Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29283388
PubMed Central
PMC5793158
DOI
10.3390/genes9010005
PII: genes9010005
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, GATA, heterochromatin, microsatellites, sex chromosomes, telomeres,
- Publikační typ
- časopisecké články MeSH
The caenophidian (assigned also as "advanced") snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length.
Zobrazit více v PubMed
Uetz P., Freed P., Hošek J., editors. The Reptile Database. [(accessed on 6 August 2017)]; Available online: http://www.reptile-database.org.
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Pyron R.A., Burbrink F.T. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution. 2012;66:163–178. doi: 10.1111/j.1558-5646.2011.01437.x. PubMed DOI
Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. B Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC
Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 26 August 2017)];2005 Available online: http://chromorep.univpm.it.
Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI
Rovatsos M., Johnson Pokorná M., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2017 doi: 10.1111/jzs.12180. DOI
Vicoso B., Emerson J.J., Zektser Y., Mahajan S., Bachtrog D. Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013;11:e1001643. doi: 10.1371/journal.pbio.1001643. PubMed DOI PMC
Gamble T., Castoe T.A., Nielsen S.V., Banks J.L., Card D.C., Schield D.R., Schuett G.W., Booth W. The discovery of XY sex chromosomes in a boa and report the discovery of XY sex chromosomes in a boa and python. Curr. Biol. 2017;27:1–6. doi: 10.1016/j.cub.2017.06.010. PubMed DOI
Matsubara K., Nishida C., Matsuda Y., Kumazawa Y. Sex chromosome evolution in snakes inferred from divergence patterns of two gametologous genes and chromosome distribution of sex chromosome-linked repetitive sequences. Zool. Lett. 2016;2:19. doi: 10.1186/s40851-016-0056-1. PubMed DOI PMC
Laopichienpong N., Muangmai N., Chanhome L., Suntrarachun S., Twilprawat P., Peyachoknagul S., Srikulnath K. Evolutionary dynamics of the gametologous CTNNB1 gene on the Z and W chromosomes of snakes. J. Hered. 2017;108:142–151. PubMed
Cioffi M.B., Kejnovsky E., Bertollo L.A.C. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet. Genome Res. 2011;132:289–296. doi: 10.1159/000322058. PubMed DOI
Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A.M., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI
Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. doi: 10.1186/1471-2156-12-90. PubMed DOI PMC
Singh L., Purdom F., Jones K.W. Satellite DNA and evolution of sex chromosomes. Chromosoma. 1976;59:43–62. doi: 10.1007/BF00327708. PubMed DOI
Gamble T., Geneva A.J., Glor R.E., Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution. 2014;68:1027–1041. doi: 10.1111/evo.12328. PubMed DOI PMC
Subramanian S., Mishra R.K., Singh L. Genome-wide analysis of Bkm sequences (GATA repeats): Predominant association with sex chromosomes and potential role in higher order chromatin organization and function. Bioinformatics. 2003;19:681–685. doi: 10.1093/bioinformatics/btg067. PubMed DOI
O’Meally D., Patel H.R., Stiglec R., Sarre S.D., Georges A., Marshall Graves J.A., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosom. Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI
Wiens J.J., Kuczynski C.A., Smith S.A., Mulcahy D.G., Sites J.W., Townsend T.M., Reeder T.W. Branch lengths, support, and congruence: Testing the phylogenomic approach with 20 nuclear loci in snakes. Syst. Biol. 2008;57:420–431. doi: 10.1080/10635150802166053. PubMed DOI
Pyron R.A., Hendry C.R., Chou V.M., Lemmon E.M., Lemmon A.R., Burbrink F.T. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia) Mol. Phylogenet. Evol. 2014;81:221–231. doi: 10.1016/j.ympev.2014.08.023. PubMed DOI
Ezaz T., Deakin J.E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol. 2014:1–9. doi: 10.1155/2014/104683. DOI
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI
Dumas F., Cuttaia H., Sineo L. Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): Possible implications in evolution and phylogeny. J. Zool. Syst. Evol. Res. 2016;54:226–236. doi: 10.1111/jzs.12131. DOI
Mazzoleni S., Schillaci O., Sineo L., Dumas F. Distribution of interstitial telomeric sequences in primates and the pygmy tree shrew (Scandentia) Cytogenet. Genome Res. 2017;151:141–150. doi: 10.1159/000467634. PubMed DOI
Ocalewicz K., Furgala-Selezniow G., Szmyt M., Lisboa R., Kucinski M., Lejk A.M., Jankun M. Pericentromeric location of the telomeric DNA sequences on the European grayling chromosomes. Genetica. 2013;141:409–416. doi: 10.1007/s10709-013-9740-7. PubMed DOI PMC
Bruschi D., Rivera M., Lima A., Zúñiga A., Recco-Pimentel S. Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura) Mol. Cytogenet. 2014;7:22. doi: 10.1186/1755-8166-7-22. PubMed DOI PMC
Schmid M., Steinlein C. Chromosome banding in Amphibia. XXXIV. Intrachromosomal telomeric DNA sequences in Anura. Cytogenet. Genome Res. 2016;148:211–226. doi: 10.1159/000446298. PubMed DOI
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the Thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC
Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI
Young M.J., O’Meally D., Sarre S.D., Georges A., Ezaz T. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae) Chromosome Res. 2013;21:361–374. doi: 10.1007/s10577-013-9362-z. PubMed DOI
Beçak W., Beçak M.L. Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics. 1969;8:247–262. doi: 10.1159/000130037. PubMed DOI
Matsubara K., Uno Y., Srikulnath K., Seki R., Nishida C., Matsuda Y. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae) Chromosoma. 2015;124:529–539. doi: 10.1007/s00412-015-0529-6. PubMed DOI
Shine R., Bull J.J. Skewed sex ratios in snakes. Copeia. 1977:228–234. doi: 10.2307/1443903. DOI
Mengden G.A. Linear differentiation of the C-band pattern of the W chromosome in snakes and birds. Chromosoma. 1981;83:275–287. doi: 10.1007/BF00286795. PubMed DOI
Itoh M., Sasaki M., Makino S. The chromosomes of some Japanese snakes, with special regard to sexual dimorphism. Jpn. J. Genet. 1970;45:121–128. doi: 10.1266/jjg.45.121. DOI
Kawai A., Nishida-Umehara C., Ishijima J., Tsuda Y., Ota H., Matsuda Y. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 2007;117:92–102. doi: 10.1159/000103169. PubMed DOI
Kelly C.M.R., Branch W.R., Broadley D.G., Barker N.P., Villet M.H. Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol. Phylogenet. Evol. 2011;58:415–426. doi: 10.1016/j.ympev.2010.11.010. PubMed DOI
Greenbaum E., Portillo F., Jackson K., Kusamba C. A phylogeny of Central African Boaedon (Serpentes: Lamprophiidae), with the description of a new cryptic species from the Albertine Rift. Afr. J. Herpetol. 2015;64:18–38. doi: 10.1080/21564574.2014.996189. DOI
Nagy Z.T., Sonet G., Glaw F., Vences M. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0034506. PubMed DOI PMC
Koubová M., Pokorná M.J., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 2014;22:441–452. doi: 10.1007/s10577-014-9430-z. PubMed DOI
Burbrink F.T., Lawson R., Slowinski J.B. Mitochondrial DNA Phylogeography of the polytypic North American rat snake (Elaphe obsoleta): A critique of the subspecies concept. Evolution. 2000;54:2107–2118. doi: 10.1111/j.0014-3820.2000.tb01253.x. PubMed DOI
Hall T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
IJdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC
O’Callaghan N.J., Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol. Proced. Online. 2011;13:3. doi: 10.1186/1480-9222-13-3. PubMed DOI PMC
Rovatsos M., Altmanová M., Pokorná M., Kratochvíl L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution. 2014;68:2079–2085. doi: 10.1111/evo.12357. PubMed DOI
Cawthon R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:47e. doi: 10.1093/nar/30.10.e47. PubMed DOI PMC
De Smet W.H.O. Chromosomes of 23 species of snakes. Acta Zool. Pathol. Antverp. 1978;70:85–118.
Singh L., Purdom I.F., Jones K.W. Sex chromosome associated satellite DNA: Evolution and conservation. Chromosoma. 1980;79:137–157. doi: 10.1007/BF01175181. PubMed DOI
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Augstenová B. Evolution of Karyotypes and Sex Chromosomes in Snakes. Charles University; Prague, Czech Republic: 2017. pp. 1–70.
Singh L. The charms of sex chromosomes in snakes. J. Biosci. 2011;36:17–21. doi: 10.1007/s12038-011-9012-6. PubMed DOI
Rollings N., Uhrig E.J., Krohmer R.W., Waye H.L., Mason R.T., Olsson M., Whittington C.M., Friesen C.R. Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes. Proc. R. Soc. B Biol. Sci. 2017;284:20162146. doi: 10.1098/rspb.2016.2146. PubMed DOI PMC
Sex Chromosome Turnovers and Stability in Snakes
Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos
Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos
Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis
Cytogenetically Elusive Sex Chromosomes in Scincoidean Lizards
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards
Interstitial Telomeric Repeats Are Rare in Turtles
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards
Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae)