Chromosomics: Bridging the Gap between Genomes and Chromosomes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31434289
PubMed Central
PMC6723020
DOI
10.3390/genes10080627
PII: genes10080627
Knihovny.cz E-zdroje
- Klíčová slova
- centromere, chromosome rearrangements, cytogenetics, evolution, genome biology, genome plasticity, sex chromosomes,
- MeSH
- chromozomy genetika MeSH
- cytogenetické vyšetření metody MeSH
- genom lidský * MeSH
- genomika metody MeSH
- lidé MeSH
- molekulární evoluce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
Amphibian Research Center Hiroshima University Higashi Hiroshima 739 8526 Japan
Australian Museum Research Institute Australian Museum 1 William St Sydney NSW 2010 Australia
Department of Ecology Faculty of Science Charles University Viničná 7 128 44 Prague 2 Czech Republic
Graduate School of Pharmaceutical Sciences Osaka University Suita 565 0871 Osaka Japan
Institute for Applied Ecology University of Canberra Canberra ACT 2617 Australia
Research School of Biology Australian National University Acton ACT 2601 Australia
School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia
School of Biosciences University of Kent Canterbury CT2 7NJ UK
School of Life Sciences LaTrobe University Melbourne VIC 3168 Australia
School of Natural Sciences University of Tasmania Hobart 7000 Australia
Zobrazit více v PubMed
Claussen U. Chromosomics. Cytogenet. Genome Res. 2005;111:101–106. doi: 10.1159/000086377. PubMed DOI
Winkler H. Verbreitung und Ursache der Parthenogenesis im Pflanzen-und Tierreiche. Verlag von Gustav Fischer; Jena, Germany: 1920.
Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D.G. High-throughput sequencing of a single chromosome: A moth W chromosome. Chromosom. Res. 2013;21:491–505. doi: 10.1007/s10577-013-9376-6. PubMed DOI
Seifertova E., Zimmerman L.B., Gilchrist M.J., Macha J., Kubickova S., Cernohorska H., Zarsky V., Owens N.D.L., Sesay A.K., Tlapakova T., et al. Efficient high-throughput sequencing of a laser microdissected chromosome arm. BMC Genom. 2013;14:1. doi: 10.1186/1471-2164-14-357. PubMed DOI PMC
Ma L., Li W., Song Q. Chromosome-range whole-genome high-throughput experimental haplotyping by single-chromosome microdissection. Methods Mol. Biol. 2017;1551:161–169. PubMed PMC
Makunin A.I., Kichigin I.G., Larkin D.M., O’Brien P.C.M., Ferguson-Smith M.A., Yang F., Proskuryakova A.A., Vorobieva N.V., Chernyaeva E.N., O’Brien S.J., et al. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genom. 2016;17:618. doi: 10.1186/s12864-016-2933-6. PubMed DOI PMC
Murchison E.P., Schulz-Trieglaff O.B., Ning Z., Alexandrov L.B., Bauer M.J., Fu B., Hims M., Ding Z., Ivakhno S., Stewart C., et al. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell. 2012;148:780–791. doi: 10.1016/j.cell.2011.11.065. PubMed DOI PMC
Skinner B.M., Sargent C.A., Churcher C., Hunt T., Herrero J., Loveland J.E., Dunn M., Louzada S., Fu B., Chow W., et al. The pig X and Y Chromosomes: Structure, sequence, and evolution. Genome Res. 2016;26:130–139. doi: 10.1101/gr.188839.114. PubMed DOI PMC
Damas J., O’Connor R., Farré M., Lenis V.P.E., Martell H.J., Mandawala A., Fowler K., Joseph S., Swain M.T., Griffin D.K., et al. Upgrading short read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017;27:875–884. doi: 10.1101/gr.213660.116. PubMed DOI PMC
Beliveau B.J., Boettiger A.N., Avendaño M.S., Jungmann R., McCole R.B., Joyce E.F., Kim-Kiselak C., Bantignies F., Fonseka C.Y., Erceg J., et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 2015;6:7147. doi: 10.1038/ncomms8147. PubMed DOI PMC
Lakadamyali M., Cosma M.P. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett. 2015;589:3023–3030. doi: 10.1016/j.febslet.2015.04.012. PubMed DOI
Mostovoy Y., Levy-Sakin M., Lam J., Lam E.T., Hastie A.R., Marks P., Lee J., Chu C., Lin C., Džakula Ž., et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nat. Methods. 2016;13:12–17. doi: 10.1038/nmeth.3865. PubMed DOI PMC
Rhoads A., Au K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015;13:278–289. doi: 10.1016/j.gpb.2015.08.002. PubMed DOI PMC
Magi A., Semeraro R., Mingrino A., Giusti B., D’Aurizio R. Nanopore sequencing data analysis: State of the art, applications and challenges. Brief. Bioinform. 2017;19:1256–1272. doi: 10.1093/bib/bbx062. PubMed DOI
Lu H., Giordano F., Ning Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genom. Proteom. Bioinform. 2016;14:265–279. doi: 10.1016/j.gpb.2016.05.004. PubMed DOI PMC
Zheng G.X.Y., Lau B.T., Schnall-Levin M., Jarosz M., Bell J.M., Hindson C.M., Kyriazopoulou-Panagiotopoulou S., Masquelier D.A., Merrill L., Terry J.M., et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016;34:303–311. doi: 10.1038/nbt.3432. PubMed DOI PMC
Putnam N.H., Connell B.O., Stites J.C., Rice B.J., Hartley P.D., Sugnet C.W., Haussler D., Rokhsar D.S. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC
Dudchenko O., Batra S.S., Omer A.D., Nyquist S.K., Hoeger M., Durand N.C., Shamim M.S., Machol I., Lander E.S., Aiden A.P. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;10:92–95. doi: 10.1126/science.aal3327. PubMed DOI PMC
Fullwood M.J., Liu M.H., Pan Y.F., Liu J., Xu H., Mohamed Y.B., Orlov Y.L., Velkov S., Ho A., Mei P.H., et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature. 2009;462:58–64. doi: 10.1038/nature08497. PubMed DOI PMC
Cremer T., Cremer C. Rise, fall and resurrection of chromosome territories: A historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: Experiments and models from the 1990s to the present. Eur. J. Histochem. 2006;50:223–272. PubMed
Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., et al. A pathway for mitotic chromosome formation. Science. 2018;359:eaao6135. doi: 10.1126/science.aao6135. PubMed DOI PMC
Naumova N., Imakaev M., Fudenberg G., Zhan Y., Lajoie B.R., Mirny L.A., Dekker J. Organization of the mitotic chromosome. Science. 2013;342:948–953. doi: 10.1126/science.1236083. PubMed DOI PMC
Patel L., Kang R., Rosenberg S.C., Qiu Y., Raviram R., Chee S., Hu R., Ren B., Cole F., Corbett K.D. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 2019;26:164–174. doi: 10.1038/s41594-019-0187-0. PubMed DOI PMC
Alavattam K.G., Maezawa S., Sakashita A., Khoury H., Barski A., Kaplan N., Namekawa S.H. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat. Struct. Mol. Biol. 2019;26:175–184. doi: 10.1038/s41594-019-0189-y. PubMed DOI PMC
Vara C., Paytuví-Gallart A., Cuartero Y., Le Dily F., Garcia F., Salvà-Castro J., Gómez-H L., Julià E., Moutinho C., Aiese Cigliano R., et al. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 2019;28:352–367. doi: 10.1016/j.celrep.2019.06.037. PubMed DOI PMC
Poonperm R., Takata H., Hamano T., Matsuda A., Uchiyama S., Hiraoka Y., Fukui K. Chromosome scaffold is a double-stranded assembly of scaffold proteins. Sci. Rep. 2015;5:11916. doi: 10.1038/srep11916. PubMed DOI PMC
Wako T., Fukuda M., Furushima-Shimogawara R., Belyaev N.D., Turner B.M., Fukui K. Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal. Chim. Acta. 1998;365:9–17. doi: 10.1016/S0003-2670(97)00619-3. DOI
Nir G., Farabella I., Pérez Estrada C., Ebeling C.G., Beliveau B.J., Sasaki H.M., Lee S.H., Nguyen S.C., McCole R.B., Chattoraj S., et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 2018;14:1–35. doi: 10.1371/journal.pgen.1007872. PubMed DOI PMC
Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960;25:85–109. PubMed
Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290. doi: 10.1038/243290a0. PubMed DOI
Shtivelman E., Lifshitz B., Gale R.P., Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–554. doi: 10.1038/315550a0. PubMed DOI
Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E., Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., et al. DNA sequence and analysis of human chromosome 9. Nature. 2004;429:369–374. doi: 10.1038/nature02465. PubMed DOI PMC
Dunham I., Shimizu N., Roe B.A., Chissoe S., Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M., Clamp M., et al. The DNA sequence of human chromosome 22. Nature. 1999;402:489–495. doi: 10.1038/990031. PubMed DOI
Foster J.W., Graves J.A.M. An SRY-related sequence on the marsupial X chromosome: Implications for the evolution of the mammalian testis-determining gene. Proc. Natl. Acad. Sci. USA. 1994;91:1927–1931. doi: 10.1073/pnas.91.5.1927. PubMed DOI PMC
Sinclair A.H., Berta P., Palmer M.S., Hawkins J.R., Griffiths B.L., Smith M.J., Foster J.W., Frischauf A.M., Lovell-Badge R., Goodfellow P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–244. doi: 10.1038/346240a0. PubMed DOI
Skaletsky H., Kuroda-Kawaguchi T., Minx P.J., Cordum H.S., Hillier L., Brown L.G., Repping S., Pyntikova T., Ali J., Bieri T., et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–837. doi: 10.1038/nature01722. PubMed DOI
Koopman P., Gubbay J., Vivian N., Goodfellow P., Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351:117–121. doi: 10.1038/351117a0. PubMed DOI
Page D.C., Mosher R., Simpson E.M., Fisher E.M.C., Mardon G., Pollack J., McGillivray B., de la Chapelle A., Brown L.G. The sex-determining region of the human Y chromosome encodes a finger protein. Cell. 1987;27:67–82. doi: 10.1016/0092-8674(87)90595-2. PubMed DOI
McPherson J.D., Marra M., Hillier L.D., Waterston R.H., Chinwalla A., Wallis J., Sekhon M., Wylie K., Mardis E.R., Wilson R.K., et al. A physical map of the human genome. Nature. 2001;409:934–941. PubMed
International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI
Bernstein B.E., Birney E., Dunham I., Green E.D., Gunter C., Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC
Green P. 2x genomes—Does depth matter? Genome Res. 2007;17:1547–1549. doi: 10.1101/gr.7050807. PubMed DOI
Warren W.C., Hillier L.W., Marshall Graves J.A., Birney E., Ponting C.P., Grützner F., Belov K., Miller W., Clarke L., Chinwalla A.T., et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453:175–183. doi: 10.1038/nature07253. PubMed DOI PMC
Waters S.A., Livernois A.M., Patel H., O’Meally D., Craig J.M., Graves J.A.M., Suter C.M., Waters P.D. Landscape of DNA methylation on the marsupial X. Mol. Biol. Evol. 2018;35:431–439. doi: 10.1093/molbev/msx297. PubMed DOI
Georges A., Li Q., Lian J., Meally D.O., Deakin J., Wang Z., Zhang P., Fujita M., Patel H.R., Holleley C.E., et al. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience. 2015;4:45. doi: 10.1186/s13742-015-0085-2. PubMed DOI PMC
Doležel J., Greilhuber J., Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Duke S.E., Samollow P.B., Mauceli E., Lindblad-Toh K., Breen M. Integrated cytogenetic BAC map of the genome of the gray, short-tailed opossum, Monodelphis domestica. Chromosom. Res. 2007;15:361–370. doi: 10.1007/s10577-007-1131-4. PubMed DOI
Mikkelsen T.S., Wakefield M.J., Aken B., Amemiya C.T., Chang J.L., Duke S., Garber M., Gentles A.J., Goodstadt L., Heger A., et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447:167–177. doi: 10.1038/nature05805. PubMed DOI
The Tomato Genome Consortium The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–641. doi: 10.1038/nature11119. PubMed DOI PMC
Shearer L.A., Anderson L.K., de Jong H., Smit S., Goicoechea J.L., Roe B.A., Hua A., Giovannoni J.J., Stack S.M. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3. 2014;4:1395–1405. doi: 10.1534/g3.114.011197. PubMed DOI PMC
Deakin J.E., Edwards M.J., Patel H., O’Meally D., Lian J., Stenhouse R., Ryan S., Livernois A.M., Azad B., Holleley C.E., et al. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genom. 2016;17:447. doi: 10.1186/s12864-016-2774-3. PubMed DOI PMC
Collins F.S., Lander E.S., Rogers J., Waterson R.H. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–945. PubMed
Miga K.H. The promises and challenges of genomic studies of human centromeres. Prog. Mol. Subcell. Biol. 2017;56:285–304. PubMed
McStay B. Nucleolar organizer regions: Genomic ‘dark matter’ requiring illumination. Genes Dev. 2016;30:1598–1610. doi: 10.1101/gad.283838.116. PubMed DOI PMC
Presgraves D.C., Balagopalan L., Abmayr S.M., Orr H.A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature. 2003;423:715–719. doi: 10.1038/nature01679. PubMed DOI
Noor M.A.F., Grams K.L., Bertucci L.A., Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC
Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI
Dumas D., Britton-Davidian J. Chromosomal rearrangements and evolution of recombination: Comparison of chiasma distribution patterns in standard and Robertsonian populations of the house mouse. Genetics. 2002;162:1355–1366. PubMed PMC
Farré M., Micheletti D., Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee—A new twist in the chromosomal speciation theory. Mol. Biol. Evol. 2013;30:853–864. doi: 10.1093/molbev/mss272. PubMed DOI PMC
Ullastres A., Farré M., Capilla L., Ruiz-Herrera A. Unraveling the effect of genomic structural changes in the rhesus macaque—implications for the adaptive role of inversions. BMC Genom. 2014;15:530. doi: 10.1186/1471-2164-15-530. PubMed DOI PMC
Murphy W.J., Larkin D.M., Everts-van der Wind A., Bourque G., Tesler G., Auvil L., Beever J.E., Chowdhary B.P., Galibert F., Gatzke L., et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science. 2005;309:613–617. doi: 10.1126/science.1111387. PubMed DOI
Ruiz-Herrera A., Castresana J., Robinson T.J. Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol. 2006;7:R115. doi: 10.1186/gb-2006-7-12-r115. PubMed DOI PMC
Larkin D.M., Pape G., Donthu R., Auvil L., Welge M., Lewin H.A. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res. 2009;19:770–777. doi: 10.1101/gr.086546.108. PubMed DOI PMC
Farré M., Robinson T.J., Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. BioEssays. 2015;37:479–488. doi: 10.1002/bies.201400174. PubMed DOI
Capilla L., Sánchez-Guillén R.A., Farré M., Paytuví-Gallart A., Malinverni R., Ventura J., Larkin D.M., Ruiz-Herrera A. Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in rodentia. Genome Biol. Evol. 2016;8:3703–3717. doi: 10.1093/gbe/evw276. PubMed DOI PMC
Froenicke L., Graphodatsky A., Müller S., Lyons L.A., Robinson T.J., Volleth M., Yang F., Wienberg J. Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes ? Genome Res. 2006;16:306–310. doi: 10.1101/gr.3955206. PubMed DOI PMC
Kim J., Farre M., Auvil L., Capitanu B., Larkin D.M., Ma J., Lewin H.A. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl. Acad. Sci. USA. 2017;114:E5379–E5388. doi: 10.1073/pnas.1702012114. PubMed DOI PMC
Bailey J.A., Baertsch R., Kent W.J., Haussler D., Eichler E.E. Hotspots of mammalian chromosomal evolution. Genome Biol. 2004;5:R23. doi: 10.1186/gb-2004-5-4-r23. PubMed DOI PMC
Batzer M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009;10:691–703. PubMed PMC
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI
Garagna S., Page J., Fernandez-Donoso R., Zuccotti M., Searle J.B. The Robertsonian phenomenon in the house mouse: Mutation, meiosis and speciation. Chromosoma. 2014;123:529–544. doi: 10.1007/s00412-014-0477-6. PubMed DOI
Lemaitre C., Zaghloul L., Sagot M.-F., Gautier C., Arneodo A., Tannier E., Audit B. Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genom. 2009;10:335. doi: 10.1186/1471-2164-10-335. PubMed DOI PMC
Van Bortle K., Corces V.G. Nuclear organization and genome function. Annu. Rev. Cell Dev. Biol. 2012;28:163–187. doi: 10.1146/annurev-cellbio-101011-155824. PubMed DOI PMC
Giorgetti L., Heard E. Closing the loop: 3C versus DNA FISH. Genome Biol. 2016;17:215. doi: 10.1186/s13059-016-1081-2. PubMed DOI PMC
Davies J.O.J., Oudelaar A.M., Higgs D.R., Hughes J.R. How best to identify chromosomal interactions: A comparison of approaches. Nat. Methods. 2017;14:125–134. doi: 10.1038/nmeth.4146. PubMed DOI
Williamson I., Berlivet S., Eskeland R., Boyle S., Illingworth R.S., Paquette D., Dostie J., Bickmore W.A. Spatial genome organization: Contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 2014;28:2778–2791. doi: 10.1101/gad.251694.114. PubMed DOI PMC
Denker A., De Laat W. The second decade of 3C technologies: Detailed insights into nuclear organization. Genes Dev. 2016;30:1357–1382. doi: 10.1101/gad.281964.116. PubMed DOI PMC
Tomaszkiewicz M., Rangavittal S., Cechova M., Sanchez C., Fescemyer H.W., Harris R., Ye D., Brien C.M.O., Chikhi R., Ryder O.A., et al. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: An application to the de novo assembly of gorilla Y. Genome Res. 2016;26:530–540. doi: 10.1101/gr.199448.115. PubMed DOI PMC
Kuderna L.F.K., Lizano E., Julià E., Gomez-Garrido J., Serres-Armero A., Kuhlwilm M., Alandes R.A., Alvarez-Estape M., Juan D., Simon H., et al. Selective single molecule sequencing and assembly of a human Y chromosome of African origin. Nat. Commun. 2019;10:4. doi: 10.1038/s41467-018-07885-5. PubMed DOI PMC
Hughes J.F., Skaletsky H., Pyntikova T., Graves T.A., van Daalen S.K.M., Minx P.J., Fulton R.S., McGrath S.D., Locke D.P., Friedman C., et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature. 2010;463:536–539. doi: 10.1038/nature08700. PubMed DOI PMC
Cui Z., Liu Y., Wang W., Wang Q., Zhang N., Lin F., Wang N., Shao C., Dong Z., Li Y., et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis) Sci. Rep. 2017;7:42213. doi: 10.1038/srep42213. PubMed DOI PMC
Shao C., Li Q., Chen S., Zhang P., Lian J., Hu Q., Sun B., Jin L., Liu S., Wang Z., et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24:604–615. doi: 10.1101/gr.162172.113. PubMed DOI PMC
Graves J.A.M. The origin and function of the mammalian Y chromosome and Y-borne genes—An evolving understanding. BioEssays. 1995;17:311–320. doi: 10.1002/bies.950170407. PubMed DOI
Deakin J.E. Marsupial X chromosome inactivation: Past, present and future. Aust. J. Zool. 2013;61:13–23. doi: 10.1071/ZO12113. DOI
Straub T., Becker P.B. Dosage compensation: The beginning and end of generalization. Nat. Rev. Genet. 2007;8:47–57. doi: 10.1038/nrg2013. PubMed DOI
Gu L., Walters J.R. Evolution of sex chromosome dosage compensation in animals: A beautiful theory, undermined by facts and bedeviled by details. Genome Biol. Evol. 2017;9:2461–2476. doi: 10.1093/gbe/evx154. PubMed DOI PMC
Deakin J.E., Hore T.A., Koina E., Graves J.A.M. The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet. 2008;4:e1000140. doi: 10.1371/journal.pgen.1000140. PubMed DOI PMC
Livernois A.M., Waters S.A., Deakin J.E., Graves J.A.M., Waters P.D. Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals. PLoS Genet. 2013;9:e1003635. doi: 10.1371/journal.pgen.1003635. PubMed DOI PMC
Julien P., Brawand D., Soumillon M., Necsulea A., Liechti A., Schütz F., Daish T., Grützner F., Kaessmann H. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol. 2012;10:e1001328. doi: 10.1371/journal.pbio.1001328. PubMed DOI PMC
Lemos B., Branco A.T., Hartl D.L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl. Acad. Sci. USA. 2010;107:15826–15831. doi: 10.1073/pnas.1010383107. PubMed DOI PMC
Sackton T.B., Hartl D.L. GBE Meta-Analysis Reveals that genes regulated by the preferentially localized to repressive chromatin. Genome Biol. Evol. 2013;5:255–266. doi: 10.1093/gbe/evt005. PubMed DOI PMC
Araripe L.O., Tao Y., Lemos B. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes. Heredity. 2016;116:516–522. doi: 10.1038/hdy.2016.11. PubMed DOI PMC
Case L.K., Wall E.H., Dragon J.A., Saligrama N., Krementsov D.N., Moussawi M., Zachary J.F., Huber S.A., Blankenhorn E.P., Teuscher C. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res. 2013;23:1474–1485. doi: 10.1101/gr.156703.113. PubMed DOI PMC
Krementsov D.N., Case L.K., Dienz O., Raza A., Fang Q., Ather J.L. Genetic variation in chromosome Y regulates susceptibility to influenza A virus infection. Proc. Natl. Acad. Sci. USA. 2017;114:3491–3496. doi: 10.1073/pnas.1620889114. PubMed DOI PMC
Yardımcı G.G., Noble W.S. Software tools for visualizing Hi-C data. Genome Biol. 2017;18:26. doi: 10.1186/s13059-017-1161-y. PubMed DOI PMC
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Jain M., Olsen H.E., Turner D.J., Stoddart D., Bulazel K.V., Paten B., Haussler D., Willard H., Akeson M., Miga K.H. Linear assembly of a human Y centromere using nanopore long reads. Nat. Biotechnol. 2018;36:321–323. doi: 10.1038/nbt.4109. PubMed DOI PMC
Tomaszkiewicz M., Medvedev P., Makova K.D. Y and W Chromosome assemblies: Approaches and discoveries. Trends Genet. 2017;33:266–282. doi: 10.1016/j.tig.2017.01.008. PubMed DOI
Dekker J., Belmont A.S., Guttman M., Leshyk V.O., Lis J.T., Lomvardas S., Mirny L.A., O’Shea C.C., Park P.J., Ren B., et al. The 4D nucleome project. Nature. 2017;549:219–226. doi: 10.1038/nature23884. PubMed DOI PMC
Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia)
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
Interstitial Telomeric Repeats Are Rare in Turtles
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards