Repeated Whole-Genome Duplication, Karyotype Reshuffling, and Biased Retention of Stress-Responding Genes in Buckler Mustard
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26668305
PubMed Central
PMC4746682
DOI
10.1105/tpc.15.00791
PII: tpc.15.00791
Knihovny.cz E-zdroje
- MeSH
- duplikace genu * MeSH
- fluorescence MeSH
- fyziologický stres genetika MeSH
- genová ontologie MeSH
- hořčice rodu Brassica genetika MeSH
- karyotyp * MeSH
- modely genetické MeSH
- rostlinné geny * MeSH
- selekce (genetika) MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Whole-genome duplication (WGD) is usually followed by gene loss and karyotype repatterning. Despite evidence of new adaptive traits associated with WGD, the underpinnings and evolutionary significance of such genome fractionation remain elusive. Here, we use Buckler mustard (Biscutella laevigata) to infer processes that have driven the retention of duplicated genes after recurrent WGDs. In addition to the β- and α-WGD events shared by all Brassicaceae, cytogenetic and transcriptome analyses revealed two younger WGD events that occurred at times of environmental changes in the clade of Buckler mustard (Biscutelleae): a mesopolyploidy event from the late Miocene that was followed by considerable karyotype reshuffling and chromosome number reduction and a neopolyploidy event during the Pleistocene. Although a considerable number of the older duplicates presented signatures of retention under positive selection, the majority of retained duplicates arising from the younger mesopolyploidy WGD event matched predictions of the gene balance hypothesis and showed evidence of strong purifying selection as well as enrichment in gene categories responding to abiotic stressors. Retention of large stretches of chromosomes for both genomic copies supported the hypothesis that cycles of WGD and biased fractionation shaped the genome of this stress-tolerant polypolyloid, promoting the adaptive recruitment of stress-responding genes in the face of environmental challenges.
Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland
Laboratory of Evolutionary Botany University of Neuchâtel 2000 Neuchâtel Switzerland
Zobrazit více v PubMed
Al-Shahrour F., Díaz-Uriarte R., Dopazo J. (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20: 578–580. PubMed
Arrigo N., Barker M.S. (2012). Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15: 140–146. PubMed
Babst-Kostecka A.A., Parisod C., Godé C., Vollenweider P., Pauwels M. (2014). Patterns of genetic divergence among populations of the pseudometallophyte Biscutella laevigata from southern Poland. Plant Soil 383: 245–256.
Bardil A., Tayalé A., Parisod C. (2015). Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex. Plant J. 82: 621–631. PubMed
Barker M.S., Vogel H., Schranz M.E. (2009). Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 1: 391–399. PubMed PMC
Benaglia T., Chauveau D., Hunter D.R., Young D.S. (2009). mixtools: An R package for analyzing finite mixture models. J. Stat. Softw. 32: 1–29.
Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57: 289–300.
Birchler J.A., Veitia R.A. (2012). Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl. Acad. Sci. USA 109: 14746–14753. PubMed PMC
Blanc G., Wolfe K.H. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16: 1667–1678. PubMed PMC
Blondel J., Aronson J., Bodiou J.-Y., Boeuf G. (2010). The Mediterranean Region: Biological Diversity in Space and Time. (Oxford, UK: Oxford University Press; ).
Bowers J.E., Chapman B.A., Rong J., Paterson A.H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438. PubMed
Burgess A., Vigneron S., Brioudes E., Labbé J.-C., Lorca T., Castro A. (2010). Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc. Natl. Acad. Sci. USA 107: 12564–12569. PubMed PMC
Chalhoub B., et al. (2014). Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950–953. PubMed
Chao D.-Y., Dilkes B., Luo H., Douglas A., Yakubova E., Lahner B., Salt D.E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341: 658–659. PubMed PMC
Chevreux B., Pfisterer T., Drescher B., Driesel A.J., Müller W.E.G., Wetter T., Suhai S. (2004). Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14: 1147–1159. PubMed PMC
Conant G.C., Birchler J.A., Pires J.C. (2014). Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19: 91–98. PubMed
Couvreur T.L.P., Franzke A., Al-Shehbaz I.A., Bakker F.T., Koch M.A., Mummenhoff K. (2010). Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol. 27: 55–71. PubMed
De Smet R., Adams K.L., Vandepoele K., Van Montagu M.C.E., Maere S., Van de Peer Y. (2013). Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl. Acad. Sci. USA 110: 2898–2903. PubMed PMC
Doyle J.J., Flagel L.E., Paterson A.H., Rapp R.A., Soltis D.E., Soltis P.S., Wendel J.F. (2008). Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 42: 443–461. PubMed
Edger P.P., et al. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl. Acad. Sci. USA 112: 8362–8366. PubMed PMC
Favarger C. (1971). Relations entre la flore méditerranéenne et celle des enclaves à végétation subméditerranéenne d’Europe centrale. Boissiera 19: 149–168.
