G4 Structures in Control of Replication and Transcription of rRNA Genes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33133121
PubMed Central
PMC7579416
DOI
10.3389/fpls.2020.593692
Knihovny.cz E-zdroje
- Klíčová slova
- G4, quadruplex DNA, rDNA stability, replication, ribosomal RNA genes, transcription,
- Publikační typ
- časopisecké články MeSH
Genes encoding 45S ribosomal RNA (rDNA) are known for their abundance within eukaryotic genomes and for their unstable copy numbers in response to changes in various genetic and epigenetic factors. Commonly, we understand as epigenetic factors (affecting gene expression without a change in DNA sequence), namely DNA methylation, histone posttranslational modifications, histone variants, RNA interference, nucleosome remodeling and assembly, and chromosome position effect. All these were actually shown to affect activity and stability of rDNA. Here, we focus on another phenomenon - the potential of DNA containing shortly spaced oligo-guanine tracts to form quadruplex structures (G4). Interestingly, sites with a high propensity to form G4 were described in yeast, animal, and plant rDNAs, in addition to G4 at telomeres, some gene promoters, and transposons, suggesting the evolutionary ancient origin of G4 as a regulatory module. Here, we present examples of rDNA promoter regions with extremely high potential to form G4 in two model plants, Arabidopsis thaliana and Physcomitrella patens. The high G4 potential is balanced by the activity of G4-resolving enzymes. The ability of rDNA to undergo these "structural gymnastics" thus represents another layer of the rich repertoire of epigenetic regulations, which is pronounced in rDNA due to its highly repetitive character.
Zobrazit více v PubMed
Agrawal S., Ganley A. R. D. (2018). The conservation landscape of the human ribosomal RNA gene repeats. PLoS One 13:e0207531. 10.1371/journal.pone.0207531, PMID: PubMed DOI PMC
Bayev A. A., Georgiev O. I., Hadjiolov A. A., Kermekchiev M. B., Nikolaev N., Skryabin K. G., et al. . (1980). The structure of the yeast ribosomal RNA genes. 2. The nucleotide-sequence of the initiation site for ribosomal RNA transcription. Nucleic Acids Res. 8, 4919–4926. 10.1093/nar/8.21.4919, PMID: PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J. L. (2016). Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 44, 1746–1759. 10.1093/nar/gkw006, PMID: PubMed DOI PMC
Campell B. R., Song Y. G., Posch T. E., Cullis C. A., Town C. D. (1992). Sequence and organization of 5s ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112, 225–228. 10.1016/0378-1119(92)90380-8, PMID: PubMed DOI
Capra J. A., Paeschke K., Singh M., Zakian V. A. (2010). G-Quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput. Biol. 6:e1000861. 10.1371/journal.pcbi.1000861, PMID: PubMed DOI PMC
Cesarini E., Mariotti F. R., Cioci F., Camilloni G. (2010). RNA polymerase I transcription silences noncoding RNAs at the ribosomal DNA locus in Saccharomyces cerevisiae. Eukaryot. Cell 9, 325–335. 10.1128/EC.00280-09, PMID: PubMed DOI PMC
Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev. 30, 177–190. 10.1101/gad.273755.115, PMID: PubMed DOI PMC
Cloix C., Yukawa Y., Tutois S., Sugiura M., Tourmente S. (2003). In vitro analysis of the sequences required for transcription of the Arabidopsis thaliana 5S rRNA genes. Plant J. 35, 251–261. 10.1046/j.1365-313x.2003.01793.x, PMID: PubMed DOI
Copenhaver G. P., Doelling J. H., Gens J. S., Pikaard C. S. (1995). Use of RFLPs larger than 100-Kbp to map the position and internal organization of the nucleolus organizer region on chromosome-2 in Arabidopsis thaliana. Plant J. 7, 273–286. 10.1046/j.1365-313x.1995.7020273.x, PMID: PubMed DOI
Doelling J. H., Gaudino R. J., Pikaard C. S. (1993). Functional-analysis of Arabidopsis thaliana ribosomal RNA gene and spacer promoters in vivo and by transient expression. Proc. Natl. Acad. Sci. U. S. A. 90, 7528–7532. 10.1073/pnas.90.16.7528, PMID: PubMed DOI PMC
Dorn A., Feller L., Castri D., Rohrig S., Enderle J., Herrmann N. J., et al. . (2019). An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. PLoS Genet. 15:e1008174. 10.1371/journal.pgen.1008174, PMID: PubMed DOI PMC
Dvorackova M., Fojtova M., Fajkus J. (2015). Chromatin dynamics of plant telomeres and ribosomal genes. Plant J. 83, 18–37. 10.1111/tpj.12822, PMID: PubMed DOI
Earley K. W., Pontvianne F., Wierzbicki A. T., Blevins T., Tucker S., Costa-Nunes P., et al. . (2010). Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes Dev. 24, 1119–1132. 10.1101/gad.1914110, PMID: PubMed DOI PMC
Faure G., Revy P., Schertzer M., Londono-Vallejo A., Callebaut I. (2014). The C-terminal extension of human RTEL1, mutated in Hoyeraal-Hreidarsson syndrome, contains harmonin-N-like domains. Proteins 82, 897–903. 10.1002/prot.24438, PMID: PubMed DOI
Goffova I., Vagnerova R., Peska V., Franek M., Havlova K., Hola M., et al. . (2019). Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. Plant J. 98, 1090–1105. 10.1111/tpj.14304, PMID: PubMed DOI
Grummt I. (2007). Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum. Mol. Genet. 16, R21–R27. 10.1093/hmg/ddm020, PMID: PubMed DOI
Hahne F., Ivanek R. (2016). “Visualizing genomic data using gviz and bioconductor in Statistical Genomics. Methods in Molecular Biology. Vol. 1418 eds. Mathé E., Davis S. (New York, NY: Humana Press; ), 335–351. 10.1007/978-1-4939-3578-9_16 PubMed DOI
Hanakahi L. A., Sun H., Maizels N. (1999). High affinity interactions of nucleolin with G-G-paired rDNA. J. Biol. Chem. 274, 15908–15912. 10.1074/jbc.274.22.15908, PMID: PubMed DOI
Havlova K., Dvorackova M., Peiro R., Abia D., Mozgova I., Vansacova L., et al. . (2016). Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol. Biol. 92, 457–471. 10.1007/s11103-016-0524-1, PMID: PubMed DOI
Hershman S. G., Chen Q., Lee J. Y., Kozak M. L., Yue P., Wang L. S., et al. . (2008). Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 144–156. 10.1093/nar/gkm986, PMID: PubMed DOI PMC
Hon J., Martinek T., Zendulka J., Lexa M. (2017). pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 33, 3373–3379. 10.1093/bioinformatics/btx413, PMID: PubMed DOI
Kobayashi T. (2011). Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell. Mol. Life Sci. 68, 1395–1403. 10.1007/s00018-010-0613-2, PMID: PubMed DOI PMC
Kobayashi T., Heck D. J., Nomura M., Horiuchi T. (1998). Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 12, 3821–3830. 10.1101/gad.12.24.3821, PMID: PubMed DOI PMC
Labudova D., Hon J., Lexa M. (2020). pqsfinder web: G-quadruplex prediction using optimized pqsfinder algorithm. Bioinformatics 36, 2584–2586. 10.1093/bioinformatics/btz928, PMID: PubMed DOI
Le Guen T., Jullien L., Touzot F., Schertzer M., Gaillard L., Perderiset M., et al. . (2013). Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum. Mol. Genet. 22, 3239–3249. 10.1093/hmg/ddt178, PMID: PubMed DOI
Matyasek R., Kuderova A., Kutilkova E., Kucera M., Kovarik A. (2019). Intragenomic heterogeneity of intergenic ribosomal DNA spacers in Cucurbita moschata is determined by DNA minisatellites with variable potential to form non-canonical DNA conformations. DNA Res. 26, 273–286. 10.1093/dnares/dsz008, PMID: PubMed DOI PMC
Mayer C., Schmitz K. M., Li J. W., Grummt I., Santoro R. (2006). Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell 22, 351–361. 10.1016/j.molcel.2006.03.028, PMID: PubMed DOI
Mcstay B., Grummt I. (2008). The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24, 131–157. 10.1146/annurev.cellbio.24.110707.175259, PMID: PubMed DOI
Mestre-Fos S., Penev P. I., Richards J. C., Dean W. L., Gray R. D., Chaires J. B., et al. . (2019b). Profusion of G-quadruplexes on both subunits of metazoan ribosomes. PLoS One 14:e0226177. 10.1371/journal.pone.0226177, PMID: PubMed DOI PMC
Mestre-Fos S., Penev P. I., Suttapitugsakul S., Hu M., Ito C., Petrov A. S., et al. . (2019a). G-quadruplexes in human ribosomal RNA. J. Mol. Biol. 431, 1940–1955. 10.1016/j.jmb.2019.03.010, PMID: PubMed DOI PMC
Mohannath G., Pontvianne F., Pikaard C. S. (2016). Selective nucleolus organizer inactivation in Arabidopsis is a chromosome position-effect phenomenon. Proc. Natl. Acad. Sci. U. S. A. 113, 13426–13431. 10.1073/pnas.1608140113, PMID: PubMed DOI PMC
Mozgova I., Mokros P., Fajkus J. (2010). Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22, 2768–2780. 10.1105/tpc.110.076182, PMID: PubMed DOI PMC
Muchova V., Amiard S., Mozgova I., Dvorackova M., Gallego M. E., White C., et al. . (2015). Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. Plant J. 81, 198–209. 10.1111/tpj.12718, PMID: PubMed DOI PMC
Nelson J. O., Watase G. J., Warsinger-Pepe N., Yamashita Y. M. (2019). Mechanisms of rDNA copy number maintenance. Trends Genet. 35, 734–742. 10.1016/j.tig.2019.07.006, PMID: PubMed DOI PMC
Pavlistova V., Dvorackova M., Jez M., Mozgova I., Mokros P., Fajkus J. (2016). Phenotypic reversion in FAS mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. Plant J. 88, 411–424. 10.1111/tpj.13257, PMID: PubMed DOI
Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., Chandrasekhara C., et al. . (2010). Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet. 6:e1001225. 10.1371/journal.pgen.1001225, PMID: PubMed DOI PMC
Pontvianne F., Blevins T., Chandrasekhara C., Mozgova I., Hassel C., Pontes O. M. F., et al. . (2013). Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev. 27, 1545–1550. 10.1101/gad.221648.113, PMID: PubMed DOI PMC
Pontvianne F., Carpentier M. C., Durut N., Pavlistova V., Jaske K., Schorova S., et al. . (2016). Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep. 16, 1574–1587. 10.1016/j.celrep.2016.07.016, PMID: PubMed DOI PMC
Preuss S., Pikaard C. S. (2007). RRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim. Biophys. Acta 1769, 383–392. 10.1016/j.bbaexp.2007.02.005, PMID: PubMed DOI PMC
Probst A. V., Fagard M., Proux F., Mourrain P., Boutet S., Earley K., et al. . (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16, 1021–1034. 10.1105/tpc.018754, PMID: PubMed DOI PMC
Pruitt R. E., Meyerowitz E. M. (1986). Characterization of the genome of Arabidopsis thaliana. J. Mol. Biol. 187, 169–183. 10.1016/0022-2836(86)90226-3 PubMed DOI
Rohrig S., Schropfer S., Knoll A., Puchta H. (2016). The RTR complex partner RMI2 and the DNA helicase RTEL1 are both independently involved in preserving the stability of 45S rDNA repeats in Arabidopsis thaliana. PLoS Genet. 12:e1006394. 10.1371/journal.pgen.1006394, PMID: PubMed DOI PMC
Schmickel R. D. (1973). Quantitation of human ribosomal DNA-hybridization of human DNA with ribosomal-RNA for quantitation and fractionation. Pediatr. Res. 7, 5–12. 10.1203/00006450-197301000-00002, PMID: PubMed DOI
Schmitz K. M., Mayer C., Postepska A., Grummt I. (2010). Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 2264–2269. 10.1101/gad.590910, PMID: PubMed DOI PMC
Sone T., Fujisawa M., Takenaka M., Nakagawa S., Yamaoka S., Sakaida M., et al. . (1999). Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol. Biol. 41, 679–685. 10.1023/a:1006398419556, PMID: PubMed DOI
Vannier J. B., Pavicic-Kaltenbrunner V., Petalcorin M. I. R., Ding H., Boulton S. J. (2012). RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806. 10.1016/j.cell.2012.03.030, PMID: PubMed DOI
Vannier J. B., Sandhu S., Petalcorin M. I. R., Wu X. L., Nabi Z., Ding H., et al. . (2013). RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342, 239–242. 10.1126/science.1241779, PMID: PubMed DOI
Vannier J. B., Sarek G., Boulton S. J. (2014). RTEL1: functions of a disease-associated helicase. Trends Cell Biol. 24, 416–425. 10.1016/j.tcb.2014.01.004, PMID: PubMed DOI
Wicke S., Costa A., Munoz J., Quandt D. (2011). Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 61, 321–332. 10.1016/j.ympev.2011.06.023, PMID: PubMed DOI
Wu L., Hickson I. D. (2003). The bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874. 10.1038/nature02253, PMID: PubMed DOI
Variability of Human rDNA and Transcription Activity of the Ribosomal Genes
The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways