Chromosomics: Bridging the Gap between Genomes and Chromosomes

. 2019 Aug 20 ; 10 (8) : . [epub] 20190820

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31434289

The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.

Amphibian Research Center Hiroshima University Higashi Hiroshima 739 8526 Japan

Australian Museum Research Institute Australian Museum 1 William St Sydney NSW 2010 Australia

Departament de Biologia Cel·lular Fisiologia i Immunologia Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Spain

Department of Ecology Faculty of Science Charles University Viničná 7 128 44 Prague 2 Czech Republic

Genome Integrity and Instability Group Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Spain

Graduate School of Pharmaceutical Sciences Osaka University Suita 565 0871 Osaka Japan

Institute for Applied Ecology University of Canberra Canberra ACT 2617 Australia

Institute for Systems Genomics and Department of Molecular and Cell Biology University of Connecticut Storrs CT 06269 USA

Laboratório de Citogenética de Peixes Departamento de Genética e Evolução Universidade Federal de São Carlos São Carlos SP 13565 905 Brazil

Laboratory of Animal Cytogenetics and Comparative Genomics Department of Genetics Faculty of Science Kasetsart University Bangkok 10900 Thailand

Research School of Biology Australian National University Acton ACT 2601 Australia

School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia

School of Biosciences University of Kent Canterbury CT2 7NJ UK

School of Life Sciences LaTrobe University Melbourne VIC 3168 Australia

School of Natural Sciences University of Tasmania Hobart 7000 Australia

Zobrazit více v PubMed

Claussen U. Chromosomics. Cytogenet. Genome Res. 2005;111:101–106. doi: 10.1159/000086377. PubMed DOI

Winkler H. Verbreitung und Ursache der Parthenogenesis im Pflanzen-und Tierreiche. Verlag von Gustav Fischer; Jena, Germany: 1920.

Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D.G. High-throughput sequencing of a single chromosome: A moth W chromosome. Chromosom. Res. 2013;21:491–505. doi: 10.1007/s10577-013-9376-6. PubMed DOI

Seifertova E., Zimmerman L.B., Gilchrist M.J., Macha J., Kubickova S., Cernohorska H., Zarsky V., Owens N.D.L., Sesay A.K., Tlapakova T., et al. Efficient high-throughput sequencing of a laser microdissected chromosome arm. BMC Genom. 2013;14:1. doi: 10.1186/1471-2164-14-357. PubMed DOI PMC

Ma L., Li W., Song Q. Chromosome-range whole-genome high-throughput experimental haplotyping by single-chromosome microdissection. Methods Mol. Biol. 2017;1551:161–169. PubMed PMC

Makunin A.I., Kichigin I.G., Larkin D.M., O’Brien P.C.M., Ferguson-Smith M.A., Yang F., Proskuryakova A.A., Vorobieva N.V., Chernyaeva E.N., O’Brien S.J., et al. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genom. 2016;17:618. doi: 10.1186/s12864-016-2933-6. PubMed DOI PMC

Murchison E.P., Schulz-Trieglaff O.B., Ning Z., Alexandrov L.B., Bauer M.J., Fu B., Hims M., Ding Z., Ivakhno S., Stewart C., et al. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell. 2012;148:780–791. doi: 10.1016/j.cell.2011.11.065. PubMed DOI PMC

Skinner B.M., Sargent C.A., Churcher C., Hunt T., Herrero J., Loveland J.E., Dunn M., Louzada S., Fu B., Chow W., et al. The pig X and Y Chromosomes: Structure, sequence, and evolution. Genome Res. 2016;26:130–139. doi: 10.1101/gr.188839.114. PubMed DOI PMC

Damas J., O’Connor R., Farré M., Lenis V.P.E., Martell H.J., Mandawala A., Fowler K., Joseph S., Swain M.T., Griffin D.K., et al. Upgrading short read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017;27:875–884. doi: 10.1101/gr.213660.116. PubMed DOI PMC

Beliveau B.J., Boettiger A.N., Avendaño M.S., Jungmann R., McCole R.B., Joyce E.F., Kim-Kiselak C., Bantignies F., Fonseka C.Y., Erceg J., et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 2015;6:7147. doi: 10.1038/ncomms8147. PubMed DOI PMC

Lakadamyali M., Cosma M.P. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett. 2015;589:3023–3030. doi: 10.1016/j.febslet.2015.04.012. PubMed DOI

Mostovoy Y., Levy-Sakin M., Lam J., Lam E.T., Hastie A.R., Marks P., Lee J., Chu C., Lin C., Džakula Ž., et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nat. Methods. 2016;13:12–17. doi: 10.1038/nmeth.3865. PubMed DOI PMC

Rhoads A., Au K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015;13:278–289. doi: 10.1016/j.gpb.2015.08.002. PubMed DOI PMC

Magi A., Semeraro R., Mingrino A., Giusti B., D’Aurizio R. Nanopore sequencing data analysis: State of the art, applications and challenges. Brief. Bioinform. 2017;19:1256–1272. doi: 10.1093/bib/bbx062. PubMed DOI

Lu H., Giordano F., Ning Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genom. Proteom. Bioinform. 2016;14:265–279. doi: 10.1016/j.gpb.2016.05.004. PubMed DOI PMC

Zheng G.X.Y., Lau B.T., Schnall-Levin M., Jarosz M., Bell J.M., Hindson C.M., Kyriazopoulou-Panagiotopoulou S., Masquelier D.A., Merrill L., Terry J.M., et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016;34:303–311. doi: 10.1038/nbt.3432. PubMed DOI PMC

Putnam N.H., Connell B.O., Stites J.C., Rice B.J., Hartley P.D., Sugnet C.W., Haussler D., Rokhsar D.S. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC

Dudchenko O., Batra S.S., Omer A.D., Nyquist S.K., Hoeger M., Durand N.C., Shamim M.S., Machol I., Lander E.S., Aiden A.P. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;10:92–95. doi: 10.1126/science.aal3327. PubMed DOI PMC

Fullwood M.J., Liu M.H., Pan Y.F., Liu J., Xu H., Mohamed Y.B., Orlov Y.L., Velkov S., Ho A., Mei P.H., et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature. 2009;462:58–64. doi: 10.1038/nature08497. PubMed DOI PMC

Cremer T., Cremer C. Rise, fall and resurrection of chromosome territories: A historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: Experiments and models from the 1990s to the present. Eur. J. Histochem. 2006;50:223–272. PubMed

Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., et al. A pathway for mitotic chromosome formation. Science. 2018;359:eaao6135. doi: 10.1126/science.aao6135. PubMed DOI PMC

Naumova N., Imakaev M., Fudenberg G., Zhan Y., Lajoie B.R., Mirny L.A., Dekker J. Organization of the mitotic chromosome. Science. 2013;342:948–953. doi: 10.1126/science.1236083. PubMed DOI PMC

Patel L., Kang R., Rosenberg S.C., Qiu Y., Raviram R., Chee S., Hu R., Ren B., Cole F., Corbett K.D. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 2019;26:164–174. doi: 10.1038/s41594-019-0187-0. PubMed DOI PMC

Alavattam K.G., Maezawa S., Sakashita A., Khoury H., Barski A., Kaplan N., Namekawa S.H. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat. Struct. Mol. Biol. 2019;26:175–184. doi: 10.1038/s41594-019-0189-y. PubMed DOI PMC

Vara C., Paytuví-Gallart A., Cuartero Y., Le Dily F., Garcia F., Salvà-Castro J., Gómez-H L., Julià E., Moutinho C., Aiese Cigliano R., et al. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 2019;28:352–367. doi: 10.1016/j.celrep.2019.06.037. PubMed DOI PMC

Poonperm R., Takata H., Hamano T., Matsuda A., Uchiyama S., Hiraoka Y., Fukui K. Chromosome scaffold is a double-stranded assembly of scaffold proteins. Sci. Rep. 2015;5:11916. doi: 10.1038/srep11916. PubMed DOI PMC

Wako T., Fukuda M., Furushima-Shimogawara R., Belyaev N.D., Turner B.M., Fukui K. Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal. Chim. Acta. 1998;365:9–17. doi: 10.1016/S0003-2670(97)00619-3. DOI

Nir G., Farabella I., Pérez Estrada C., Ebeling C.G., Beliveau B.J., Sasaki H.M., Lee S.H., Nguyen S.C., McCole R.B., Chattoraj S., et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 2018;14:1–35. doi: 10.1371/journal.pgen.1007872. PubMed DOI PMC

Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960;25:85–109. PubMed

Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290. doi: 10.1038/243290a0. PubMed DOI

Shtivelman E., Lifshitz B., Gale R.P., Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–554. doi: 10.1038/315550a0. PubMed DOI

Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E., Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., et al. DNA sequence and analysis of human chromosome 9. Nature. 2004;429:369–374. doi: 10.1038/nature02465. PubMed DOI PMC

Dunham I., Shimizu N., Roe B.A., Chissoe S., Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M., Clamp M., et al. The DNA sequence of human chromosome 22. Nature. 1999;402:489–495. doi: 10.1038/990031. PubMed DOI

Foster J.W., Graves J.A.M. An SRY-related sequence on the marsupial X chromosome: Implications for the evolution of the mammalian testis-determining gene. Proc. Natl. Acad. Sci. USA. 1994;91:1927–1931. doi: 10.1073/pnas.91.5.1927. PubMed DOI PMC

Sinclair A.H., Berta P., Palmer M.S., Hawkins J.R., Griffiths B.L., Smith M.J., Foster J.W., Frischauf A.M., Lovell-Badge R., Goodfellow P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–244. doi: 10.1038/346240a0. PubMed DOI

Skaletsky H., Kuroda-Kawaguchi T., Minx P.J., Cordum H.S., Hillier L., Brown L.G., Repping S., Pyntikova T., Ali J., Bieri T., et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–837. doi: 10.1038/nature01722. PubMed DOI

Koopman P., Gubbay J., Vivian N., Goodfellow P., Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351:117–121. doi: 10.1038/351117a0. PubMed DOI

Page D.C., Mosher R., Simpson E.M., Fisher E.M.C., Mardon G., Pollack J., McGillivray B., de la Chapelle A., Brown L.G. The sex-determining region of the human Y chromosome encodes a finger protein. Cell. 1987;27:67–82. doi: 10.1016/0092-8674(87)90595-2. PubMed DOI

McPherson J.D., Marra M., Hillier L.D., Waterston R.H., Chinwalla A., Wallis J., Sekhon M., Wylie K., Mardis E.R., Wilson R.K., et al. A physical map of the human genome. Nature. 2001;409:934–941. PubMed

International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI

Bernstein B.E., Birney E., Dunham I., Green E.D., Gunter C., Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC

Green P. 2x genomes—Does depth matter? Genome Res. 2007;17:1547–1549. doi: 10.1101/gr.7050807. PubMed DOI

Warren W.C., Hillier L.W., Marshall Graves J.A., Birney E., Ponting C.P., Grützner F., Belov K., Miller W., Clarke L., Chinwalla A.T., et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453:175–183. doi: 10.1038/nature07253. PubMed DOI PMC

Waters S.A., Livernois A.M., Patel H., O’Meally D., Craig J.M., Graves J.A.M., Suter C.M., Waters P.D. Landscape of DNA methylation on the marsupial X. Mol. Biol. Evol. 2018;35:431–439. doi: 10.1093/molbev/msx297. PubMed DOI

Georges A., Li Q., Lian J., Meally D.O., Deakin J., Wang Z., Zhang P., Fujita M., Patel H.R., Holleley C.E., et al. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience. 2015;4:45. doi: 10.1186/s13742-015-0085-2. PubMed DOI PMC

Doležel J., Greilhuber J., Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI

Duke S.E., Samollow P.B., Mauceli E., Lindblad-Toh K., Breen M. Integrated cytogenetic BAC map of the genome of the gray, short-tailed opossum, Monodelphis domestica. Chromosom. Res. 2007;15:361–370. doi: 10.1007/s10577-007-1131-4. PubMed DOI

Mikkelsen T.S., Wakefield M.J., Aken B., Amemiya C.T., Chang J.L., Duke S., Garber M., Gentles A.J., Goodstadt L., Heger A., et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447:167–177. doi: 10.1038/nature05805. PubMed DOI

The Tomato Genome Consortium The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–641. doi: 10.1038/nature11119. PubMed DOI PMC

Shearer L.A., Anderson L.K., de Jong H., Smit S., Goicoechea J.L., Roe B.A., Hua A., Giovannoni J.J., Stack S.M. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3. 2014;4:1395–1405. doi: 10.1534/g3.114.011197. PubMed DOI PMC

Deakin J.E., Edwards M.J., Patel H., O’Meally D., Lian J., Stenhouse R., Ryan S., Livernois A.M., Azad B., Holleley C.E., et al. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genom. 2016;17:447. doi: 10.1186/s12864-016-2774-3. PubMed DOI PMC

Collins F.S., Lander E.S., Rogers J., Waterson R.H. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–945. PubMed

Miga K.H. The promises and challenges of genomic studies of human centromeres. Prog. Mol. Subcell. Biol. 2017;56:285–304. PubMed

McStay B. Nucleolar organizer regions: Genomic ‘dark matter’ requiring illumination. Genes Dev. 2016;30:1598–1610. doi: 10.1101/gad.283838.116. PubMed DOI PMC

Presgraves D.C., Balagopalan L., Abmayr S.M., Orr H.A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature. 2003;423:715–719. doi: 10.1038/nature01679. PubMed DOI

Noor M.A.F., Grams K.L., Bertucci L.A., Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC

Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI

Dumas D., Britton-Davidian J. Chromosomal rearrangements and evolution of recombination: Comparison of chiasma distribution patterns in standard and Robertsonian populations of the house mouse. Genetics. 2002;162:1355–1366. PubMed PMC

Farré M., Micheletti D., Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee—A new twist in the chromosomal speciation theory. Mol. Biol. Evol. 2013;30:853–864. doi: 10.1093/molbev/mss272. PubMed DOI PMC

Ullastres A., Farré M., Capilla L., Ruiz-Herrera A. Unraveling the effect of genomic structural changes in the rhesus macaque—implications for the adaptive role of inversions. BMC Genom. 2014;15:530. doi: 10.1186/1471-2164-15-530. PubMed DOI PMC

Murphy W.J., Larkin D.M., Everts-van der Wind A., Bourque G., Tesler G., Auvil L., Beever J.E., Chowdhary B.P., Galibert F., Gatzke L., et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science. 2005;309:613–617. doi: 10.1126/science.1111387. PubMed DOI

Ruiz-Herrera A., Castresana J., Robinson T.J. Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol. 2006;7:R115. doi: 10.1186/gb-2006-7-12-r115. PubMed DOI PMC

Larkin D.M., Pape G., Donthu R., Auvil L., Welge M., Lewin H.A. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res. 2009;19:770–777. doi: 10.1101/gr.086546.108. PubMed DOI PMC

Farré M., Robinson T.J., Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. BioEssays. 2015;37:479–488. doi: 10.1002/bies.201400174. PubMed DOI

Capilla L., Sánchez-Guillén R.A., Farré M., Paytuví-Gallart A., Malinverni R., Ventura J., Larkin D.M., Ruiz-Herrera A. Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in rodentia. Genome Biol. Evol. 2016;8:3703–3717. doi: 10.1093/gbe/evw276. PubMed DOI PMC

Froenicke L., Graphodatsky A., Müller S., Lyons L.A., Robinson T.J., Volleth M., Yang F., Wienberg J. Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes ? Genome Res. 2006;16:306–310. doi: 10.1101/gr.3955206. PubMed DOI PMC

Kim J., Farre M., Auvil L., Capitanu B., Larkin D.M., Ma J., Lewin H.A. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl. Acad. Sci. USA. 2017;114:E5379–E5388. doi: 10.1073/pnas.1702012114. PubMed DOI PMC

Bailey J.A., Baertsch R., Kent W.J., Haussler D., Eichler E.E. Hotspots of mammalian chromosomal evolution. Genome Biol. 2004;5:R23. doi: 10.1186/gb-2004-5-4-r23. PubMed DOI PMC

Batzer M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009;10:691–703. PubMed PMC

Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI

Garagna S., Page J., Fernandez-Donoso R., Zuccotti M., Searle J.B. The Robertsonian phenomenon in the house mouse: Mutation, meiosis and speciation. Chromosoma. 2014;123:529–544. doi: 10.1007/s00412-014-0477-6. PubMed DOI

Lemaitre C., Zaghloul L., Sagot M.-F., Gautier C., Arneodo A., Tannier E., Audit B. Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genom. 2009;10:335. doi: 10.1186/1471-2164-10-335. PubMed DOI PMC

Van Bortle K., Corces V.G. Nuclear organization and genome function. Annu. Rev. Cell Dev. Biol. 2012;28:163–187. doi: 10.1146/annurev-cellbio-101011-155824. PubMed DOI PMC

Giorgetti L., Heard E. Closing the loop: 3C versus DNA FISH. Genome Biol. 2016;17:215. doi: 10.1186/s13059-016-1081-2. PubMed DOI PMC

Davies J.O.J., Oudelaar A.M., Higgs D.R., Hughes J.R. How best to identify chromosomal interactions: A comparison of approaches. Nat. Methods. 2017;14:125–134. doi: 10.1038/nmeth.4146. PubMed DOI

Williamson I., Berlivet S., Eskeland R., Boyle S., Illingworth R.S., Paquette D., Dostie J., Bickmore W.A. Spatial genome organization: Contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 2014;28:2778–2791. doi: 10.1101/gad.251694.114. PubMed DOI PMC

Denker A., De Laat W. The second decade of 3C technologies: Detailed insights into nuclear organization. Genes Dev. 2016;30:1357–1382. doi: 10.1101/gad.281964.116. PubMed DOI PMC

Tomaszkiewicz M., Rangavittal S., Cechova M., Sanchez C., Fescemyer H.W., Harris R., Ye D., Brien C.M.O., Chikhi R., Ryder O.A., et al. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: An application to the de novo assembly of gorilla Y. Genome Res. 2016;26:530–540. doi: 10.1101/gr.199448.115. PubMed DOI PMC

Kuderna L.F.K., Lizano E., Julià E., Gomez-Garrido J., Serres-Armero A., Kuhlwilm M., Alandes R.A., Alvarez-Estape M., Juan D., Simon H., et al. Selective single molecule sequencing and assembly of a human Y chromosome of African origin. Nat. Commun. 2019;10:4. doi: 10.1038/s41467-018-07885-5. PubMed DOI PMC

Hughes J.F., Skaletsky H., Pyntikova T., Graves T.A., van Daalen S.K.M., Minx P.J., Fulton R.S., McGrath S.D., Locke D.P., Friedman C., et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature. 2010;463:536–539. doi: 10.1038/nature08700. PubMed DOI PMC

Cui Z., Liu Y., Wang W., Wang Q., Zhang N., Lin F., Wang N., Shao C., Dong Z., Li Y., et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis) Sci. Rep. 2017;7:42213. doi: 10.1038/srep42213. PubMed DOI PMC

Shao C., Li Q., Chen S., Zhang P., Lian J., Hu Q., Sun B., Jin L., Liu S., Wang Z., et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24:604–615. doi: 10.1101/gr.162172.113. PubMed DOI PMC

Graves J.A.M. The origin and function of the mammalian Y chromosome and Y-borne genes—An evolving understanding. BioEssays. 1995;17:311–320. doi: 10.1002/bies.950170407. PubMed DOI

Deakin J.E. Marsupial X chromosome inactivation: Past, present and future. Aust. J. Zool. 2013;61:13–23. doi: 10.1071/ZO12113. DOI

Straub T., Becker P.B. Dosage compensation: The beginning and end of generalization. Nat. Rev. Genet. 2007;8:47–57. doi: 10.1038/nrg2013. PubMed DOI

Gu L., Walters J.R. Evolution of sex chromosome dosage compensation in animals: A beautiful theory, undermined by facts and bedeviled by details. Genome Biol. Evol. 2017;9:2461–2476. doi: 10.1093/gbe/evx154. PubMed DOI PMC

Deakin J.E., Hore T.A., Koina E., Graves J.A.M. The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet. 2008;4:e1000140. doi: 10.1371/journal.pgen.1000140. PubMed DOI PMC

Livernois A.M., Waters S.A., Deakin J.E., Graves J.A.M., Waters P.D. Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals. PLoS Genet. 2013;9:e1003635. doi: 10.1371/journal.pgen.1003635. PubMed DOI PMC

Julien P., Brawand D., Soumillon M., Necsulea A., Liechti A., Schütz F., Daish T., Grützner F., Kaessmann H. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol. 2012;10:e1001328. doi: 10.1371/journal.pbio.1001328. PubMed DOI PMC

Lemos B., Branco A.T., Hartl D.L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl. Acad. Sci. USA. 2010;107:15826–15831. doi: 10.1073/pnas.1010383107. PubMed DOI PMC

Sackton T.B., Hartl D.L. GBE Meta-Analysis Reveals that genes regulated by the preferentially localized to repressive chromatin. Genome Biol. Evol. 2013;5:255–266. doi: 10.1093/gbe/evt005. PubMed DOI PMC

Araripe L.O., Tao Y., Lemos B. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes. Heredity. 2016;116:516–522. doi: 10.1038/hdy.2016.11. PubMed DOI PMC

Case L.K., Wall E.H., Dragon J.A., Saligrama N., Krementsov D.N., Moussawi M., Zachary J.F., Huber S.A., Blankenhorn E.P., Teuscher C. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res. 2013;23:1474–1485. doi: 10.1101/gr.156703.113. PubMed DOI PMC

Krementsov D.N., Case L.K., Dienz O., Raza A., Fang Q., Ather J.L. Genetic variation in chromosome Y regulates susceptibility to influenza A virus infection. Proc. Natl. Acad. Sci. USA. 2017;114:3491–3496. doi: 10.1073/pnas.1620889114. PubMed DOI PMC

Yardımcı G.G., Noble W.S. Software tools for visualizing Hi-C data. Genome Biol. 2017;18:26. doi: 10.1186/s13059-017-1161-y. PubMed DOI PMC

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Jain M., Olsen H.E., Turner D.J., Stoddart D., Bulazel K.V., Paten B., Haussler D., Willard H., Akeson M., Miga K.H. Linear assembly of a human Y centromere using nanopore long reads. Nat. Biotechnol. 2018;36:321–323. doi: 10.1038/nbt.4109. PubMed DOI PMC

Tomaszkiewicz M., Medvedev P., Makova K.D. Y and W Chromosome assemblies: Approaches and discoveries. Trends Genet. 2017;33:266–282. doi: 10.1016/j.tig.2017.01.008. PubMed DOI

Dekker J., Belmont A.S., Guttman M., Leshyk V.O., Lis J.T., Lomvardas S., Mirny L.A., O’Shea C.C., Park P.J., Ren B., et al. The 4D nucleome project. Nature. 2017;549:219–226. doi: 10.1038/nature23884. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advances in Understanding the Karyotype Evolution of Tetrapulmonata and Two Other Arachnid Taxa, Ricinulei and Solifugae

. 2025 Feb 08 ; 16 (2) : . [epub] 20250208

Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia)

. 2024 Feb 27 ; 22 (1) : 47. [epub] 20240227

Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X1X2Y sex chromosome system origin

. 2023 Sep 21 ; 13 (1) : 15756. [epub] 20230921

Hooking the scientific community on thorny-headed worms: interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala

. 2023 ; 30 () : 23. [epub] 20230622

Large-scale comparative analysis of cytogenetic markers across Lepidoptera

. 2021 Jun 09 ; 11 (1) : 12214. [epub] 20210609

Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae)

. 2020 Jun 25 ; 11 (6) : . [epub] 20200625

Interstitial Telomeric Repeats Are Rare in Turtles

. 2020 Jun 16 ; 11 (6) : . [epub] 20200616

Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards

. 2020 May 11 ; 11 (5) : . [epub] 20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...