Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana

. 2016 Nov ; 92 (4-5) : 457-471. [epub] 20160816

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27531496
Odkazy

PubMed 27531496
DOI 10.1007/s11103-016-0524-1
PII: 10.1007/s11103-016-0524-1
Knihovny.cz E-zdroje

Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.

Zobrazit více v PubMed

Genes Dev. 2016 Jan 15;30(2):177-90 PubMed

J Mol Biol. 1986 Jan 20;187(2):169-83 PubMed

BMC Evol Biol. 2013 Feb 14;13:42 PubMed

Mol Biol Rep. 2016 Apr;43(4):323-32 PubMed

Plant J. 2015 Jan;81(2):198-209 PubMed

Heredity (Edinb). 2013 Jul;111(1):23-33 PubMed

Nucleic Acids Res. 1989 Aug 11;17(15):6395-6 PubMed

Int J Food Microbiol. 2004 Sep 15;95(3):321-31 PubMed

Plant J. 1996 Feb;9(2):273-82 PubMed

Plant Cell. 2006 Oct;18(10):2431-42 PubMed

J Biol Chem. 2006 Apr 7;281(14):9560-8 PubMed

Cell. 1986 Dec 26;47(6):901-11 PubMed

Genes Dev. 2004 Apr 1;18(7):782-93 PubMed

Cell. 2001 Jan 12;104(1):131-42 PubMed

ScientificWorldJournal. 2014;2014:147963 PubMed

Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 PubMed

Plant Physiol. 2007 May;144(1):105-20 PubMed

Biochim Biophys Acta. 2007 May-Jun;1769(5-6):383-92 PubMed

Mob DNA. 2013 Sep 23;4(1):20 PubMed

Plant J. 1996 Feb;9(2):259-72 PubMed

Plant Cell. 2014 Mar;26(3):1330-44 PubMed

Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11418-23 PubMed

Plant J. 1995 Feb;7(2):273-86 PubMed

Development. 2006 Nov;133(21):4163-72 PubMed

Plant Cell. 2008 Oct;20(10):2559-70 PubMed

Cell. 2004 May 14;117(4):441-53 PubMed

Plant Cell. 2010 Aug;22(8):2768-80 PubMed

Plant Cell. 2016 Jan;28(1):17-27 PubMed

Genetics. 2007 Feb;175(2):477-85 PubMed

J Mol Biol. 1991 Oct 20;221(4):1209-22 PubMed

Plant J. 2016 Nov;88(3):411-424 PubMed

Genes Dev. 2010 Jun 1;24(11):1119-32 PubMed

Infect Genet Evol. 2015 Aug;34:450-6 PubMed

Folia Biol (Praha). 1991;37(3-4):224-6 PubMed

Appl Environ Microbiol. 2007 Feb;73(3):838-45 PubMed

Nucleus. 2011 Jul-Aug;2(4):294-9 PubMed

Mol Cell Biol. 1990 Sep;10 (9):4816-25 PubMed

Cell. 1989 Jul 14;58(1):15-25 PubMed

New Phytol. 2015 Oct;208(2):596-607 PubMed

J Exp Bot. 2002 Nov;53(378):2151-8 PubMed

Plant J. 2015 Jul;83(1):18-37 PubMed

Mol Phylogenet Evol. 2001 Jan;18(1):136-42 PubMed

Nat Genet. 2013 Aug;45(8):884-890 PubMed

Genes Dev. 2006 May 15;20(10):1283-93 PubMed

BMC Plant Biol. 2010 Aug 16;10:176 PubMed

PLoS Genet. 2010 Nov 24;6(11):e1001225 PubMed

Genes Dev. 2013 Jul 15;27(14):1545-50 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Transcriptional Silencing of 35S rDNA in Tragopogon porrifolius Correlates with Cytosine Methylation in Sequence-Specific Manner

. 2024 Jul 09 ; 25 (14) : . [epub] 20240709

The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics

. 2024 Mar 01 ; 41 (3) : .

The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera

. 2023 Jun 01 ; 15 (6) : .

The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways

. 2021 Jan 28 ; 22 (3) : . [epub] 20210128

G4 Structures in Control of Replication and Transcription of rRNA Genes

. 2020 ; 11 () : 593692. [epub] 20201008

Intragenomic heterogeneity of intergenic ribosomal DNA spacers in Cucurbita moschata is determined by DNA minisatellites with variable potential to form non-canonical DNA conformations

. 2019 Jun 01 ; 26 (3) : 273-286.

Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.)

. 2017 May 18 ; 18 (1) : 391. [epub] 20170518

Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana

. 2017 May 03 ; 18 (1) : 75. [epub] 20170503

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace