Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X1X2Y sex chromosome system origin
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37735233
PubMed Central
PMC10514344
DOI
10.1038/s41598-023-42617-w
PII: 10.1038/s41598-023-42617-w
Knihovny.cz E-zdroje
- MeSH
- chromozom Y MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- pohlavní chromozomy genetika MeSH
- sumci * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Institut für Humangenetik Universitätsklinikum Jena 07747 Jena Germany
Museu de Zoologia Universidade de São Paulo São Paulo SP 04263 000 Brazil
Zobrazit více v PubMed
Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364.
Guiguen Y, Fostier A, Herpin A. Sex determination and differentiation in fish: Genetic, genomic, and endocrine aspects. In: Wang HP, Piferrer F, Chen SL, editors. Sex Control in Aquaculture. Wiley; 2019. pp. 35–63.
Shen ZG, Wang HP, et al. Environmental sex determination and sex differentiation in teleosts—how sex is established. In: Wang HP, et al., editors. Sex Control in Aquaculture. Wiley; 2019. pp. 85–115.
Wilson CA, et al. Wild sex in zebrafish: Loss of the natural sex determinant in domesticated strains. Genetics. 2014;198:1291–1308. PubMed PMC
Yamamoto Y, Zhang Y, Sarida M, Hattori RS, Strüssmann CA. Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS One. 2014;9:e102574. PubMed PMC
Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M. Turnover of sex chromosomes in celebensis group medaka fishes. G3 (Bethesda) 2015;5:2685–2691. PubMed PMC
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci. Adv. 2021;7:eabe8215. PubMed PMC
Sember A, et al. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: State of the art and future challenges. Philos. Trans. R. Soc. B. 2021;376:20200098. PubMed PMC
Jeffries DL, Mee JA, Peichel CL. Identification of a candidate sex determination gene in Culaea inconstans suggests convergent recruitment of an Amh duplicate in two lineages of stickleback. J. Evol. Biol. 2022;35:1683–1695. PubMed PMC
Pan Q, et al. Evolution of master sex determiners: TGF-β signalling pathways at regulatory crossroads. Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20200091. PubMed PMC
Gamble T. Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol. Ecol. 2016;25:2114–2116. PubMed
Schartl M, Schmid M, Nanda I. Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma. 2016;125:553–571. PubMed
Mank JE, Avise JC. Evolutionary diversity and turn-over of sex determination in teleost fishes. Sex. Dev. 2009;3:60–67. PubMed
Kabir A, et al. Repeated translocation of a supergene underlying rapid sex chromosome turnover in Takifugu pufferfish. Proc. Natl. Acad. Sci. USA. 2022;A119:e2121469119. PubMed PMC
Vicoso B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat. Ecol. Evol. 2019;3:1632–1641. PubMed
Kamiya T, et al. A Trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu) PLoS Genet. 2012;8:e1002798. PubMed PMC
Charlesworth D. Young sex chromosomes in plants and animals. New Phytol. 2019;224:1095–1107. PubMed
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol. Ecol. 2019;28:4709–4724. PubMed PMC
Saunders PA. Sex chromosome turnovers in evolution. eLS. 2019;20:1–8. doi: 10.1002/9780470015902.a0028747. DOI
Kitano J, et al. A role for a neo-sex chromosome in stickleback speciation. Nature. 2009;461:1079–1083. PubMed PMC
O’Neill MJ, O’Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol. Ecol. 2018;27:3783–3798. PubMed
Payseur BA, Presgraves DC, Filatov DA. Introduction: Sex chromosomes and speciation. Mol. Ecol. 2018;27:3745–3748. PubMed PMC
Carey SB, et al. Representing sex chromosomes in genome assemblies. Cell Genom. 2022;2:100132. PubMed PMC
Deakin JE, et al. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019;10:627. PubMed PMC
Oyakawa OT, Fichberg I, Py-Daniel LR. Three new species of Harttia (Loricariidae: Loricariinae) from Serra do Cachimbo, Rio Xingu basin, Pará, Northern Brazil. Zootaxa. 2018;4387:75–90. PubMed
Caldas L, Cherobim AM, Langeani F. A New species of Harttia from the rio São Francisco basin (Siluriformes: Loricariidae) Neotrop. Ichthyol. 2022;20:25.
Fricke, R., Eschmeyer, W. N. & van der Laan, R. Eschmeyer’s catalog of fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2023).
