Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes

. 2017 Dec 28 ; 9 (1) : . [epub] 20171228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29283388

The caenophidian (assigned also as "advanced") snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length.

Zobrazit více v PubMed

Uetz P., Freed P., Hošek J., editors. The Reptile Database. [(accessed on 6 August 2017)]; Available online: http://www.reptile-database.org.

Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI

Pyron R.A., Burbrink F.T. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution. 2012;66:163–178. doi: 10.1111/j.1558-5646.2011.01437.x. PubMed DOI

Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. B Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC

Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 26 August 2017)];2005 Available online: http://chromorep.univpm.it.

Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI

Rovatsos M., Johnson Pokorná M., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI

Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2017 doi: 10.1111/jzs.12180. DOI

Vicoso B., Emerson J.J., Zektser Y., Mahajan S., Bachtrog D. Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013;11:e1001643. doi: 10.1371/journal.pbio.1001643. PubMed DOI PMC

Gamble T., Castoe T.A., Nielsen S.V., Banks J.L., Card D.C., Schield D.R., Schuett G.W., Booth W. The discovery of XY sex chromosomes in a boa and report the discovery of XY sex chromosomes in a boa and python. Curr. Biol. 2017;27:1–6. doi: 10.1016/j.cub.2017.06.010. PubMed DOI

Matsubara K., Nishida C., Matsuda Y., Kumazawa Y. Sex chromosome evolution in snakes inferred from divergence patterns of two gametologous genes and chromosome distribution of sex chromosome-linked repetitive sequences. Zool. Lett. 2016;2:19. doi: 10.1186/s40851-016-0056-1. PubMed DOI PMC

Laopichienpong N., Muangmai N., Chanhome L., Suntrarachun S., Twilprawat P., Peyachoknagul S., Srikulnath K. Evolutionary dynamics of the gametologous CTNNB1 gene on the Z and W chromosomes of snakes. J. Hered. 2017;108:142–151. PubMed

Cioffi M.B., Kejnovsky E., Bertollo L.A.C. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet. Genome Res. 2011;132:289–296. doi: 10.1159/000322058. PubMed DOI

Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A.M., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI

Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. doi: 10.1186/1471-2156-12-90. PubMed DOI PMC

Singh L., Purdom F., Jones K.W. Satellite DNA and evolution of sex chromosomes. Chromosoma. 1976;59:43–62. doi: 10.1007/BF00327708. PubMed DOI

Gamble T., Geneva A.J., Glor R.E., Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution. 2014;68:1027–1041. doi: 10.1111/evo.12328. PubMed DOI PMC

Subramanian S., Mishra R.K., Singh L. Genome-wide analysis of Bkm sequences (GATA repeats): Predominant association with sex chromosomes and potential role in higher order chromatin organization and function. Bioinformatics. 2003;19:681–685. doi: 10.1093/bioinformatics/btg067. PubMed DOI

O’Meally D., Patel H.R., Stiglec R., Sarre S.D., Georges A., Marshall Graves J.A., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosom. Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI

Wiens J.J., Kuczynski C.A., Smith S.A., Mulcahy D.G., Sites J.W., Townsend T.M., Reeder T.W. Branch lengths, support, and congruence: Testing the phylogenomic approach with 20 nuclear loci in snakes. Syst. Biol. 2008;57:420–431. doi: 10.1080/10635150802166053. PubMed DOI

Pyron R.A., Hendry C.R., Chou V.M., Lemmon E.M., Lemmon A.R., Burbrink F.T. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia) Mol. Phylogenet. Evol. 2014;81:221–231. doi: 10.1016/j.ympev.2014.08.023. PubMed DOI

Ezaz T., Deakin J.E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol. 2014:1–9. doi: 10.1155/2014/104683. DOI

Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI

Dumas F., Cuttaia H., Sineo L. Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): Possible implications in evolution and phylogeny. J. Zool. Syst. Evol. Res. 2016;54:226–236. doi: 10.1111/jzs.12131. DOI

Mazzoleni S., Schillaci O., Sineo L., Dumas F. Distribution of interstitial telomeric sequences in primates and the pygmy tree shrew (Scandentia) Cytogenet. Genome Res. 2017;151:141–150. doi: 10.1159/000467634. PubMed DOI

Ocalewicz K., Furgala-Selezniow G., Szmyt M., Lisboa R., Kucinski M., Lejk A.M., Jankun M. Pericentromeric location of the telomeric DNA sequences on the European grayling chromosomes. Genetica. 2013;141:409–416. doi: 10.1007/s10709-013-9740-7. PubMed DOI PMC

Bruschi D., Rivera M., Lima A., Zúñiga A., Recco-Pimentel S. Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura) Mol. Cytogenet. 2014;7:22. doi: 10.1186/1755-8166-7-22. PubMed DOI PMC

Schmid M., Steinlein C. Chromosome banding in Amphibia. XXXIV. Intrachromosomal telomeric DNA sequences in Anura. Cytogenet. Genome Res. 2016;148:211–226. doi: 10.1159/000446298. PubMed DOI

Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the Thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI

Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC

Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI

Young M.J., O’Meally D., Sarre S.D., Georges A., Ezaz T. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae) Chromosome Res. 2013;21:361–374. doi: 10.1007/s10577-013-9362-z. PubMed DOI

Beçak W., Beçak M.L. Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics. 1969;8:247–262. doi: 10.1159/000130037. PubMed DOI

Matsubara K., Uno Y., Srikulnath K., Seki R., Nishida C., Matsuda Y. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae) Chromosoma. 2015;124:529–539. doi: 10.1007/s00412-015-0529-6. PubMed DOI

Shine R., Bull J.J. Skewed sex ratios in snakes. Copeia. 1977:228–234. doi: 10.2307/1443903. DOI

Mengden G.A. Linear differentiation of the C-band pattern of the W chromosome in snakes and birds. Chromosoma. 1981;83:275–287. doi: 10.1007/BF00286795. PubMed DOI

Itoh M., Sasaki M., Makino S. The chromosomes of some Japanese snakes, with special regard to sexual dimorphism. Jpn. J. Genet. 1970;45:121–128. doi: 10.1266/jjg.45.121. DOI

Kawai A., Nishida-Umehara C., Ishijima J., Tsuda Y., Ota H., Matsuda Y. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 2007;117:92–102. doi: 10.1159/000103169. PubMed DOI

Kelly C.M.R., Branch W.R., Broadley D.G., Barker N.P., Villet M.H. Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol. Phylogenet. Evol. 2011;58:415–426. doi: 10.1016/j.ympev.2010.11.010. PubMed DOI

Greenbaum E., Portillo F., Jackson K., Kusamba C. A phylogeny of Central African Boaedon (Serpentes: Lamprophiidae), with the description of a new cryptic species from the Albertine Rift. Afr. J. Herpetol. 2015;64:18–38. doi: 10.1080/21564574.2014.996189. DOI

Nagy Z.T., Sonet G., Glaw F., Vences M. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0034506. PubMed DOI PMC

Koubová M., Pokorná M.J., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 2014;22:441–452. doi: 10.1007/s10577-014-9430-z. PubMed DOI

Burbrink F.T., Lawson R., Slowinski J.B. Mitochondrial DNA Phylogeography of the polytypic North American rat snake (Elaphe obsoleta): A critique of the subspecies concept. Evolution. 2000;54:2107–2118. doi: 10.1111/j.0014-3820.2000.tb01253.x. PubMed DOI

Hall T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

IJdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC

O’Callaghan N.J., Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol. Proced. Online. 2011;13:3. doi: 10.1186/1480-9222-13-3. PubMed DOI PMC

Rovatsos M., Altmanová M., Pokorná M., Kratochvíl L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution. 2014;68:2079–2085. doi: 10.1111/evo.12357. PubMed DOI

Cawthon R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:47e. doi: 10.1093/nar/30.10.e47. PubMed DOI PMC

De Smet W.H.O. Chromosomes of 23 species of snakes. Acta Zool. Pathol. Antverp. 1978;70:85–118.

Singh L., Purdom I.F., Jones K.W. Sex chromosome associated satellite DNA: Evolution and conservation. Chromosoma. 1980;79:137–157. doi: 10.1007/BF01175181. PubMed DOI

Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI

Augstenová B. Evolution of Karyotypes and Sex Chromosomes in Snakes. Charles University; Prague, Czech Republic: 2017. pp. 1–70.

Singh L. The charms of sex chromosomes in snakes. J. Biosci. 2011;36:17–21. doi: 10.1007/s12038-011-9012-6. PubMed DOI

Rollings N., Uhrig E.J., Krohmer R.W., Waye H.L., Mason R.T., Olsson M., Whittington C.M., Friesen C.R. Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes. Proc. R. Soc. B Biol. Sci. 2017;284:20162146. doi: 10.1098/rspb.2016.2146. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sex Chromosome Turnovers and Stability in Snakes

. 2025 Jan 06 ; 42 (1) : .

Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos

. 2024 Mar 28 ; 15 (4) : . [epub] 20240328

Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos

. 2023 Jan 09 ; 14 (1) : . [epub] 20230109

Madagascar Leaf-Tail Geckos (Uroplatus spp.) Share Independently Evolved Differentiated ZZ/ZW Sex Chromosomes

. 2023 Jan 09 ; 12 (2) : . [epub] 20230109

Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis

. 2022 Jul 01 ; 13 (7) : . [epub] 20220701

Cytogenetically Elusive Sex Chromosomes in Scincoidean Lizards

. 2021 Aug 12 ; 22 (16) : . [epub] 20210812

Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards

. 2021 Jun 28 ; 10 (7) : . [epub] 20210628

Interstitial Telomeric Repeats Are Rare in Turtles

. 2020 Jun 16 ; 11 (6) : . [epub] 20200616

Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards

. 2020 May 11 ; 11 (5) : . [epub] 20200511

Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae)

. 2020 Mar 09 ; 10 (1) : 4276. [epub] 20200309

ZZ/ZW Sex Determination with Multiple Neo-Sex Chromosomes is Common in Madagascan Chameleons of the Genus Furcifer (Reptilia: Chamaeleonidae)

. 2019 Dec 06 ; 10 (12) : . [epub] 20191206

Cytogenetic Analysis Did Not Reveal Differentiated Sex Chromosomes in Ten Species of Boas and Pythons (Reptilia: Serpentes)

. 2019 Nov 15 ; 10 (11) : . [epub] 20191115

Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae)

. 2019 Aug ; 123 (2) : 215-227. [epub] 20190122

Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards

. 2019 May 24 ; 9 (1) : 7832. [epub] 20190524

Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: the end of a 40-year error cascade for Pangshura

. 2019 ; 7 () : e6241. [epub] 20190206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...