Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27531496
DOI
10.1007/s11103-016-0524-1
PII: 10.1007/s11103-016-0524-1
Knihovny.cz E-zdroje
- Klíčová slova
- 45S ribosomal DNA, Arabidopsis thaliana, Chromatin assembly factor, Intergenic spacer, Nucleolus organizer region, rDNA rearrangements,
- MeSH
- Arabidopsis genetika MeSH
- faktor 1 pro uspořádání chromatinu genetika MeSH
- genetická variace genetika MeSH
- mezerníky ribozomální DNA genetika MeSH
- mutace MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- RNA ribozomální genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 1 pro uspořádání chromatinu MeSH
- mezerníky ribozomální DNA MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč
Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.
Centro de Biologia Molecular Severo Ochoa CSIC UAM Nicolas Cabrera 1 Madrid 28049 Spain
Institute of Biophysics ASCR v v i Královopolská 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Genes Dev. 2016 Jan 15;30(2):177-90 PubMed
J Mol Biol. 1986 Jan 20;187(2):169-83 PubMed
BMC Evol Biol. 2013 Feb 14;13:42 PubMed
Mol Biol Rep. 2016 Apr;43(4):323-32 PubMed
Plant J. 2015 Jan;81(2):198-209 PubMed
Heredity (Edinb). 2013 Jul;111(1):23-33 PubMed
Nucleic Acids Res. 1989 Aug 11;17(15):6395-6 PubMed
Int J Food Microbiol. 2004 Sep 15;95(3):321-31 PubMed
Plant J. 1996 Feb;9(2):273-82 PubMed
Plant Cell. 2006 Oct;18(10):2431-42 PubMed
J Biol Chem. 2006 Apr 7;281(14):9560-8 PubMed
Cell. 1986 Dec 26;47(6):901-11 PubMed
Genes Dev. 2004 Apr 1;18(7):782-93 PubMed
Cell. 2001 Jan 12;104(1):131-42 PubMed
ScientificWorldJournal. 2014;2014:147963 PubMed
Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 PubMed
Plant Physiol. 2007 May;144(1):105-20 PubMed
Biochim Biophys Acta. 2007 May-Jun;1769(5-6):383-92 PubMed
Mob DNA. 2013 Sep 23;4(1):20 PubMed
Plant J. 1996 Feb;9(2):259-72 PubMed
Plant Cell. 2014 Mar;26(3):1330-44 PubMed
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11418-23 PubMed
Plant J. 1995 Feb;7(2):273-86 PubMed
Development. 2006 Nov;133(21):4163-72 PubMed
Plant Cell. 2008 Oct;20(10):2559-70 PubMed
Cell. 2004 May 14;117(4):441-53 PubMed
Plant Cell. 2010 Aug;22(8):2768-80 PubMed
Plant Cell. 2016 Jan;28(1):17-27 PubMed
Genetics. 2007 Feb;175(2):477-85 PubMed
J Mol Biol. 1991 Oct 20;221(4):1209-22 PubMed
Plant J. 2016 Nov;88(3):411-424 PubMed
Genes Dev. 2010 Jun 1;24(11):1119-32 PubMed
Infect Genet Evol. 2015 Aug;34:450-6 PubMed
Folia Biol (Praha). 1991;37(3-4):224-6 PubMed
Appl Environ Microbiol. 2007 Feb;73(3):838-45 PubMed
Nucleus. 2011 Jul-Aug;2(4):294-9 PubMed
Mol Cell Biol. 1990 Sep;10 (9):4816-25 PubMed
Cell. 1989 Jul 14;58(1):15-25 PubMed
New Phytol. 2015 Oct;208(2):596-607 PubMed
J Exp Bot. 2002 Nov;53(378):2151-8 PubMed
Plant J. 2015 Jul;83(1):18-37 PubMed
Mol Phylogenet Evol. 2001 Jan;18(1):136-42 PubMed
Nat Genet. 2013 Aug;45(8):884-890 PubMed
Genes Dev. 2006 May 15;20(10):1283-93 PubMed
BMC Plant Biol. 2010 Aug 16;10:176 PubMed
PLoS Genet. 2010 Nov 24;6(11):e1001225 PubMed
Genes Dev. 2013 Jul 15;27(14):1545-50 PubMed
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways
G4 Structures in Control of Replication and Transcription of rRNA Genes