Sassi FMC, et al. Adding new pieces to the puzzle of karyotype evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian species. Biology. 2021;10:922. PubMed PMC
Takagui FH, et al. Unrevealing the karyotypic evolution and cytotaxonomy of armored catfishes (Loricariinae) with emphasis in Sturisoma, Loricariichthys, Loricaria, Proloricaria, Pyxiloricaria, and Rineloricaria. Zebrafish. 2020;17:319–332. PubMed
Centofante L, Bertollo LAC, Moreira-Filho O. Cytogenetic characterization and description of an XX/XY1Y2 sex chromosome system in catfish Harttia carvalhoi (Siluriformes, Loricariidae) Cytogenet. Genome Res. 2006;112:320–324. PubMed
Rodrigues, R. M. Estudos cromossômicos e moleculares em Loricariinae com ênfase em espécies de Rineloricaria (Siluriformes, Loricariidae): Uma perspectiva evolutiva (Ph.D. Thesis, Universidade de São Paulo, 2010).
Deon GA, et al. Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes) Genes. 2020;11:1366. PubMed PMC
Blanco DR, et al. The role of the Robertsonian rearrangements in the origin of the XX/XY1Y2 sex chromosome system and in the chromosomal differentiation in Harttia species (Siluriformes, Loricariidae) Rev. Fish Biol. Fish. 2013;23:127–134.
Blanco DR, et al. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica. 2014;142:119–126. PubMed
Sassi FMC, et al. Multiple sex chromosomes and evolutionary relationships in amazonian catfishes: The outstanding model of the genus Harttia (Siluriformes: Loricariidae) Genes. 2020;11:1179. PubMed PMC
Krysanov E, Demidova T. Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes) Comp. Cytogenet. 2018;12:387. PubMed PMC
Londoño-Burbano A, Reis RE. A combined molecular and morphological phylogeny of the Loricariinae (Siluriformes: Loricariidae), with emphasis on the Harttiini and Farlowellini. PLoS One. 2021;16:e0247747. PubMed PMC
Covain R, et al. Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification. Mol. Phylogenet. Evol. 2016;94:492–517. PubMed
Deon GA, et al. Chromosomal rearrangements and origin of the multiple XX/XY1Y2 sex chromosome system in Harttia species (Siluriformes: Loricariidae) Front. Genet. 2022;13:877522. PubMed PMC
Deon GA, et al. Evolutionary breakpoint regions and chromosomal remodeling in Harttia (Siluriformes: Loricariidae) species diversification. Genet. Mol. Biol. 2022;45:e20210170. PubMed PMC
Sassi FMC, et al. Turnover of multiple sex chromosomes in Harttia catfish (Siluriformes, Loricariidae): A glimpse from whole chromosome painting. Front. Genet. 2023;14:1226222. PubMed PMC
Blanco DR, et al. Karyotype diversity and evolutionary trends in armored catfish species of the genus Harttia (Siluriformes: Loricariidae) Zebrafish. 2017;14:169–176. PubMed
Kitano J, Peichel CL. Turnover of sex chromosomes and speciation in fishes. Environ. Biol. Fish. 2012;94:549–558. PubMed PMC
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Mech. Cancer Cachexia. 2016;54:188–197. PubMed PMC
Schöfer C, Weipoltshammer K. Nucleolus and chromatin. Histochem. Cell Biol. 2018;150:209–225. PubMed PMC
Potapova TA, Gerton JL. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res. 2019;27:109–127. PubMed
Warmerdam DO, Wolthuis RMF. Keeping ribosomal DNA intact: A repeating challenge. Chromosome Res. 2019;27:57–72. PubMed PMC
Goffová I, Fajkus J. The rDNA Loci—intersections of replication, transcription, and repair pathways. Int. J. Mol. Sci. 2021;22:1302. PubMed PMC
Warmerdam DO, van den Berg J, Medema RH. Breaks in the 45S rDNA lead to recombination-mediated loss of repeats. Cell Rep. 2016;14:2519–2527. PubMed
Perry J, Slater HR, Choo KHA. Centric fission—simple and complex mechanisms. Chromosome Res. 2004;12:627–640. PubMed
Cioffi MB, Bertollo LAC. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity. 2010;105:554–561. PubMed
Barros AV, et al. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene. 2017;608:20–27. PubMed
Supiwong W, et al. Karyotype diversity and evolutionary trends in the Asian swamp eel Monopterus albus (Synbranchiformes, Synbranchidae): A case of chromosomal speciation? BMC Evol. Biol. 2019;19:73. PubMed PMC
Sember A, et al. Centric fusions behind the karyotype evolution of neotropical Nannostomus pencilfishes (characiforme, lebiasinidae): First insights from a molecular cytogenetic perspective. Genes. 2020;11:91. PubMed PMC
Marajó L, et al. Chromosomal rearrangements and the first indication of an ♀X1X1X2X2/♂X1X2Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes) J. Fish Biol. 2023;102:443–454. PubMed
Giovannotti M, et al. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae) Chromosoma. 2017;126:245–260. PubMed
Carabajal Paladino LZ, et al. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol. Evol. 2019;11:1307–1319. PubMed PMC
Oliveira da Silva W, et al. Identification of two independent X-autosome translocations in closely related mammalian (Proechimys ) species. Sci. Rep. 2019;9:4047. PubMed PMC
Ferchaud A-L, et al. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides) G3 (Bethesda) 2022;12:jkab376. PubMed PMC
Pennell MW, et al. Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 2015;11:e1005237. PubMed PMC
Ma WJ, Veltsos P. The diversity and evolution of sex chromosomes in frogs. Genes. 2021;12:483. PubMed PMC
Nirchio M, et al. Occurrence of sex chromosomes in fish of the genus Ancistrus with a new description of multiple sex chromosomes in the Ecuadorian endemic Ancistrus clementinae (Loricariidae) Genes. 2023;14:306. PubMed PMC
Imai HT, Satta Y, Takahata N. Integrative study on chromosome evolution of mammals, ants and wasps based on the minimum interaction theory. J. Theor. Biol. 2001;210:475–497. PubMed
Schemberger MO, et al. Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes) Genetica. 2011;139:1499–1508. PubMed
de Oliveira EA, et al. Tracking the evolutionary pathway of sex chromosomes among fishes: Characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. PubMed
Gladkikh OL, et al. Rapid karyotype evolution in Lasiopodomys involved at least two autosome – sex chromosome translocations. PLoS ONE. 2016;11:e0167653. PubMed PMC
Kretschmer R, et al. Extensive chromosomal fissions and repetitive DNA accumulation shaped the atypical karyotypes of two Ramphastidae (Aves: Piciformes) species. Biol. J. Linn. Soc. Lond. 2020;130:839–849.
Voss SR, et al. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res. 2011;21:1306–1312. PubMed PMC
de Vos JM, Augustijnen H, Bätscher L, Lucek K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190539. PubMed PMC
Huang Z, et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun. 2022;13:944. PubMed PMC
Fan H, et al. Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution. Genome Biol. 2019;20:267. PubMed PMC
Yoshido A, et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity. 2020;125:138–154. PubMed PMC
Saunders PA, Neuenschwander S, Perrin N. Sex chromosome turnovers and genetic drift: A simulation study. J. Evol. Biol. 2018;31:1413–1419. PubMed
de Souza FHS, et al. Integrating cytogenetics and population genomics: Allopatry and neo-sex chromosomes may have shaped the genetic divergence in the Erythrinus erythrinus species complex (Teleostei, Characiformes) Biology. 2022;11:315. PubMed PMC
Bertollo LAC, Cioffi MB, Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, de AlmeidaToledo LF, editors. Fish Cytogenetic Techniques. CRC Press; 2015. pp. 21–26.
Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP. Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T, editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; 2009. pp. 35–52.
Yang F, Graphodatsky AS. Animal probes and ZOO-FISH. In: Liehr T, editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; 2009. pp. 323–346.
Pendás AM, Móran P, Freije JP, Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 1994;67:31–36. PubMed
Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus : Mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. PubMed
Yano CF, Bertollo LAC, Cioffi MB. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T, editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; 2017. pp. 429–444.
Sassi FMC, Toma GA, Cioffi MB. FISH—in fish chromosomes. In: Liehr T, editor. Cytogenetics and Molecular Cytogenetics. CRC Press; 2023. pp. 281–293.
Zwick MS, et al. A rapid procedure for the isolation of C0t–1 DNA from plants. Genome. 1997;40:138–142. PubMed