Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards

. 2020 May 11 ; 11 (5) : . [epub] 20200511

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32403257

Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.

Zobrazit více v PubMed

Ohno S. Sex Chromosomes and Sex-Linked Genes. Springer; Berlin/Heidelberg, Germany: 1966. Monographs on Endocrinology.

Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI

Vicoso B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat. Ecol. Evol. 2019;3:1632–1641. doi: 10.1038/s41559-019-1050-8. PubMed DOI

Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501. doi: 10.1371/journal.pbio.1000501. PubMed DOI PMC

Bachtrog D., Kirkpatrick M., Mank J.E., McDaniel S.F., Pires J.C., Rice W., Valenzuela N. Are all sex chromosomes created equal? Trends Genet. 2011;27:350–357. doi: 10.1016/j.tig.2011.05.005. PubMed DOI

Pokorná M., Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: Are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 2009;156:168–183. doi: 10.1111/j.1096-3642.2008.00481.x. DOI

Scherthan H., Cremer T., Arnason U., Weier H.-U., Lima-de-Faria A., Frönicke L. Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat. Genet. 1994;6:342–347. doi: 10.1038/ng0494-342. PubMed DOI

Ferguson-Smith M.A., Yang F., O’Brien P.C.M. Comparative mapping using chromosome sorting and painting. ILAR J. 1998;39:68–76. doi: 10.1093/ilar.39.2-3.68. PubMed DOI

Mank J.E., Ellegren H. Parallel divergence and degradation of the avian W sex chromosome. Trends Ecol. Evol. 2007;22:389–391. doi: 10.1016/j.tree.2007.05.003. PubMed DOI

Graphodatsky A.S., Trifonov V.A., Stanyon R. The genome diversity and karyotype evolution of mammals. Mol. Cytogenet. 2011;4:22. doi: 10.1186/1755-8166-4-22. PubMed DOI PMC

Rovatsos M., Pokorná M., Altmanová M., Kratochvíl L. Cretaceous park of sex determination: Sex chromosomes are conserved across iguanas. Biol. Lett. 2014;10:20131093. doi: 10.1098/rsbl.2013.1093. PubMed DOI PMC

Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. B. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC

Rovatsos M., Praschag P., Fritz U., Kratochvíl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:42150. doi: 10.1038/srep42150. PubMed DOI PMC

Rovatsos M., Farkačová K., Altmanová M., Johnson Pokorná M., Kratochvíl L. The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 2019;28:3042–3052. doi: 10.1111/mec.15126. PubMed DOI

Rovatsos M., Rehák I., Velenský P., Kratochvíl L. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 2019;36:1113–1120. doi: 10.1093/molbev/msz024. PubMed DOI

Rovatsos M., Vukić J., Mrugała A., Suwala G., Lymberakis P., Kratochvíl L. Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards. Sci. Rep. 2019;9:7832. doi: 10.1038/s41598-019-44192-5. PubMed DOI PMC

Altmanová M., Rovatsos M., Johnson Pokorná M., Veselý M., Wagner F., Kratochvíl L. All iguana families with the exception of basilisks share sex chromosomes. Zoology. 2018;126:98–102. doi: 10.1016/j.zool.2017.11.007. PubMed DOI

Xu L., Auer G., Peona V., Suh A., Deng Y., Feng S., Zhang G., Blom M.P.K., Christidis L., Prost S., et al. Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat. Ecol. Evol. 2019;3:834–844. doi: 10.1038/s41559-019-0850-1. PubMed DOI

Acosta M.J., Marchal J.A., Fernández-Espartero C., Romero-Fernández I., Rovatsos M.T., Giagia-Athanasopoulou E.B., Gornung E., Castiglia R., Sánchez A. Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae) Genetica. 2010;138:1085–1098. doi: 10.1007/s10709-010-9496-2. PubMed DOI

Hughes J.F., Skaletsky H., Pyntikova T., Graves T.A., van Daalen S.K.M., Minx P.J., Fulton R.S., McGrath S.D., Locke D.P., Friedman C., et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature. 2010;463:536–539. doi: 10.1038/nature08700. PubMed DOI PMC

Cortez D., Marin R., Toledo-Flores D., Froidevaux L., Liechti A., Waters P.D., Grützner F., Kaessmann H. Origins and functional evolution of Y chromosomes across mammals. Nature. 2014;508:488–493. doi: 10.1038/nature13151. PubMed DOI

Gamble T., Geneva A.J., Glor R.E., Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution. 2014;68:1027–1041. doi: 10.1111/evo.12328. PubMed DOI PMC

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Cano-Linares M., Fernández F.J., Giagia-Athanasopoulou E.B., Sánchez A. Molecular and physical characterization of the complex pericentromeric heterochromatin of the vole species Microtus thomasi. Cytogenet. Genome Res. 2014;144:131–141. doi: 10.1159/000368648. PubMed DOI

Soh Y.Q.S., Alföldi J., Pyntikova T., Brown L.G., Graves T., Minx P.J., Fulton R.S., Kremitzki C., Koutseva N., Mueller J.L., et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell. 2014;159:800–813. doi: 10.1016/j.cell.2014.09.052. PubMed DOI PMC

Zhou Q., Zhang J., Bachtrog D., An N., Huang Q., Jarvis E.D., Gilbert M.T.P., Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346:1246338. doi: 10.1126/science.1246338. PubMed DOI PMC

Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI

Morgan A.P., Pardo-Manuel de Villena F. Sequence and structural diversity of mouse Y chromosomes. Mol. Biol. Evol. 2017;34:3186–3204. doi: 10.1093/molbev/msx250. PubMed DOI PMC

Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC

Iannucci A., Altmanová M., Ciofi C., Ferguson-Smith M., Milan M., Pereira J.C., Pether J., Rehák I., Rovatsos M., Stanyon R., et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae) Heredity. 2019;123:215–227. doi: 10.1038/s41437-018-0179-6. PubMed DOI PMC

Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC

Deakin J.E., Potter S., O’Neill R., Ruiz-Herrera A., Cioffi M.B., Eldridge M.D.B., Fukui K., Marshall Graves J.A., Griffin D., Grutzner F., et al. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019;10:627. doi: 10.3390/genes10080627. PubMed DOI PMC

Ezaz T., Deakin J.E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol. 2014;2014:104683. doi: 10.1155/2014/104683. DOI

Hobza R., Kubat Z., Cegan R., Jesionek W., Vyskot B., Kejnovsky E. Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res. 2015;23:561–570. doi: 10.1007/s10577-015-9496-2. PubMed DOI

De Smet W.H. Description of the orcein stained karyotypes of 36 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta Zool. Pathol. Antverp. 1981;76:73–118.

Olmo E., Odierna G., Capriglione T. The karyology of Mediterranean lacertid lizards. In: Valakos E.D., Böhme W., Perez Mellado V., Maragou P., editors. Lacertids of the Mediterranean Region: A Biological Approach. Hellenic Zoological Society; Athens, Greece: 1993. pp. 61–84.

Odierna G., Caprigilone T., Kupriyanova L.A., Olmo E. Further data on sex chromosomes of Lacertidae and a hypothesis on their evolutionary trend. Amphib.-Reptil. 1993;14:1–11. doi: 10.1163/156853893X00147. DOI

Olmo E., Cobror O., Morescalchi A., Odierna G. Homomorphic sex chromosomes in the lacertid lizard Takydromus sexlineatus. Heredity. 1984;53:457–459. doi: 10.1038/hdy.1984.103. DOI

Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. doi: 10.1186/1471-2156-12-90. PubMed DOI PMC

Rojo Oróns V. Ph.D. Thesis. Universidade da Coruña; Coruña, Spain: 2015. Cytogenetic and Molecular Characterization of Lacertid Lizard Species from the Iberian Peninsula.

Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI

Lisachov A.P., Borodin P.M. Microchromosome polymorphism in the sand lizard, Lacerta agilis Linnaeus, 1758 (Reptilia, Squamata) Comp. Cytogenet. 2016;10:387–399. doi: 10.3897/CompCytogen.v10i3.7655. PubMed DOI PMC

Giovannotti M., Nisi Cerioni P., Slimani T., Splendiani A., Paoletti A., Fawzi A., Olmo E., Caputo Barucchi V. Cytogenetic characterization of a population of Acanthodactylus lineomaculatus Duméril and Bibron, 1839 (Reptilia, Lacertidae), from Southwestern Morocco and insights into sex chromosome evolution. Cytogenet. Genome Res. 2017;153:86–95. doi: 10.1159/000484533. PubMed DOI

Giovannotti M., Nisi Cerioni P., Rojo V., Olmo E., Slimani T., Splendiani A., Caputo Barucchi V. Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. J. Exp. Zool. 2018;330:83–95. doi: 10.1002/jez.b.22790. PubMed DOI

Lisachov A.P., Giovannotti M., Pereira J.C., Andreyushkova D.A., Romanenko S.A., Ferguson-Smith M.A., Borodin P.M., Trifonov V.A. Chromosome painting does not support a sex chromosome turnover in Lacerta agilis Linnaeus, 1758. Cytogenet. Genome Res. 2020;160:134–140. doi: 10.1159/000506321. PubMed DOI

Olmo E., Signorino G. Chromorep: A Reptile Chromosomes Database. [(accessed on 25 March 2020)];2005 Available online: http://chromorep.univpm.it/

Lisachov A.P., Galkina S.A., Saifitdinova A.F., Romanenko S.A., Andreyushkova D.A., Trifonov V.A., Borodin P.M. Identification of sex chromosomes in Eremias velox (Lacertidae, Reptilia) using lampbrush chromosome analysis. Comp. Cytogenet. 2019;13:121–132. doi: 10.3897/CompCytogen.v13i2.34116. PubMed DOI PMC

Andrade P., Pinho C., Pérez i de Lanuza G., Afonso S., Brejcha J., Rubin C.-J., Wallerman O., Pereira P., Sabatino S.J., Bellati A., et al. Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard. Proc. Natl. Acad. Sci. USA. 2019;116:5633–5642. doi: 10.1073/pnas.1820320116. PubMed DOI PMC

Vertebrate Genome Project Genome of Lacerta agilis. [(accessed on 25 March 2020)];2019 Available online: https://www.ncbi.nlm.nih.gov/genome/?term=txid80427.

Rovatsos M., Vukić J., Altmanová M., Johnson Pokorná M., Moravec J., Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 2016;25:3120–3126. doi: 10.1111/mec.13635. PubMed DOI

Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Rovatsos M., Johnson Pokorná M., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI

Oguma K. Studies on the sauropsid chromosomes. II. The cytological evidence proving female heterogamety in the lizard (Lacerta vivipara) Arch. Biol. 1934;45:27–46.

Gorman G.C. New chromosome data for 12 species of lacertid lizards. J. Herpet. 1969;3:49–54. doi: 10.2307/1563223. DOI

Ivanov V.G., Fedorova T.A. Sex heteromorphism of chromosomes in Lacerta strigata. Tsitologiia. 1970;12:1582–1585. PubMed

Ivanov V., Bogdanov O., Anisimov E.Y., Fedorova T. Studies into karyotypes of 3 lizard species (Sauria, Scincidae, Lacertidae) Tsitologiia. 1973;15:1291–1296. PubMed

Cano J., Baez M., Lopez-Jurado L.F., Ortega G. Karyotype and chromosome structure in the lizard, Gallotia galloti in the Canary Islands. J. Herpetol. 1984;18:344–346. doi: 10.2307/1564092. DOI

Olmo E., Odierna G., Capriglione T. Evolution of sex-chromosomes in lacertid lizards. Chromosoma. 1987;96:33–38. doi: 10.1007/BF00285880. DOI

Pyron R., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC

Garcia-Porta J., Irisarri I., Kirchner M., Rodríguez A., Kirchhof S., Brown J.L., MacLeod A., Turner A.P., Ahmadzadeh F., Albaladejo G., et al. Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat. Commun. 2019;10:4077. doi: 10.1038/s41467-019-11943-x. PubMed DOI PMC

Rutkowska J., Lagisz M., Nakagawa S. The long and the short of avian W chromosomes: No evidence for gradual W shortening. Biol. Lett. 2012;8:636–638. doi: 10.1098/rsbl.2012.0083. PubMed DOI PMC

Matsubara K., Sarre S.D., Georges A., Matsuda Y., Marshall Graves J.A., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC

Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI

Rovatsos M., Vukić J., Kratochvíl L. Mammalian X homolog acts as sex chromosome in lacertid lizards. Heredity. 2016;117:8–13. doi: 10.1038/hdy.2016.18. PubMed DOI PMC

Kejnovsky E., Kubat Z., Hobza R., Lengerova M., Sato S., Tabata S., Fukui K., Matsunaga S., Vyskot B. Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica. 2006;128:167–175. doi: 10.1007/s10709-005-5701-0. PubMed DOI

Schartl M., Schmid M., Nanda I. Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma. 2016;125:553–571. doi: 10.1007/s00412-015-0569-y. PubMed DOI

Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A.M., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI

Singh L., Purdom I.F., Jones K.W. Satellite DNA and evolution of sex chromosomes. Chromosoma. 1976;59:43–62. doi: 10.1007/BF00327708. PubMed DOI

Singh L., Purdom I.F., Jones K.W. Sex chromosome associated satellite DNA: Evolution and conservation. Chromosoma. 1980;79:137–157. doi: 10.1007/BF01175181. PubMed DOI

Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2018;56:117–125. doi: 10.1111/jzs.12180. DOI

Johnson Pokorná M., Altmanová M., Rovatsos M., Velenský P., Vodička R., Rehák I., Kratochvíl L. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet. Genome Res. 2016;148:284–291. doi: 10.1159/000447340. PubMed DOI

Matsubara K., Tarui H., Toriba M., Yamada K., Nishida-Umehara C., Agata K., Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc. Natl. Acad. Sci. USA. 2006;103:18190–18195. doi: 10.1073/pnas.0605274103. PubMed DOI PMC

Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Rykena S., Nettmann H.K. The karyotype of Lacerta princeps kurdistanica and its meaning in phylogeny. In: Roček Z., editor. Studies in Herpetology. Prague, Czech Republic: 1986. [(accessed on 8 May 2020)]. pp. 193–196. Available online: https://www.lacerta.de/AF/Bibliografie/BIB_4026.pdf.

Odierna G., Olmo E., Capriglione T., Caputo V. Karyological differences between Lacerta lepida and Lacerta pater. J. Herpet. 1990;24:97–99. doi: 10.2307/1564300. DOI

Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI

Schmid M., Steinlein C., Reiter A.M., Rovatsos M., Altmanová M., Mazzoleni S., Johnson Pokorná M., Kratochvíl L. 5-Methylcytosine-rich heterochromatin in reptiles. Cytogenet. Genome Res. 2019;157:53–64. doi: 10.1159/000495893. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...