Fawcett J.A., Maere S., Van de Peer Y. (2009). Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA 106: 5737–5742. PubMed PMC
Flagel L.E., Wendel J.F. (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557–564. PubMed
Freeling M. (2009). Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60: 433–453. PubMed
Freeling M., Woodhouse M.R., Subramaniam S., Turco G., Lisch D., Schnable J.C. (2012). Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant Biol. 15: 131–139. PubMed
Garsmeur O., Schnable J.C., Almeida A., Jourda C., D’Hont A., Freeling M. (2014). Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31: 448–454. PubMed
Gasser M. (1986). Genetic-ecological investigations in Biscutella laevigata L. Veröff. Geobot. Inst. ETH. 86: 7–86.
Hazel J., Krutkramelis K., Mooney P., Tomschik M., Gerow K., Oakey J., Gatlin J.C. (2013). Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342: 853–856. PubMed PMC
Hohmann N., Wolf E.M., Lysak M.A., Koch M.A. (2015). A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27: 2770–2784. PubMed PMC
Innan H., Kondrashov F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11: 97–108. PubMed
Jalas J., Suominen J., Lampinen R. (1996). Atlas Florae Europaeae. (Helsinki, Finland: The Academic Bookstore; ).
Jiao Y., et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed
Kagale S., Robinson S.J., Nixon J., Xiao R., Huebert T., Condie J., Kessler D., Clarke W.E., Edger P.P., Links M.G., Sharpe A.G., Parkin I.A.P. (2014). Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 26: 2777–2791. PubMed PMC
Kocsis E., Trus B.L., Steer C.J., Bisher M.E., Steven A.C. (1991). Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107: 6–14. PubMed
Körner C. (2003). Alpine Plant Life. (Heidelberg, Germany: Springer Verlag; ).
Lamesch P., et al. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40: D1202–D1210. PubMed PMC
Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Clarkson J.J., Grandbastien M.A., Leitch A.R. (2007). Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 175: 756–763. PubMed
Lynch M., Conery J.S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155. PubMed
Lysak, M.A., and Koch, M.A. (2011). Phylogeny, genome, and karyotype evolution of Crucifers (Brassicaceae). In Genetics and Genomics of the Brassicaceae, R. Schmidt and I. Bancroft, eds (New York: Springer-Verlag), pp. 1–31.
Maere S., De Bodt S., Raes J., Casneuf T., Van Montagu M., Kuiper M., Van de Peer Y. (2005). Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. USA 102: 5454–5459. PubMed PMC
Mandáková T., Joly S., Krzywinski M., Mummenhoff K., Lysak M.A. (2010). Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277–2290. PubMed PMC
Mandáková T., Lysak M.A. (2008). Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20: 2559–2570. PubMed PMC
Manton I. (1937). The problem of Biscutella laevigata L. II. The evidence from meiosis. Ann. Bot. (Lond.) 51: 439–465.
McGrath C.L., Lynch M. (2012). Evolutionary significance of whole-genome duplication. In Polyploidy and Genome Evolution, Soltis P.S., Soltis D.E., eds (Berlin, Heidelberg, Germany: Springer-Verlag; ), pp. 1–20.
Nei M. (2013). Mutation-Driven Evolution. (Oxford, UK: Oxford University Press; ).
Ohno S. (1970). Evolution by Gene Duplication. (Berlin, Germany: Springer; ).
Olowokudejo J.D. (1986). The infrageneric classification of Biscutella (Cruciferae). Brittonia 38: 86–88.
Parisod C., Besnard G. (2007). Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol. Ecol. 16: 2755–2767. PubMed
Parisod C., Christin P.A. (2008). Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytol. 178: 436–447. PubMed
Parisod C., Holderegger R., Brochmann C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186: 5–17. PubMed
Potapova T.A., Sivakumar S., Flynn J.N., Li R., Gorbsky G.J. (2011). Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol. Biol. Cell 22: 1191–1206. PubMed PMC
Price M.N., Dehal P.S., Arkin A.P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26: 1641–1650. PubMed PMC
Primmer C.R., Papakostas S., Leder E.H., Davis M.J., Ragan M.A. (2013). Annotated genes and nonannotated genomes: cross-species use of Gene Ontology in ecology and evolution research. Mol. Ecol. 22: 3216–3241. PubMed
Ramsey J., Schemske D.W. (2002). Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33: 589–639.
Ranwez V., Harispe S., Delsuc F., Douzery E.J.P. (2011). MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS One 6: e22594. PubMed PMC
Schmieder R., Edwards R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863–864. PubMed PMC
Schönfelder, P. (1968). Chromozomenzahlen einiger Arten des Gattung Biscutella L. Österreichische Botanische Zeitschrift 115: 363–371.
Schranz M.E., Lysak M.A., Mitchell-Olds T. (2006). The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11: 535–542. PubMed
Schranz M.E., Mohammadin S., Edger P.P. (2012). Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15: 147–153. PubMed
Slater G.S., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31. PubMed PMC
Soltis D.E., Segovia-Salcedo M.C., Jordon-Thaden I., Majure L., Miles N.M., Mavrodiev E.V., Mei W., Cortez M.B., Soltis P.S., Gitzendanner M.A. (2014). Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (). New Phytol. 202: 1105–1117. PubMed
Tang H., Woodhouse M.R., Cheng F., Schnable J.C., Pedersen B.S., Conant G., Wang X., Freeling M., Pires J.C. (2012). Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190: 1563–1574. PubMed PMC
Tank D.C., Eastman J.M., Pennell M.W., Soltis P.S., Soltis D.E., Hinchliff C.E., Brown J.W., Sessa E.B., Harmon L.J. (2015). Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207: 454–467. PubMed
Tayalé A., Parisod C. (2013). Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet. Genome Res. 140: 79–96. PubMed
Tremetsberger K., Konig C., Samuel R., Pinsker W., Stuessy T.F. (2002). Infraspecific genetic variation in Biscutella laevigata (Brassicaceae): new focus on Irene Manton’s hypothesis. Plant Syst. Evol. 233: 163–181.
Van de Peer Y., Maere S., Meyer A. (2009). The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10: 725–732. PubMed
Vanneste K., Baele G., Maere S., Van de Peer Y. (2014b). Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24: 1334–1347. PubMed PMC
Vanneste K., Maere S., Van de Peer Y. (2014a). Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369: 20130353. PubMed PMC
Vanneste K., Van de Peer Y., Maere S. (2013). Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30: 177–190. PubMed
Veitia R.A., Bottani S., Birchler J.A. (2013). Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet. 29: 385–393. PubMed
Wagner A. (2011). The Origins of Evolutionary Innovations. (Oxford, UK: Oxford University Press; ).
Wolfe K.H. (2001). Yesterday’s polyploids and the mystery of diploidization. Nat. Rev. Genet. 2: 333–341. PubMed
Wood T.E., Takebayashi N., Barker M.S., Mayrose I., Greenspoon P.B., Rieseberg L.H. (2009). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106: 13875–13879. PubMed PMC
Woodhouse M.R., Cheng F., Pires J.C., Lisch D., Freeling M., Wang X. (2014). Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc. Natl. Acad. Sci. USA 111: 5283–5288. PubMed PMC
Yang Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586–1591. PubMed
Biased Retention of Environment-Responsive Genes Following Genome Fractionation
Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation
The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches
Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning
Monophyletic Origin and Evolution of the Largest Crucifer Genomes
Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana