Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35885968
PubMed Central
PMC9318745
DOI
10.3390/genes13071185
PII: genes13071185
Knihovny.cz E-zdroje
- Klíčová slova
- C-banding, CGH, FISH, boa, evolution, heterochromatin, karyotype, python, rDNA, sex chromosomes, telomeres,
- MeSH
- Boidae * genetika MeSH
- cytogenetické vyšetření MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
The recent discovery of two independently evolved XX/XY sex determination systems in the snake genera Python and Boa sparked a new drive to study the evolution of sex chromosomes in poorly studied lineages of snakes, where female heterogamety was previously assumed. Therefore, we examined seven species from the genera Eryx, Cylindrophis, Python, and Tropidophis by conventional and molecular cytogenetic methods. Despite the fact that these species have similar karyotypes in terms of chromosome number and morphology, we detected variability in the distribution of heterochromatin, telomeric repeats, and rDNA loci. Heterochromatic blocks were mainly detected in the centromeric regions in all species, although accumulations were detected in pericentromeric and telomeric regions in a few macrochromosomes in several of the studied species. All species show the expected topology of telomeric repeats at the edge of all chromosomes, with the exception of Eryx muelleri, where additional accumulations were detected in the centromeres of three pairs of macrochromosomes. The rDNA loci accumulate in one pair of microchromosomes in all Eryx species and in Cylindrophis ruffus, in one macrochromosome pair in Tropidophis melanurus and in two pairs of microchromosomes in Python regius. Sex-specific differences were not detected, suggesting that these species likely have homomorphic, poorly differentiated sex chromosomes.
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Department of Zoology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Zobrazit více v PubMed
Uetz P., Freed P., Aguilar R., Hošek J., editors. The Reptile Database. 2022. [(accessed on 11 April 2022)]. Available online: http://www.reptile-database.org.
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Pyron R.A., Wallach V. Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence. Zootaxa. 2014;3829:1–81. doi: 10.11646/zootaxa.3829.1.1. PubMed DOI
Reynolds R.G., Niemiller M.L., Revell L.J. Toward a Tree-of-Life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling. Mol. Phylogenet. Evol. 2014;71:201–213. doi: 10.1016/j.ympev.2013.11.011. PubMed DOI
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Beçak W., Beçak M.L. Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenet. Genome Res. 1969;8:247–262. doi: 10.1159/000130037. PubMed DOI
Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. 2005. [(accessed on 20 June 2020)]. Available online: http://chromorep.univpm.it.
Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI
Valenzuela N., Lance V.A. Temperature-Dependent Sex Determination in Vertebrates. Smithsonian Books; Washington, DC, USA: 2004. pp. 1–194.
Singh L., Sharma T., Ray-Chaudhuri S.P. Multiple sex-chromosomes in the common Indian Krait, Bungarus caeruleus Schneider. Chromosoma. 1970;31:386–391. doi: 10.1007/BF00285830. PubMed DOI
Singh L. Evolution of karyotypes in snakes. Chromosoma. 1972;38:185–236. doi: 10.1007/BF00326193. PubMed DOI
Singh L. Multiple W chromosome in a sea snake, Enhydrina schistosa Daudin. Experientia. 1972;28:95–97. doi: 10.1007/BF01928286. DOI
Mengden G.A., Stock A.D. Chromosomal evolution in Serpentes; a comparison of G and C chromosome banding patterns of some colubrid and boid genera. Chromosoma. 1980;79:53–64. doi: 10.1007/BF00328472. DOI
Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R Soc. B Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Augstenová B., Johnson Pokorná M., Altmanová M., Frynta D., Rovatsos M., Kratochvíl L. ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated. Evolution. 2018;72:1701–1707. doi: 10.1111/evo.13543. PubMed DOI
Matsubara K., Kumazawa Y., Ota H., Nishida C., Matsuda Y. Karyotype analysis of four blind snake species (Reptilia: Squamata: Scolecophidia) and karyotypic changes in Serpentes. Cytogenet. Genome Res. 2019;157:98–106. doi: 10.1159/000496554. PubMed DOI
Beçak W., Beçak M.L., Nazareth H.R.S., Ohno S. Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma. 1964;15:606–617. doi: 10.1007/BF00319994. PubMed DOI
Mengden G.A. Ph.D. Thesis. Australian National University; Canberra, Australia: 1982. Chromosomal Evolution and the Phylogeny of Elapid Snakes.
Matsubara K., Tarui H., Toriba M., Yamada K., Nishida-Umehara C., Agata K., Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc. Natl. Acad. Sci. USA. 2006;103:18190–18195. doi: 10.1073/pnas.0605274103. PubMed DOI PMC
Mezzasalma M., Andreone F., Glaw F., Petraccioli A., Odierna G., Guarino F.M. A karyological study of three typhlopid species with some inferences on chromosome evolution in blindsnakes (Scolecophidia) Zool. Anz. 2016;264:34–40. doi: 10.1016/j.jcz.2016.07.001. DOI
Viana P.F., Ribeiro L.B., Souza G.M., Chalkidis H.M., Gross M.C., Feldberg E. Is the karyotype of neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family. PLoS ONE. 2016;11:e0160274. doi: 10.1371/journal.pone.0160274. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC
Vicoso B., Emerson J.J., Zektser Y., Mahajan S., Bachtrog D. Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013;11:e1001643. doi: 10.1371/journal.pbio.1001643. PubMed DOI PMC
Ohno S. Sex. Chromosomes and Sex-Linked Genes. Springer; Berlin, Germany: 1967. pp. 1–167.
Booth W., Johnson D.H., Moore S., Schal C., Vargo E.L. Evidence for viable, non-clonal but fatherless Boa constrictors. Biol. Lett. 2011;7:253–256. doi: 10.1098/rsbl.2010.0793. PubMed DOI PMC
Gamble T., Castoe T.A., Nielsen S.V., Banks J.L., Card D.C., Schield D.R., Schuett G.W., Booth W. The discovery of XY sex chromosomes in a boa and python. Curr. Biol. 2017;27:2148–2153.e4. doi: 10.1016/j.cub.2017.06.010. PubMed DOI
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
O’Meally D., Patel H.R., Stiglec R., Sarre S.D., Georges A., Graves J.A.M., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI
Literman R., Badenhorst D., Valenzuela N. qPCR-based molecular sexing by copy number variation in rRNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol. Evol. 2014;5:872–880. doi: 10.1111/2041-210X.12228. DOI
Lee L., Montiel E.E., Valenzuela N. Discovery of putative XX/XY male heterogamety in Emydura subglobosa turtles exposes a novel trajectory of sex chromosome evolution in Emydura. Cytogenet. Genome Res. 2019;158:160–169. doi: 10.1159/000501891. PubMed DOI
Singchat W., Kraichak E., Tawichasri P., Tawan T., Suntronpong A., Sillapaprayoon S., Phatcharakullawarawat R., Muangmai N., Suntrarachun S., Baicharoen S., et al. Dynamics of telomere length in captive Siamese cobra (Naja kaouthia) related to age and sex. Ecol. Evol. 2019;9:6366–6377. doi: 10.1002/ece3.5208. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC
Nagy Z.T., Sonet G., Glaw F., Vences M. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE. 2012;7:e34506. doi: 10.1371/journal.pone.0034506. PubMed DOI PMC
Burbrink F.T., Lawson R., Slowinski J.B. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): A critique of the subspecies concept. Evolution. 2000;54:2107–2118. doi: 10.1111/j.0014-3820.2000.tb01253.x. PubMed DOI
de Queiroz A., Lawson R., Lemos-Espinal J.A. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Mol. Phyl. Evol. 2002;22:315–329. doi: 10.1006/mpev.2001.1074. PubMed DOI
Koubová M., Johnson Pokorná M., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 2014;22:441–452. doi: 10.1007/s10577-014-9430-z. PubMed DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC
Endow S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC
Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC
Gorman G.C., Gress F. Chromosome cytology of four boid snakes and a varanid lizard, with comments on the cytosystematics of primitive snakes. Herpetologica. 1970;26:308–317.
Sharma O.P., Kour G. On the Chromosomes of four species of Indian snakes. Cytologia. 2005;70:65–70. doi: 10.1508/cytologia.70.65. DOI
Singh L., Sharma T., Ray-Chaudhuri S. Chromosomes and the classification of the snakes of the family Boidae. Cytogenet. Genome Res. 1968;7:161–168. doi: 10.1159/000129980. PubMed DOI
Beçak W., Beçak M.L. W-sex chromatin fluorescence in snakes. Experientia. 1972;28:228–229. doi: 10.1007/BF01935775. PubMed DOI
Heneen W.K., Habib Z.A., Röhme D. Heteromorphism of constitutive heterochromatin in carcinoma and dysplasia of the uterine cervix. Eur. J. Obstet. Gynecol. 1980;10:173–182. doi: 10.1016/0028-2243(80)90058-1. PubMed DOI
Freitas L., Seuánez H. Chromosome heteromorphisms in Cebus apella. J. Hum. Evol. 1982;11:173–180. doi: 10.1016/S0047-2484(82)80050-X. DOI
Haaf T., Schmid M. Chromosome heteromorphisms in the gorilla karyotype: Analyses with distamycin A/DAPI, quinacrine and 5-azacytidine. Heredity. 1987;78:287–292. doi: 10.1093/oxfordjournals.jhered.a110389. PubMed DOI
Bressa M.J., Franco M.J., Toscani M.A., Papeschi A.G. Heterochromatin heteromorphism in Holhymenia rubiginosa (Heteroptera: Coreidae) Eur. J. Entomol. 2008;105:65–72. doi: 10.14411/eje.2008.009. DOI
Ferreira G., Barbosa L.M., Prizon-Nakajima A.C., de Paiva S., Vieira M., Gallo R.B., Borin-Carvalho L.A., da Rosa R., Wadzki C., Dos Santos I., et al. Constitutive heterochromatin heteromorphism in the Neotropical armored catfish Hypostomus regain (Ihering, 1905) (Loricariidae, Hypostominae) from the Paraguay River basin (Mato Grosso do Sul, Brazil) Comp. Cytogenet. 2019;13:27–39. doi: 10.3897/CompCytogen.v13i1.30134. PubMed DOI PMC
Sims S.H., Macgregor H.C., Pellatt P.S., Horner H.A. Chromosome 1 in crested and marbled newts (Triturus) Chromosoma. 1984;89:169–185. doi: 10.1007/BF00294996. DOI
Mezzasalma M., Andreone F., Aprea G., Glaw F., Odierna G., Guarino F.M. When can chromosomes drive speciation? The peculiar case of the Malagasy tomato frogs (genus Dyscophus) Zool. Anz. 2017;268:41–46. doi: 10.1016/j.jcz.2017.04.006. DOI
Batistic R.F., Ferrarezzi H., Soma M. O cariótipo de Tropidophis paucisquamis e suas afinidades com outras famílias. Resumos do III Simpósio do Programa Biota/FAPESP Universidade Federal de São Carlos. 2002. [(accessed on 15 May 2022)]. Available online: https://www.biota.org.br/publi/banco/index?show+91144174.
Mezzasalma M., Andreone F., Branch W.R., Glaw F., Guarino F.M., Nagy Z.T., Odierna G., Aprea G. Chromosome evolution in pseudoxyrhophiine snakes from Madagascar: A wide range of karyotypic variability. Biol. J. Linn. Soc. 2014;112:450–460. doi: 10.1111/bij.12280. DOI
Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.
Porter C., Haiduk M., De Queiroz K. Evolution and Phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI
Viana P.F., Ezaz T., de Bello Cioffi M., Jackson Almeida B., Feldberg E. Evolutionary insights of the ZW sex chromosomes in snakes: A new chapter added by the amazonian puffing snakes of the genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC
Hernando A., García J.A. Standard karyotype and nucleolus organizer region of Neotropical blindsnake Typhlops brongersmianus, Serpentes: Typhlopidae. Acta Herpetol. 2007;2:117–120.
Bruschi D., Rivera M., Lima A., Zúñiga A., Recco-Pimentel S. Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura) Mol. Cytogenet. 2014;7:22. doi: 10.1186/1755-8166-7-22. PubMed DOI PMC
Augstenová B., Pensabene E., Kratochvíl L., Rovatsos M. Cytogenetic evidence for sex chromosomes and karyotype evolution in anguimorphan lizards. Cells. 2021;10:1612. doi: 10.3390/cells10071612. PubMed DOI PMC
Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC
Camper J., Hanks B. Variation in the nucleolus organizer region among New World snakes. J. Herpetol. 1995;29:468–471. doi: 10.2307/1565003. DOI
Rovatsos M., Pokorná M.J., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragon snake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI
Backström N., Forstmeier W., Schielzeth H., Mellenius H., Nam K., Bolund E., Webster M.T., Öst T., Schneider M., Kempenaers B., et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 2010;20:485–495. doi: 10.1101/gr.101410.109. PubMed DOI PMC
Groenen M.A.M., Wahlberg P., Foglio M., Cheng H.H., Megens H.J., Crooijmans R.P.M.A., Besnier F., Lathrop M., Muir W.M., Wong G.K., et al. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 2009;19:510–519. doi: 10.1101/gr.086538.108. PubMed DOI PMC
Schield D.R., Pasquesi G.I.M., Perry B.W., Adams R.H., Nikolakis Z.L., Westfall A.K., Orton R.W., Meik J.M., MacKessy S.P., Castoe T.A., et al. Snake recombination landscapes are concentrated in functional regions despite PRDM9. Mol. Biol. Evol. 2020;37:1272–1294. doi: 10.1093/molbev/msaa003. PubMed DOI
Azzalin C.M., Nergadze S.G., Giulotto E. Human intrachromosomal telomeric-like repeats: Sequence organization and mechanisms of origin. Chromosoma. 2001;110:75–82. doi: 10.1007/s004120100135. PubMed DOI
Mallery C.S., Jr., Carrillo M.M. A case study of sex-linkage in Python regius (Serpentes: Boidae), with new insights into sex determination in Henophidia. Phyllomedusa. 2016;15:29–42. doi: 10.11606/issn.2316-9079.v15i1p29-42. DOI
Booth W., Schuett G.W., Ridgway A., Buxton D.W., Castoe T.A., Bastone G., Bennett C., McMahan W. New insights on facultative parthenogenesis in pythons. Biol. J. Linn. Soc. 2014;112:461–468. doi: 10.1111/bij.12286. DOI
Kratochvíl L., Stöck M., Rovatsos M., Bullejos M., Herpin A., Jeffries D.L., Peichel C.L., Perrin N., Valenzuela N., Pokorná M.J. Expanding the classical paradigm: What we have learnt from vertebrates about sex chromosome evolution. Phil. Trans. R. Soc. B. 2021;376:20200097. doi: 10.1098/rstb.2020.0097. PubMed DOI PMC
Gamble T., Coryell J., Ezaz T., Lynch J., Scantlebury D.P., Zarkower D. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 2015;32:1296–1309. doi: 10.1093/molbev/msv023. PubMed DOI
Keating S.E., Blumer M., Grismer L.L., Lin A., Nielsen S.V., Thura M.K., Wood P.L., Jr., Quah E.S.H., Gamble T. Sex chromosome turnover in bent-toed geckos (Cyrtodactylus) Genes. 2021;12:116. doi: 10.3390/genes12010116. PubMed DOI PMC
Kostmann A., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021;22:8670. doi: 10.3390/ijms22168670. PubMed DOI PMC