiological Sciences, 6, 252–266. 10.1039/b700019g PubMed DOI
Choudhury, R. R. , Neuhaus, J.‐M. , & Parisod, C. (2017). Resolving fine‐grained dynamics of retrotransposons: Comparative analysis of inferential methods and genomic resources. The Plant Journal, 90, 979–993. 10.1111/tpj.13524 PubMed DOI
Colella, J. P. , Talbot, S. L. , Brochmann, C. , Taylor, E. B. , Hoberg, E. P. , & Cook, J. A. (2020). Conservation genomics in a changing Arctic. Trends in Ecology, Evolution, 35, 149–162. 10.1016/j.tree.2019.09.008 PubMed DOI
Conesa, A. , Götz, S. , García‐Gómez, J. M. , Terol, J. , Talón, M. , & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676. 10.1093/bioinformatics/bti610 PubMed DOI
Danecek, P. , Auton, A. , Abecasis, G. , Albers, C. A. , Banks, E. , DePristo, M. A. , Handsaker, R. E. , Lunter, G. , Marth, G. T. , Sherry, S. T. , McVean, G. , Durbin, R. , … 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC
Dunning, L. T. , Olofsson, J. K. , Parisod, C. , Choudhury, R. R. , Moreno‐Villena, J. J. , Yang, Y. , Dionora, J. , Quick, W. P. , Park, M. , Bennetzen, J. L. , Besnard, G. , Nosil, P. , Osborne, C. P. , & Christin, P.‐A. (2019). Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the United States of America, 116, 4416–4425. 10.1073/pnas.1810031116 PubMed DOI PMC
Eaton, D. A. R. (2014). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30, 1844–1849. 10.1093/bioinformatics/btu121 PubMed DOI
El‐Baidouri, M. , & Panaud, O. (2013). Comparative genomic paleontology across plant kingdom reveals the dynamics of TE‐driven genome evolution. Genome Biology and Evolution, 5, 954–965. 10.1093/gbe/evt025 PubMed DOI PMC
El‐Gebali, S. , Mistry, J. , Bateman, A. , Eddy, S. R. , Luciani, A. , Potter, S. C. , & Finn, R. D. (2018). The Pfam protein families database in 2019. Nucleic Acids Research, 47, D427–D432. PubMed PMC
Ellinghaus, D. , Kurtz, S. , & Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9, 18. 10.1186/1471-2105-9-18 PubMed DOI PMC
Emms, D. M. , & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16, 157. 10.1186/s13059-015-0721-2 PubMed DOI PMC
Emms, D. M. , & Kelly, S. (2017). STRIDE: Species tree root inference from gene duplication events. Molecular Biology and Evolution, 34, 3267–3278. 10.1093/molbev/msx259 PubMed DOI PMC
Emms, D. , & Kelly, S. (2018). STAG: Species tree inference from all genes. Retrieved from https://www.biorxiv.org/content/10.1101/267914v1 DOI
Emms, D. M. , & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238. 10.1186/s13059-019-1832-y PubMed DOI PMC
Gentleman, R. C. , Carey, V. J. , Bates, D. M. , Bolstad, B. , Dettling, M. , Dudoit, S. , Ellis, B. , Gautier, L. , Ge, Y. , Gentry, J. , Hornik, K. , Hothorn, T. , Huber, W. , Iacus, S. , Irizarry, R. , Leisch, F. , Li, C. , Maechler, M. , Rossini, A. J. , … Zhang, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80. PubMed PMC
Grabherr, M. G. , Haas, B. J. , Yassour, M. , Levin, J. Z. , Thompson, D. A. , Amit, I. , Adiconis, X. , Fan, L. , Raychowdhury, R. , Zeng, Q. , Chen, Z. , Mauceli, E. , Hacohen, N. , Gnirke, A. , Rhind, N. , di Palma, F. , Birren, B. W. , Nusbaum, C. , Lindblad‐Toh, K. , … Regev, A. (2011). Full‐length transcriptome assembly from RNA‐Seq data without a reference genome. Nature Biotechnology, 29, 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Gremme, G. , Steinbiss, S. , & Kurtz, S. (2013). GenomeTools: A comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(3), 645–656. 10.1109/TCBB.2013.68 PubMed DOI
Grundt, H. H. , Kjølner, S. , Borgen, L. , Rieseberg, L. H. , & Brochmann, C. (2006). High biological species diversity in the arctic flora. Proceedings of the National Academy of Sciences of the United States of America, 103, 972–975. 10.1073/pnas.0510270103 PubMed DOI PMC
Grundt, H. H. , Obermayer, R. , & Borgen, L. (2005). Ploidal levels in the arctic‐alpine polyploid Draba lactea (Brassicaceae) and its low‐ploid relatives. Botanical Journal of the Linnean Society, 147, 333–347. 10.1111/j.1095-8339.2005.00377.x DOI
Guo, X. , Liu, J. , Hao, G. , Zhang, L. , Mao, K. , Wang, X. , Zhang, D. , Ma, T. , Hu, Q. , Al‐Shehbaz, I. A. , & Koch, M. A. (2017). Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics, 18, 176. 10.1186/s12864-017-3555-3 PubMed DOI PMC
Gupta, S. K. (2016). Biology and breeding of crucifers. CRC Press.
Gustafsson, A. L. S. , Skrede, I. , Rowe, H. C. , Gussarova, G. , Borgen, L. , Rieseberg, L. H. , Brochmann, C. , & Parisod, C. (2014). Genetics of cryptic Speciation within an Arctic mustard, Draba nivalis . PLoS One, 9, e93834. 10.1371/journal.pone.0093834 PubMed DOI PMC
Haas, B. J. , Papanicolaou, A. , Yassour, M. , Grabherr, M. , Blood, P. D. , Bowden, J. , Couger, M. B. , Eccles, D. , Li, B. O. , Lieber, M. , MacManes, M. D. , Ott, M. , Orvis, J. , Pochet, N. , Strozzi, F. , Weeks, N. , Westerman, R. , William, T. , Dewey, C. N. , … Regev, A. (2013). De novo transcript sequence reconstruction from RNA‐seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8, 1494–1512. 10.1038/nprot.2013.084 PubMed DOI PMC
Han, M. V. , Thomas, G. W. C. , Lugo‐Martinez, J. , & Hahn, M. W. (2013). Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular Biology and Evolution, 30, 1987–1997. 10.1093/molbev/mst100 PubMed DOI
Holt, C. , & Yandell, M. (2011). MAKER2: An annotation pipeline and genome‐database management tool for second‐generation genome projects. BMC Bioinformatics, 12, 491. 10.1186/1471-2105-12-491 PubMed DOI PMC
Hou, Q. , & Bartels, D. (2014). Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Annals of Botany, 115, 465–479. 10.1093/aob/mcu152 PubMed DOI PMC
Hu, K. , Xu, K. , Wen, J. , Yi, B. , Shen, J. , Ma, C. , Fu, T. , Ouyang, Y. , & Tu, J. (2019). Helitron distribution in Brassicaceae and whole genome Helitron density as a character for distinguishing plant species. BMC Bioinformatics, 20, 354–420. 10.1186/s12859-019-2945-8 PubMed DOI PMC
Ito, H. , Gaubert, H. , Bucher, E. , Mirouze, M. , Vaillant, I. , & Paszkowski, J. (2011). An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472, 115–120. 10.1038/nature09861 PubMed DOI
Jones, P. , Binns, D. , Chang, H.‐Y. , Fraser, M. , Li, W. , McAnulla, C. , McWilliam, H. , Maslen, J. , Mitchell, A. , Nuka, G. , Pesseat, S. , Quinn, A. F. , Sangrador‐Vegas, A. , Scheremetjew, M. , Yong, S.‐Y. , Lopez, R. , & Hunter, S. (2014). InterProScan 5: Genome‐scale protein function classification. Bioinformatics, 30, 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC
Jordan, G. , & Goldman, N. (2012). The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Molecular Biology and Evolution, 29(4), 1125–1139. 10.1093/molbev/msr272 PubMed DOI
Jordon‐Thaden, I. E. , Al‐Shehbaz, I. A. , & Koch, M. A. (2013). Species richness of the globally distributed, arctic–alpine genus Draba L. (Brassicaceae). Alpine Botany, 123, 97–106. 10.1007/s00035-013-0120-9 DOI
Katoh, K. , Kuma, K. , Toh, H. , & Miyata, T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518. 10.1093/nar/gki198 PubMed DOI PMC
Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press.
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5, 59. PubMed PMC
Kurtz, S. , Phillippy, A. , Delcher, A. L. , Smoot, M. , Shumway, M. , Antonescu, C. , & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology, 5, R12. PubMed PMC
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. Preprint at https://arxiv.org/abs/1303.3997
Li, H. , & Durbin, R. (2010). Fast and accurate long‐read alignment with Burrows‐Wheeler transform. Bioinformatics, 26, 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Li, W. , & Godzik, A. (2006). Cd‐hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659. 10.1093/bioinformatics/btl158 PubMed DOI
Llorens, C. , Futami, R. , Covelli, L. , Domínguez‐Escribá, L. , Viu, J. M. , Tamarit, D. , Aguilar‐Rodríguez, J. , Vicente‐Ripolles, M. , Fuster, G. , Bernet, G. P. , Maumus, F. , Munoz‐Pomer, A. , Sempere, J. M. , Latorre, A. , & Moya, A. (2011). The Gypsy Database (GyDB) of mobile genetic elements: Release 2.0. Nucleic Acids Research, 39, D70–D74. PubMed PMC
Löytynoja, A. , & Goldman, N. (2005). An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10557–10562. PubMed PMC
Lütz, C. (2010). Cell physiology of plants growing in cold environments. Protoplasma, 244, 53–73. 10.1007/s00709-010-0161-5 PubMed DOI
Lysak, M. A. , Mandáková, T. , & Schranz, M. E. (2016). Paleogenomics of crucifers: Ancestral genomic blocks revisited. Current Opinion in Plant Biology, 30, 108–115. PubMed
Mandáková, T. , Hloušková, P. , Koch, M. A. , & Lysak, M. A. (2020). Genome evolution in Arabideae was marked by frequent centromere repositioning. The Plant Cell, 32(3), 650–665. 10.1105/tpc.19.00557 PubMed DOI PMC
Mandáková, T. , & Lysak, M. A. (2016a). Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology, 1, 1–9. PubMed
Mandáková, T. , & Lysak, M. A. (2016b). Painting of Arabidopsis chromosomes with chromosome‐specific BAC clones. Current Protocols in Plant Biology, 1, 359–371. PubMed
McKenna, A. , Hanna, M. , Banks, E. , Sivachenko, A. , Cibulskis, K. , Kernytsky, A. , Garimella, K. , Altshuler, D. , Gabriel, S. , Daly, M. , & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Research, 20(9), 1297–1303. 10.1101/gr.107524.110 PubMed DOI PMC
Mittler, R. (2017). ROS are good. Trends in Plant Science, 22, 11–19. 10.1016/j.tplants.2016.08.002 PubMed DOI
Neill, S. J. , Desikan, R. , Clarke, A. , Hurst, R. D. , & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247. 10.1093/jexbot/53.372.1237 PubMed DOI
Planas‐Riverola, A. , Gupta, A. , Betegón‐Putze, I. , Bosch, N. , Ibañes, M. , & Caño‐Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146, dev151894. 10.1242/dev.151894 PubMed DOI PMC
Privman, E. , Penn, O. , & Pupko, T. (2012). Improving the performance of positive selection inference by filtering unreliable alignment regions. Molecular Biology Evolution, 29(1), 1–5. 10.1093/molbev/msr177 PubMed DOI
Qiao, X. , Li, Q. , Yin, H. , Qi, K. , Li, L. , Wang, R. , Zhang, S. , & Paterson, A. H. (2019). Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology, 20, 1–23. 10.1186/s13059-019-1650-2 PubMed DOI PMC
Quadrana, L. , Bortolini Silveira, A. , Mayhew, G. F. , LeBlanc, C. , Martienssen, R. A. , Jeddeloh, J. A. , & Colot, V. (2016). The Arabidopsis thaliana mobilome and its impact at the species level. eLife, 5, 6919. 10.7554/eLife.15716 PubMed DOI PMC
Rice, P. , Longden, I. , & Bleasby, A. (2000). EMBOSS : The European Molecular Biology Open Software Suite. Trends in Genetics, 16(6), 2–3. PubMed
Sanderson, M. (2003). r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19, 301–302. 10.1093/bioinformatics/19.2.301 PubMed DOI
Schranz, M. , Lysak, M. , & Mitchell‐Olds, T. (2006). The ABC's of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends in Plant Science, 11, 535–542. 10.1016/j.tplants.2006.09.002 PubMed DOI
Sela, I. , Ashkenazy, H. , Katoh, K. , & Pupko, T. (2015). GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research, 43, W7–W14. 10.1093/nar/gkv318 PubMed DOI PMC
Simao, F. A. , Waterhouse, R. M. , Ioannidis, P. , Kriventseva, E. V. , & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single‐copy orthologs. Bioinformatics, 31, 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI
Skrede, I. , Brochmann, C. , Borgen, L. , & Rieseberg, L. H. (2008). Genetics of intrinsic postzygotic isolation in a circumpolar plant species, Draba nivalis (Brassicaceae). Evolution, 62, 1840–1851. PubMed
Stanke, M. , Diekhans, M. , Baertsch, R. , & Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24, 637–644. 10.1093/bioinformatics/btn013 PubMed DOI
Steinbiss, S. , Willhoeft, U. , Gremme, G. , & Kurtz, S. (2009). Fine‐grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Research, 37, 7002–7013. 10.1093/nar/gkp759 PubMed DOI PMC
Steinegger, M. , & Söding, J. M. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology, 35, 1026–1028. 10.1038/nbt.3988 PubMed DOI
Taylor, J. , & Butler, D. (2017). RPackage ASMap: Efficient genetic linkage map construction and diagnosis. Journal of Statistical Software, 79, 1–29. PubMed
Ueda, M. , & Seki, M. (2020). Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiology, 182, 15–26. 10.1104/pp.19.00988 PubMed DOI PMC
Vurture, G. W. , Sedlazeck, F. J. , Nattestad, M. , Underwood, C. J. , Fang, H. , Gurtowski, J. , & Schatz, M. C. (2017). GenomeScope: Fast reference‐free genome profiling from short reads. Bioinformatics, 33, 2202–2204. 10.1093/bioinformatics/btx153 PubMed DOI PMC
Wang, Y. , Tang, H. , DeBarry, J. D. , Tan, X. , Li, J. , Wang, X. , Lee, T.‐H. , Jin, H. , Marler, B. , Guo, H. , Kissinger, J. C. , & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49. 10.1093/nar/gkr1293 PubMed DOI PMC
Warren, R. L. , Yang, C. , Vandervalk, B. P. , Behsaz, B. , Lagman, A. , Jones, S. J. , & Birol, I. (2015). LINKS: Scalable, alignment‐free scaffolding of draft genomes with long reads. GigaScience, 4, 35. 10.1186/s13742-015-0076-3 PubMed DOI PMC
Wicker, T. , Sabot, F. , Hua‐Van, A. , Bennetzen, J. L. , Capy, P. , Chalhoub, B. , Flavell, A. , Leroy, P. , Morgante, M. , Panaud, O. , Paux, E. , SanMiguel, P. , & Schulman, A. H. (2009). Reply: A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nature Reviews Genetics, 10, 276. 10.1038/nrg2165-c4 PubMed DOI
Willing, E.‐M. , Rawat, V. , Mandáková, T. , Maumus, F. , James, G. V. , Nordström, K. J. V. , Becker, C. , Warthmann, N. , Chica, C. , Szarzynska, B. , Zytnicki, M. , Albani, M. C. , Kiefer, C. , Bergonzi, S. , Castaings, L. , Mateos, J. L. , Berns, M. C. , Bujdoso, N. , Piofczyk, T. , … Schneeberger, K. (2015). Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 1, 14023–14027. 10.1038/nplants.2014.23 PubMed DOI
Wong, W. S. W. , Yang, Z. , Goldman, N. , & Nielsen, R. (2004). Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics, 168(2), 1041–1051. 10.1534/genetics.104.031153 PubMed DOI PMC
Wullschleger, S. D. , Breen, A. L. , Iversen, C. M. , Olson, M. S. , Näsholm, T. , Ganeteg, U. , Wallenstein, M. D. , & Weston, D. J. (2015). Genomics in a changing arctic: Critical questions await the molecular ecologist. Molecular Ecology, 24, 2301–2309. 10.1111/mec.13166 PubMed DOI
Xiong, W. , He, L. , Lai, J. , Dooner, H. K. , & Du, C. (2014). HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 111, 10263–10268. 10.1073/pnas.1410068111 PubMed DOI PMC
Yang, L. , & Bennetzen, J. L. (2009). Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 106, 19922–19927. 10.1073/pnas.0908008106 PubMed DOI PMC
Yang, R. , Jarvis, D. E. , Chen, H. , Beilstein, M. A. , Grimwood, J. , Jenkins, J. , Shu, S. Q. , Prochnik, S. , Xin, M. , Ma, C. , Schmutz, J. , Wing, R. A. , Mitchell‐Olds, T. , Schumaker, K. S. , & Wang, X. (2013). The reference genome of the halophytic plant Eutrema salsugineum . Frontiers in Plant Science, 4, 46. 10.3389/fpls.2013.00046 PubMed DOI PMC
Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 13(5), 555–556. 10.1093/bioinformatics/13.5.555 PubMed DOI
Zhang, J. , Nielsen, R. , & Yang, Z. (2005). Evaluation of an improved branch‐site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12), 2472–2479. 10.1093/molbev/msi237 PubMed DOI