The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways

. 2021 Jan 28 ; 22 (3) : . [epub] 20210128

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33525595

Grantová podpora
SYMBIT CZ.02.1.01/0.0/0.0/15_003/0000477 European Regional Development Fund
LTC20003 Ministerstvo Školství, Mládeže a Tělovýchovy

Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.

Zobrazit více v PubMed

Warner J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 1999;24:437–440. doi: 10.1016/S0968-0004(99)01460-7. PubMed DOI

Boulon S., Westman B.J., Hutten S., Boisvert F.-M., Lamond A.I. The Nucleolus under Stress. Mol. Cell. 2010;40:216–227. doi: 10.1016/j.molcel.2010.09.024. PubMed DOI PMC

Ban N., Beckmann R., Cate J.H.D., Dinman J.D., Dragon F., Ellis S.R., Lafontaine D.L.J., Lindahl L., Liljas A., Lipton J.M., et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 2014;24:165–169. doi: 10.1016/j.sbi.2014.01.002. PubMed DOI PMC

Goodfellow S.J., Zomerdijk J.C.B.M. Basic Mechanisms in RNA Polymerase I Transcription of the Ribosomal RNA Genes. In: Haris J.R., Marles-Wright J., editors. Macromolecular Protein Complexes III: Structure and Function. Volume 61. Springer Nature; Berlin/Heidelberg, Germany: 2013. pp. 211–236. PubMed PMC

Wicke S., Costa A., Muñoz J., Quandt D. Restless 5S: The re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenetics Evol. 2011;61:321–332. doi: 10.1016/j.ympev.2011.06.023. PubMed DOI

Kobayashi T. A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. BioEssays. 2008;30:267–272. doi: 10.1002/bies.20723. PubMed DOI

Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn. Acad. Ser. B. 2014;90:119–129. doi: 10.2183/pjab.90.119. PubMed DOI PMC

Garcia S., Kovařík A., Leitch A.R., Garnatje T. Cytogenetic features of rRNA genes across land plants: Analysis of the Plant rDNA database. Plant J. 2017;89:1020–1030. doi: 10.1111/tpj.13442. PubMed DOI

Kobayashi T., Heck D.J., Nomura M., Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: Requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 1998;12:3821–3830. doi: 10.1101/gad.12.24.3821. PubMed DOI PMC

Dvořáčková M., Raposo B., Matula P., Fuchs J., Schubert V., Peška V., Desvoyes B., Gutierrez C., Fajkus J. Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J. Cell Sci. 2018;131:jcs202416. doi: 10.1242/jcs.202416. PubMed DOI

Sochorová J., Garcia S., Gálvez F., Symonová R., Kovarik A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosome. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Sakai K., Ohta T., Minoshima S., Kudoh J., Wang Y., de Jong P.J., Shimizu N. Human ribosomal RNA gene cluster: Identification of the proximal end containing a novel tandem repeat sequence. Genomics. 1995;26:521–526. doi: 10.1016/0888-7543(95)80170-Q. PubMed DOI

McStay B. Nucleolar organizer regions: Genomic ‘dark matter’ requiring illumination. Genes Dev. 2016;30:1598–1610. doi: 10.1101/gad.283838.116. PubMed DOI PMC

Sáez-Vásquez J., Echeverría M. Polymerase I Transcription. In: Grasser K.D., editor. Annual Plant Reviews Volume 29: Regulation of Transcription in Plants. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2007. pp. 162–183.

Long Q., Rabanal F.A., Meng D., Huber C.D., Farlow A., Platzer A., Zhang Q., Vilhjálmsson B.J., Korte A., Nizhynska V., et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 2013;45:884–890. doi: 10.1038/ng.2678. PubMed DOI PMC

Rabanal F.A., Nizhynska V., Mandáková T., Novikova P.Y., Lysak M.A., Mott R., Nordborg M. Unstable Inheritance of 45S rRNA Genes in Arabidopsis thaliana. G3 Genes Genomes Genet. 2017;7:1201–1209. doi: 10.1534/g3.117.040204. PubMed DOI PMC

Copenhaver G.P., Pikaard C.S. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J. 1996;9:259–272. doi: 10.1046/j.1365-313X.1996.09020259.x. PubMed DOI

Unfried I., Stöcker U., Gruendler P. Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana Col0. Nucleic Acids Res. 1989;17:7513. doi: 10.1093/nar/17.18.7513. PubMed DOI PMC

Gruendler P., Unfried I., Pointner R., Schweizer D. Nucleotide sequence of the 25S-18S ribosomal gene spacer from Arabidopsis thaliana. Nucleic Acids Res. 1989;17:6395–6396. doi: 10.1093/nar/17.15.6395. PubMed DOI PMC

Untried I., Gruendler P. Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 1990;18:4011. doi: 10.1093/nar/18.13.4011. PubMed DOI PMC

Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C.S. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev. 2016;30:177–190. doi: 10.1101/gad.273755.115. PubMed DOI PMC

Abou-Ellail M., Cooke R., Sáez-Vásquez J. Variations in a team: Major and minor variants of Arabidopsis thaliana rDNA genes. Nucleus. 2011;2:294–299. doi: 10.4161/nucl.2.4.16561. PubMed DOI

Doelling J.H., Gaudino R.J., Pikaard C.S. Functional analysis of Arabidopsis thaliana rRNA gene and spacer promoters in vivo and by transient expression. Proc. Natl. Acad. Sci. USA. 1993;90:7528–7532. doi: 10.1073/pnas.90.16.7528. PubMed DOI PMC

Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., Chandrasekhara C., de Bures A., Blevins T., Cooke R., Medina F.J., et al. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana. PLoS Genet. 2010;6:e1001225. doi: 10.1371/journal.pgen.1001225. PubMed DOI PMC

Havlová K., Dvořáčková M., Peiro-Pastor R., Abia D., Mozgová I., Vansáčová L., Gutierrez C., Fajkus J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol. Biol. 2016;92:457–471. doi: 10.1007/s11103-016-0524-1. PubMed DOI

Sims J., Sestini G., Elgert C., von Haeseler A., Schlögelhofer P. Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat. Commun. 2021;12:387. doi: 10.1038/s41467-020-20728-6. PubMed DOI PMC

Mohannath G., Pontvianne F., Pikaard C.S. Selective nucleolus organizer inactivation in Arabidopsis is a chromosome position-effect phenomenon. Proc. Natl. Acad. Sci. USA. 2016;113:13426–13431. doi: 10.1073/pnas.1608140113. PubMed DOI PMC

Layat E., Sáez-Vásquez J., Tourmente S. Regulation of Pol I-Transcribed 45S rDNA and Pol III-Transcribed 5S rDNA in Arabidopsis. Plant Cell Physiol. 2011;53:267–276. doi: 10.1093/pcp/pcr177. PubMed DOI

Garcia S., Lim K.Y., Chester M., Garnatje T., Pellicer J., Vallès J., Leitch A.R., Kovarik A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): First evidence from angiosperms. Chromosoma. 2008;118:85–97. doi: 10.1007/s00412-008-0179-z. PubMed DOI

Campell B.R., Song Y., Posch T.E., Cullis C.A., Town C.D. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene. 1992;112:225–228. doi: 10.1016/0378-1119(92)90380-8. PubMed DOI

Simon L., Rabanal F.A., Dubos T., Oliver C., Lauber D., Poulet A., Vogt A., Mandlbauer A., Le Goff S., Sommer A., et al. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res. 2018;46:3019–3033. doi: 10.1093/nar/gky163. PubMed DOI PMC

Tutois S., Cloix C., Cuvillier C., Espagnol M.C., Lafleuriel J., Picard G., Tourmente S. Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana. Chromosome Res. 1999;7:143–156. doi: 10.1023/A:1009211603248. PubMed DOI

Murata M., Heslop-Harrison P., Motoyoshi F. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J. 1997;12:31–37. doi: 10.1046/j.1365-313X.1997.12010031.x. PubMed DOI

Cloix C., Tutois S., Yukawa Y., Mathieu O., Cuvillier C., Espagnol M.-C., Picard G., Tourmente S. Analysis of the 5S RNA Pool in Arabidopsis thaliana: RNAs Are Heterogeneous and Only Two of the Genomic 5S Loci Produce Mature 5S RNA. Genome Res. 2001;12:132–144. doi: 10.1101/gr.181301. PubMed DOI PMC

Lang D., Ullrich K.K., Murat F., Fuchs J., Jenkins J., Haas F.B., Piednoel M., Gundlach H., Van Bel M., Meyberg R., et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 2017;93:515–533. doi: 10.1111/tpj.13801. PubMed DOI

Sone T., Fujisawa M., Takenaka M., Nakagawa S., Yamaoka S., Sakaida M., Nishiyama R., Yamato K.T., Ohmido N., Fukui K., et al. Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol. Biol. 1999;41:679–685. doi: 10.1023/A:1006398419556. PubMed DOI

Goffová I., Vágnerová R., Peška V., Franek M., Havlová K., Holá M., Zachová D., Fojtová M., Cuming A., Kamisugi Y., et al. Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. Plant J. 2019;98:1090–1105. doi: 10.1111/tpj.14304. PubMed DOI

Rosato M., Kovarik A., Garilleti R., Rosselló J.A. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants. PLoS ONE. 2016;11:e0162544. doi: 10.1371/journal.pone.0162544. PubMed DOI PMC

Schmid M.W., Giraldo-Fonseca A., Rövekamp M., Smetanin D., Bowman J.L., Grossniklaus U. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biol. 2018;19:1–17. doi: 10.1186/s13059-017-1383-z. PubMed DOI PMC

Matyášek R., Krumpolcová A., Lunerová J., Mikulášková E., Rosselló J.A., Kovařík A. Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes) Front. Plant Sci. 2019;10:1–13. doi: 10.3389/fpls.2019.01066. PubMed DOI PMC

Tsekrekou M., Stratigi K., Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int. J. Mol. Sci. 2017;18:1411. doi: 10.3390/ijms18071411. PubMed DOI PMC

Ide S., Miyazaki T., Maki H., Kobayashi T. Abundance of Ribosomal RNA Gene Copies Maintains Genome Integrity. Science. 2010;327:693–696. doi: 10.1126/science.1179044. PubMed DOI

Saka K., Takahashi A., Sasaki M., Kobayashi T. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance. Nucleic Acids Res. 2016;44:4211–4221. doi: 10.1093/nar/gkw110. PubMed DOI PMC

Salim D., Bradford W.D., Freeland A., Cady G., Wang J., Pruitt S.C., Gerton J.L. DNA replication stress restricts ribosomal DNA copy number. PLoS Genet. 2017;13:e1007006. doi: 10.1371/journal.pgen.1007006. PubMed DOI PMC

Ide S., Watanabe K., Watanabe H., Shirahige K., Kobayashi T., Maki H. Abnormality in Initiation Program of DNA Replication Is Monitored by the Highly Repetitive rRNA Gene Array on Chromosome XII in Budding Yeast. Mol. Cell Biol. 2006;27:568–578. doi: 10.1128/MCB.00731-06. PubMed DOI PMC

Gagnon-Kugler T., Langlois F., Stefanovsky V., Lessard F., Moss T. Loss of Human Ribosomal Gene CpG Methylation Enhances Cryptic RNA Polymerase II Transcription and Disrupts Ribosomal RNA Processing. Mol. Cell. 2009;35:414–425. doi: 10.1016/j.molcel.2009.07.008. PubMed DOI

Dillon L.W., Kumar P., Shibata Y., Wang Y.-H., Willcox S., Griffith J.D., Pommier Y., Takeda S., Dutta A. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep. 2015;11:1749–1759. doi: 10.1016/j.celrep.2015.05.020. PubMed DOI PMC

Crossley M.P., Bocek M., Cimprich K.A. R-Loops as Cellular Regulators and Genomic Threats. Mol. Cell. 2019;73:398–411. doi: 10.1016/j.molcel.2019.01.024. PubMed DOI PMC

Ganley A.R.D., Kobayashi T. Ribosomal DNA and cellular senescence: New evidence supporting the connection between rDNA and aging. FEMS Yeast Res. 2014;14:49–59. doi: 10.1111/1567-1364.12133. PubMed DOI

Sinclair D.A., Guarente L. Extrachromosomal rDNA Circles—A Cause of Aging in Yeast. Cell. 1997;91:1033–1042. doi: 10.1016/S0092-8674(00)80493-6. PubMed DOI

Denoth-Lippuner A., Krzyzanowski M.K., Stober C., Barral Y. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. eLife. 2014;3:e03790. doi: 10.7554/eLife.03790. PubMed DOI PMC

Brewer B.J., Lockshon D., Fangman W.L. The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell. 1992;71:267–276. doi: 10.1016/0092-8674(92)90355-G. PubMed DOI

Kobayashi T. The Replication Fork Barrier Site Forms a Unique Structure with Fob1p and Inhibits the Replication Fork. Mol. Cell Biol. 2003;23:9178–9188. doi: 10.1128/MCB.23.24.9178-9188.2003. PubMed DOI PMC

Defossez P.-A., Prusty R., Kaeberlein M., Lin S.-J., Ferrigno P., Silver P.A., Keil R.L., Guarente L. Elimination of Replication Block Protein Fob1 Extends the Life Span of Yeast Mother Cells. Mol. Cell. 1999;3:447–455. doi: 10.1016/S1097-2765(00)80472-4. PubMed DOI

Takeuchi Y., Horiuchi T., Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 2003;17:1497–1506. doi: 10.1101/gad.1085403. PubMed DOI PMC

Ide S., Saka K., Kobayashi T. Rtt109 Prevents Hyper-Amplification of Ribosomal RNA Genes through Histone Modification in Budding Yeast. PLoS Genet. 2013;9:e1003410. doi: 10.1371/journal.pgen.1003410. PubMed DOI PMC

Kobayashi T., Sasaki M. Ribosomal DNA stability is supported by many ‘buffer genes’—Introduction to the Yeast rDNA Stability Database. FEMS Yeast Res. 2017;17:17. doi: 10.1093/femsyr/fox001. PubMed DOI

Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13:2570–2580. doi: 10.1101/gad.13.19.2570. PubMed DOI PMC

Akamatsu Y., Kobayashi T. The Human RNA Polymerase I Transcription Terminator Complex Acts as a Replication Fork Barrier That Coordinates the Progress of Replication with rRNA Transcription Activity. Mol. Cell Biol. 2015;35:1871–1881. doi: 10.1128/MCB.01521-14. PubMed DOI PMC

Warmerdam D.O., Wolthuis R.M.F. Keeping ribosomal DNA intact: A repeating challenge. Chromosom. Res. 2019;27:57–72. doi: 10.1007/s10577-018-9594-z. PubMed DOI PMC

Scheibye-Knudsen M., Tseng A., Jensen M.B., Scheibye-Alsing K., Fang E.F., Iyama T., Bharti S.K., Marosi K., Froetscher L., Kassahun H., et al. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proc. Natl. Acad. Sci. USA. 2016;113:12502–12507. doi: 10.1073/pnas.1610198113. PubMed DOI PMC

Groh M., Lufino M.M.P., Wade-Martins R., Gromak N. R-loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome. PLoS Genet. 2014;10:e1004318. doi: 10.1371/journal.pgen.1004318. PubMed DOI PMC

Storci G., Bacalini M.G., Bonifazi F., Garagnani P., de Carolis S., Salvioli S., Olivieri F., Bonafè M. Ribosomal DNA instability: An evolutionary conserved fuel for inflammaging. Ageing Res. Rev. 2020;58:101018. doi: 10.1016/j.arr.2020.101018. PubMed DOI

Drygin D., Rice W.G., Grummt I. The RNA Polymerase I Transcription Machinery: An Emerging Target for the Treatment of Cancer. Annu. Rev. Pharmacol. Toxicol. 2010;50:131–156. doi: 10.1146/annurev.pharmtox.010909.105844. PubMed DOI

Sequeira-Mendes J., Aragüez I., Peiró R., Mendez-Giraldez R., Zhang X., Jacobsen S.E., Bastolla U., Gutierrez C. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell. 2014;26:2351–2366. doi: 10.1105/tpc.114.124578. PubMed DOI PMC

Hammond C.M., Strømme C.B., Huang H., Patel H.H.D.J., Groth A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 2017;18:141–158. doi: 10.1038/nrm.2016.159. PubMed DOI PMC

Das C., Tyler J.K., Churchill M.E.A. The histone shuffle: Histone chaperones in an energetic dance. Trends Biochem. Sci. 2010;35:476–489. doi: 10.1016/j.tibs.2010.04.001. PubMed DOI PMC

Kaya H., Shibahara K.-I., Taoka K.-I., Iwabuchi M., Stillman B., Araki T. FASCIATA Genes for Chromatin Assembly Factor-1 in Arabidopsis Maintain the Cellular Organization of Apical Meristems. Cell. 2001;104:131–142. doi: 10.1016/S0092-8674(01)00197-0. PubMed DOI

Kaufman P.D., Kobayashi R., Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 1997;11:345–357. doi: 10.1101/gad.11.3.345. PubMed DOI

Smith S., Stillman B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J. 1991;10:971–980. doi: 10.1002/j.1460-2075.1991.tb08031.x. PubMed DOI PMC

Rowlands H., Dhavarasa P., Cheng A., Yankulov K. Forks on the Run: Can the Stalling of DNA Replication Promote Epigenetic Changes? Front. Genet. 2017;8:86. doi: 10.3389/fgene.2017.00086. PubMed DOI PMC

Linger J., Tyler J.K. The Yeast Histone Chaperone Chromatin Assembly Factor 1 Protects Against Double-Strand DNA-Damaging Agents. Genetics. 2005;171:1513–1522. doi: 10.1534/genetics.105.043000. PubMed DOI PMC

Nabatiyan A., Szüts D., Krude T. Induction of CAF-1 Expression in Response to DNA Strand Breaks in Quiescent Human Cells. Mol. Cell Biol. 2006;26:1839–1849. doi: 10.1128/MCB.26.5.1839-1849.2006. PubMed DOI PMC

Gaillard P.-H.L., Martini E.M.-D., Kaufman P.D., Stillman B., Moustacchi E., Almouzni G. Chromatin Assembly Coupled to DNA Repair: A New Role for Chromatin Assembly Factor I. Cell. 1996;86:887–896. doi: 10.1016/S0092-8674(00)80164-6. PubMed DOI

Kaufman P.D., Cohen J.L., Osley M.A. Hir Proteins Are Required for Position-Dependent Gene Silencing in Saccharomyces cerevisiae in the Absence of Chromatin Assembly Factor I. Mol. Cell Biol. 1998;18:4793–4806. doi: 10.1128/MCB.18.8.4793. PubMed DOI PMC

Houlard M., Berlivet S., Probst A.V., Quivy J.-P., Héry P., Almouzni G., Gérard M. CAF-1 Is Essential for Heterochromatin Organization in Pluripotent Embryonic Cells. PLoS Genet. 2006;2:e181. doi: 10.1371/journal.pgen.0020181. PubMed DOI PMC

Hennig L., Bouveret R., Gruissem W. MSI1-like proteins: An escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 2005;15:295–302. doi: 10.1016/j.tcb.2005.04.004. PubMed DOI

Mozgová I., Mokroš P., Fajkus J. Dysfunction of Chromatin Assembly Factor 1 Induces Shortening of Telomeres and Loss of 45S rDNA in Arabidopsis thaliana. Plant Cell. 2010;22:2768–2780. doi: 10.1105/tpc.110.076182. PubMed DOI PMC

Pontvianne F., Blevins T., Chandrasekhara C., Mozgová I., Hassel C., Pontes O.M., Tucker S., Mokroš P., Muchová V., Fajkus J., et al. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev. 2013;27:1545–1550. doi: 10.1101/gad.221648.113. PubMed DOI PMC

Muchová V., Amiard S., Mozgová I., Dvořáčková M., Gallego M.E., White C., Fajkus J. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. Plant J. 2014;81:198–209. doi: 10.1111/tpj.12718. PubMed DOI PMC

Ramirez-Parra E., Gutierrez C. The many faces of chromatin assembly factor 1. Trends Plant Sci. 2007;12:570–576. doi: 10.1016/j.tplants.2007.10.002. PubMed DOI

Ramirez-Parra E., Gutierrez C. E2F Regulates FASCIATA1, a Chromatin Assembly Gene Whose Loss Switches on the Endocycle and Activates Gene Expression by Changing the Epigenetic Status. Plant. Physiol. 2007;144:105–120. doi: 10.1104/pp.106.094979. PubMed DOI PMC

Kirik A., Pecinka A., Wendeler E., Reiss B. The Chromatin Assembly Factor Subunit FASCIATA1 Is Involved in Homologous Recombination in Plants. Plant Cell. 2006;18:2431–2442. doi: 10.1105/tpc.106.045088. PubMed DOI PMC

Pavlištová V., Dvořáčková M., Jež M., Mozgová I., Mokroš P., Fajkus J. Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: Variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. Plant. J. 2016;88:411–424. doi: 10.1111/tpj.13257. PubMed DOI

Kolářová K., Dadejová M.N., Loja T., Lochmanová G., Sýkorová E., Dvořáčková M. Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes the chromatin compaction. Plant J. 2020 doi: 10.1111/tpj.15145. PubMed DOI

Chen X., d’Arcy S., Radebaugh C.A., Krzizike D.D., Giebler H.A., Huang L., Nyborg J.K., Luger K., Stargell L.A. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus. Mol. Cell Biol. 2016;36:1287–1296. doi: 10.1128/MCB.00835-15. PubMed DOI PMC

Dronamraju R., Ramachandran S., Jha D.K., Adams A.T., Di Fiore J.V., Parra M.A., Dokholyan N.V., Strahl B.D. Redundant Functions for Nap1 and Chz1 in H2A. Z Deposition. Sci. Rep. 2017;7:10791. doi: 10.1038/s41598-017-11003-8. PubMed DOI PMC

Bowman A., Ward R., Wiechens N., Singh V., El-Mkami H., Norman D.G., Owen-Hughes T. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation. Mol. Cell. 2011;41:398–408. doi: 10.1016/j.molcel.2011.01.025. PubMed DOI PMC

Gao J., Zhu Y., Zhou W., Molinier J., Dong A., Shen W.-H. NAP1 Family Histone Chaperones Are Required for Somatic Homologous Recombination in Arabidopsis. Plant Cell. 2012;24:1437–1447. doi: 10.1105/tpc.112.096792. PubMed DOI PMC

Picart-Picolo A., Grob S., Picault N., Franek M., Llauro C., Halter T., Maier T.R., Jobet E., Descombin J., Zhang P., et al. Large tandem duplications affect gene expression, 3D organization, and plant–pathogen response. Genome Res. 2020;30:1583–1592. doi: 10.1101/gr.261586.120. PubMed DOI PMC

Bleuyard J.-Y., Gallego M.E., Savigny F., White C.I. Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J. 2004;41:533–545. doi: 10.1111/j.1365-313X.2004.02318.x. PubMed DOI

Li W., Yang X., Lin Z., Timofejeva L., Xiao R., Makaroff C.A., Ma H. The AtRAD51C Gene Is Required for Normal Meiotic Chromosome Synapsis and Double-Stranded Break Repair in Arabidopsis. Plant Physiol. 2005;138:965–976. doi: 10.1104/pp.104.058347. PubMed DOI PMC

Osakabe K., Abe K., Yamanouchi H., Takyuu T., Yoshioka T., Ito Y., Kato T., Tabata S., Kurei S., Yoshioka Y., et al. Arabidopsis Rad51B is important for double-strand DNA breaks repair in somatic cells. Plant Mol. Biol. 2005;57:819–833. doi: 10.1007/s11103-005-2187-1. PubMed DOI

Li W., Chen C., Markmann-Mulisch U., Timofejeva L., Schmelzer E., Ma H., Reiss B. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc. Natl. Acad. Sci. USA. 2004;101:10596–10601. doi: 10.1073/pnas.0404110101. PubMed DOI PMC

Markmann-Mulisch U., Hadi M.Z., Koepchen K., Alonso J.C., Russo V.E.A., Schell J., Reiss B. The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proc. Natl. Acad. Sci. USA. 2002;99:2959–2964. doi: 10.1073/pnas.032668199. PubMed DOI PMC

Schaefer D., Delacote F., Charlot F., Vrielynck N., Guyon A.D., le Guin S., Neuhaus J., Doutriaux M.-P., Nogué F. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair. 2010;9:526–533. doi: 10.1016/j.dnarep.2010.02.001. PubMed DOI

Markmann-Mulisch U., Wendeler E., Zobell O., Schween G., Steinbiss H.-H., Reiss B. Differential Requirements for RAD51 in Physcomitrella patens and Arabidopsis thaliana Development and DNA Damage Repair. Plant Cell. 2007;19:3080–3089. doi: 10.1105/tpc.107.054049. PubMed DOI PMC

Barber L.J., Youds J.L., Ward J.D., McIlwraith M.J., O’Neil N.J., Petalcorin M.I., Martin J.S., Collis S.J., Cantor S.B., Auclair M., et al. RTEL1 Maintains Genomic Stability by Suppressing Homologous Recombination. Cell. 2008;135:261–271. doi: 10.1016/j.cell.2008.08.016. PubMed DOI PMC

Vannier J.-B., Sandhu S., Petalcorin M.I., Wu X., Nabi Z., Ding H., Boulton S.J. RTEL1 Is a Replisome-Associated Helicase That Promotes Telomere and Genome-Wide Replication. Science. 2013;342:239–242. doi: 10.1126/science.1241779. PubMed DOI

Vannier J.-B., Pavicic-Kaltenbrunner V., Petalcorin M.I., Ding H., Boulton S.J. RTEL1 Dismantles T Loops and Counteracts Telomeric G4-DNA to Maintain Telomere Integrity. Cell. 2012;149:795–806. doi: 10.1016/j.cell.2012.03.030. PubMed DOI

Sarek G., Vannier J.-B., Panier S., Petrini J.H.J., Boulton S.J. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell. 2015;57:622–635. doi: 10.1016/j.molcel.2014.12.024. PubMed DOI PMC

Röhrig S., Schröpfer S., Knoll A., Puchta H. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana. PLoS Genet. 2016;12:e1006394. doi: 10.1371/journal.pgen.1006394. PubMed DOI PMC

Hon J., Martínek T., Zendulka J., Lexa M. Pqsfinder: An exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics. 2017;33:3373–3379. doi: 10.1093/bioinformatics/btx413. PubMed DOI

Havlová K., Fajkus J. G4 Structures in Control of Replication and Transcription of rRNA Genes. Front. Plant Sci. 2020;11:593692. doi: 10.3389/fpls.2020.593692. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace