Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GAČR 23-07347S
Czech Science Foundation
402122
Charles University Grant Agency
PubMed
38674364
PubMed Central
PMC11049218
DOI
10.3390/genes15040429
PII: genes15040429
Knihovny.cz E-resources
- Keywords
- FISH, Gekkonidae, RepeatExplorer, evolution, karyotype, satellite DNA,
- MeSH
- Centromere * genetics MeSH
- Cytogenetic Analysis * methods MeSH
- In Situ Hybridization, Fluorescence MeSH
- Lizards * genetics MeSH
- Karyotype * MeSH
- DNA, Satellite * genetics MeSH
- Telomere * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Satellite * MeSH
Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.
See more in PubMed
Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI
Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI
Walsh J.B. Persistence of tandem arrays: Implications for satellite and simple-sequence DNAs. Genetics. 1987;115:553–567. doi: 10.1093/genetics/115.3.553. PubMed DOI PMC
Csink A.K., Henikoff S. Something from nothing: The evolution and utility of satellite repeats. Trends Genet. 1998;14:200–204. doi: 10.1016/S0168-9525(98)01444-9. PubMed DOI
Montiel E.E., Panzera F., Palomeque T., Lorite P., Pita S. Satellitome analysis of Rhodnius prolixus, one of the main Chagas disease vector species. Int. J. Mol. Sci. 2021;22:6052. doi: 10.3390/ijms22116052. PubMed DOI PMC
Pita S., Panzera F., Mora P., Vela J., Cuadrado A., Sánchez A., Palomeque T., Lorite P. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS ONE. 2017;12:e0181635. doi: 10.1371/journal.pone.0181635. PubMed DOI PMC
Balzano E., Giunta S. Centromeres under pressure: Evolutionary innovation in conflict with conserved function. Genes. 2020;11:912. doi: 10.3390/genes11080912. PubMed DOI PMC
Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021;22:4309. doi: 10.3390/ijms22094309. PubMed DOI PMC
Rovatsos M., Marchal J.A., Giagia-Athanasopoulou E., Sánchez A. Molecular composition of heterochromatin and its contribution to chromosome variation in the Microtus thomasi/Microtus atticus species complex. Genes. 2021;12:807. doi: 10.3390/genes12060807. PubMed DOI PMC
Dover G. Molecular drive. Trends Genet. 2002;18:587–589. doi: 10.1016/S0168-9525(02)02789-0. PubMed DOI
Ugarković D., Plohl M. Variation in satellite DNA profiles—Causes and effects. EMBO J. 2002;21:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC
Plohl M., Luchetti A., Mestrović N., Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI
Smith G.P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191:528–535. doi: 10.1126/science.1251186. PubMed DOI
Lovett S.T., Drapkin P.T., Sutera V.A., Jr., Gluckman-Peskind T.J. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics. 1993;135:431–642. doi: 10.1093/genetics/135.3.631. PubMed DOI PMC
Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. BioEssays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI
Liao D., Pavelitz T., Kidd J.R., Kidd K.K., Weiner A.M. Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J. 1997;16:588–598. doi: 10.1093/emboj/16.3.588. PubMed DOI PMC
Chaves R., Adega F., Heslop-Harrison J.S., Guedes-Pinto H., Wienberg J. Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosome Res. 2003;11:641–648. doi: 10.1023/A:1025952507959. PubMed DOI
Adega F., Guedes-Pinto H., Chaves R. Satellite DNA in the karyotype evolution of domestic animals—Clinical considerations. Cytogenet. Genome Res. 2009;126:12–20. doi: 10.1159/000245903. PubMed DOI
Farré M., Robinson T.J., Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays. 2015;37:479–488. doi: 10.1002/bies.201400174. PubMed DOI
Redi C.A., Garagna S., Della Valle G., Bottiroli G., Dell’Orto P., Viale G., Peverali F., Raimondi E., Forejt J. Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma. 1990;99:11–17. doi: 10.1007/BF01737284. PubMed DOI
Garagna S., Marziliano N., Zuccotti M., Searle J.B., Capanna E., Redi C.A. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc. Natl. Acad. Sci. USA. 2001;98:171–175. doi: 10.1073/pnas.98.1.171. PubMed DOI PMC
Bolzán A.D. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis. 2012;27:1–15. doi: 10.1093/mutage/ger052. PubMed DOI
Bolzán A.D., Bianchi M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. Rev. Mutat. Res. 2006;612:189–214. doi: 10.1016/j.mrrev.2005.12.003. PubMed DOI
Ohno S. So much “junk” DNA in our genome. Brookhaven Symp. Biol. 1972;23:366–370. PubMed
Orgel L., Crick F. Selfish DNA: The ultimate parasite. Nature. 1980;284:604–607. doi: 10.1038/284604a0. PubMed DOI
Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Volpe T.A., Kidner C., Hall I.M., Teng G., Grewal S.I., Martienssen R.A. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297:1833–1837. doi: 10.1126/science.1074973. PubMed DOI
Martienssen R.A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI
Velazquez Camacho O., Galan C., Swist-Rosowska K., Ching R., Gamalinda M., Karabiber F., De La Rosa-Velazquez I., Engist B., Koschorz B., Shukeir N., et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. Elife. 2017;6:e25293. doi: 10.7554/eLife.25293. PubMed DOI PMC
Granok H., Leibovitch B.A., Shaffer C.D., Elgin S.C. Chromatin. Ga-ga over GAGA factor. Curr. Biol. 1995;5:238–241. doi: 10.1016/S0960-9822(95)00048-0. PubMed DOI
Pezer Ž., Brajković J., Feliciello I., Ugarković D. Satellite DNA-mediated effects on genome regulation. Repetitive DNA. 2012;7:153–169. PubMed
Uetz P., Freed P., Aguilar R., Reyes F., Kudera J., Hošek J., editors. The Reptile Database. 2024. [(accessed on 20 February 2024)]. Available online: http://www.reptile-database.org.
Ahmad S.F., Singchat W., Jehangir M., Panthum T., Srikulnath K. Consequence of paradigm shift with repeat landscapes in reptiles: Powerful facilitators of chromosomal rearrangements for diversity and evolution. Genes. 2020;11:827. doi: 10.3390/genes11070827. PubMed DOI PMC
Ahmad S.F., Singchat W., Panthum T., Srikulnath K. Impact of repetitive DNA elements on snake genome biology and evolution. Cells. 2021;10:1707. doi: 10.3390/cells10071707. PubMed DOI PMC
Capriglione T. Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates. In: Olmo E., Redi C.A., editors. Chromosomes Today. Birkhäuser Verlag; Basel, Switzerland: 2000. pp. 183–194.
Capriglione T., Cardone A., Odierna G., Olmo E. Evolution of a centromeric satellite DNA and phylogeny of lacertid lizards. Comp. Biochem. Physiol. Part B Biochem. 1991;100:641–645. doi: 10.1016/0305-0491(91)90233-4. PubMed DOI
Capriglione T., Cardone A., Odierna G., Olmo E. Further data on the occurrence and evolution of satellite DNA families in the lacertid genome. Chromosome Res. 1994;2:327–330. doi: 10.1007/BF01552726. PubMed DOI
Capriglione T., De Santo M.G., Odierna G., Olmo E. An alphoid-like satellite DNA sequence is present in the genome of a lacertid lizard. J. Mol. Evol. 1998;46:240–244. doi: 10.1007/PL00006299. PubMed DOI
Capriglione T., Olmo E., Odierna G., Smith D.I., Miller O.J. Genome composition and tandemly repetitive sequence at some centromeres in the lizard Podarcis s. sicula Raf. Genetica. 1989;79:85–91. doi: 10.1007/BF00057925. DOI
Ciobanu D.G., Grechko V.V., Darevskiĭ I.S. Molekuliarnaia évoliutsiia satellitnoĭ DNK CLsat iashcherits roda Darevskia (Sauria: Lacertidae): Korreliatsiia s vidovym raznoobraziem [Molecular evolution of satellite DNA CLsat in lizards of the Darevskia species (Sauria: Lacertidae): Correlation with species diversity] Genetika. 2003;39:1527–1541. PubMed
Ciobanu D., Grechko V.V., Darevsky I.S., Kramerov D.A. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): Evolutionary pathways and phylogenetic impact. J. Exp. Zool. Part B Mol. Dev. Evol. 2004;302:505–516. doi: 10.1002/jez.b.21014. PubMed DOI
Grechko V.V., Ciobanu D.G., Darevsky I.S., Kosushkin S.A., Kramerov D.A. Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae) Genome. 2006;49:1297–1307. doi: 10.1139/g06-089. PubMed DOI
Grechko V.V., Ciobanu D.G., Darevsky I.S., Kramerov D.A. Satellite DNA of lizards of the genus Lacerta s. str. (the group L. agilis), the family Lacertidae. Dokl. Biochem. Biophys. 2005;400:44–47. doi: 10.1007/s10628-005-0029-3. PubMed DOI
Giovannotti M., Cerioni P.N., Splendiani A., Ruggeri P., Olmo E., Barucchi V.C. Slow evolving satellite DNAs: The case of a centromeric satellite in Chalcides ocellatus (Forskål, 1775) (Reptilia, Scincidae) Amphib. Reptil. 2014;34:401–411. doi: 10.1163/15685381-00002905. DOI
Giovannotti M., Nisi Cerioni P., Rojo V., Olmo E., Slimani T., Splendiani A., Caputo Barucchi V. Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. J. Exp. Zool. Part B Mol. Dev. Evol. 2018;330:83–95. doi: 10.1002/jez.b.22790. PubMed DOI
Giovannotti M., S’Khifa A., Nisi Cerioni P., Splendiani A., Slimani T., Fioravanti T., Olmo E., Caputo Barucchi V. Isolation and characterization of two satellite DNAs in Atlantolacerta andreanskyi (Werner, 1929) (Reptilia, Lacertidae) J. Exp. Zool. Part B Mol. Dev. 2020;334:178–191. doi: 10.1002/jez.b.22937. PubMed DOI
Giovannotti M., Nisi Cerioni P., Caputo V., Olmo E. Characterisation of a GC-rich telomeric satellite DNA in Eumeces schneideri Daudin (Reptilia, Scincidae) Cytogenet. Genome Res. 2009;125:272–278. doi: 10.1159/000235933. PubMed DOI
Castoe T.A., Hall K.T., Guibotsy Mboulas M.L., Gu W., de Koning A.P., Fox S.E., Poole A.W., Vemulapalli V., Daza J.M., Mockler T., et al. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol. 2011;3:641–653. doi: 10.1093/gbe/evr043. PubMed DOI PMC
Matsubara K., Uno Y., Srikulnath K., Seki R., Nishida C., Matsuda Y. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae) Chromosoma. 2015;124:529–539. doi: 10.1007/s00412-015-0529-6. PubMed DOI
Thongchum R., Singchat W., Laopichienpong N., Tawichasri P., Kraichak E., Prakhongcheep O., Sillapaprayoon S., Muangmai N., Baicharoen S., Suntrarachun S., et al. Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles. Sci. Rep. 2019;9:15459. doi: 10.1038/s41598-019-51863-w. PubMed DOI PMC
Lisachov A., Rumyantsev A., Prokopov D., Ferguson-Smith M., Trifonov V. Conservation of major satellite DNAs in snake heterochromatin. Animals. 2023;13:334. doi: 10.3390/ani13030334. PubMed DOI PMC
Chaiprasertsri N., Uno Y., Peyachoknagul S., Prakhongcheep O., Baicharoen S., Charernsuk S., Nishida C., Matsuda Y., Koga A., Srikulnath K. Highly species-specific centromeric repetitive DNA sequences in lizards: Molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) J. Hered. 2013;104:798–806. doi: 10.1093/jhered/est061. PubMed DOI
Prakhongcheep O., Thapana W., Suntronpong A., Singchat W., Pattanatanang K., Phatcharakullawarawat R., Muangmai N., Peyachoknagul S., Matsubara K., Ezaz T., et al. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata) BMC Evol. Biol. 2017;17:193. doi: 10.1186/s12862-017-1044-6. PubMed DOI PMC
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in Squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Srikulnath K., Azad B., Singchat W., Ezaz T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE. 2019;14:e0212683. doi: 10.1371/journal.pone.0212683. PubMed DOI PMC
Charvát T., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis of the members of the snake genera Cylindrophis, Eryx, Python, and Tropidophis. Genes. 2022;13:1185. doi: 10.3390/genes13071185. PubMed DOI PMC
Chrostek G., Domaradzka A., Yurchenko A., Kratochvíl L., Mazzoleni S., Rovatsos M. Cytogenetic analysis of seven species of gekkonid and phyllodactylid geckos. Genes. 2023;14:178. doi: 10.3390/genes14010178. PubMed DOI PMC
Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC
Rovatsos M., Vukić J., Altmanová M., Johnson Pokorná M., Moravec J., Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 2016;25:3120–3126. doi: 10.1111/mec.13635. PubMed DOI
Rovatsos M., Vukić J., Mrugała A., Suwala G., Lymberakis P., Kratochvíl L. Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards. Sci. Rep. 2019;9:7832. doi: 10.1038/s41598-019-44192-5. PubMed DOI PMC
Rovatsos M., Rehák I., Velenský P., Kratochvíl L. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 2019;36:1113–1120. doi: 10.1093/molbev/msz024. PubMed DOI
Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI
Matsubara K., Sarre S.D., Georges A., Matsuda Y., Marshall Graves J.A., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC
Suwala G., Altmanová M., Mazzoleni S., Karameta E., Pafilis P., Kratochvíl L., Rovatsos M. Evolutionary variability of W-linked repetitive content in lacertid lizards. Genes. 2020;11:531. doi: 10.3390/genes11050531. PubMed DOI PMC
Kofler R., Schlötterer C., Lelley T. SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinformatics. 2007;23:1683–1685. doi: 10.1093/bioinformatics/btm157. PubMed DOI
Short K.H., Petren K. Isolation and characterization of 12 polymorphic microsatellite markers in the tropical house gecko (Hemidactylus mabouia) Mol. Ecol. Resour. 2008;8:1319–1321. doi: 10.1111/j.1755-0998.2008.02270.x. PubMed DOI
Thongnetr W., Aiumsumang S., Kongkaew R., Tanomtong A., Suwannapoom C., Phimphan S. Cytogenetic characterisation and chromosomal mapping of microsatellite and telomeric repeats in two gecko species (Reptilia, Gekkonidae) from Thailand. Comp. Cytogenet. 2021;15:41–52. doi: 10.3897/CompCytogen.v15i1.58208. PubMed DOI PMC
Pensabene E., Yurchenko A., Kratochvíl L., Rovatsos M. Madagascar leaf-tail geckos (Uroplatus spp.) share independently evolved differentiated ZZ/ZW sex chromosomes. Cells. 2023;12:260. doi: 10.3390/cells12020260. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. [(accessed on 26 May 2023)]. Available online: http://www.repeatmasker.org.
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016;6:28333. doi: 10.1038/srep28333. PubMed DOI PMC
Šatović-Vukšić E., Plohl M. Satellite DNAs—From localized to highly dispersed genome components. Genes. 2023;14:742. doi: 10.3390/genes14030742. PubMed DOI PMC
Liu Y., Zhou Q., Wang Y., Luo L., Yang J., Yang L., Liu M., Li Y.R., Qian T.M., Zheng Y., et al. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat. Commun. 2015;24:10033. doi: 10.1038/ncomms10033. PubMed DOI PMC
Hara Y., Takeuchi M., Kageyama Y., Tatsumi K., Hibi M., Kiyonari H., Kuraku S. Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol. 2018;16:40. doi: 10.1186/s12915-018-0509-4. PubMed DOI PMC
Pavlek M., Gelfand Y., Plohl M., Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res. 2015;22:387–401. doi: 10.1093/dnares/dsv021. PubMed DOI PMC
Westhorpe F.G., Straight A.F. The centromere: Epigenetic control of chromosome segregation during mitosis. Cold Spring Harb. Perspect. Biol. 2015;7:a015818. doi: 10.1101/cshperspect.a015818. PubMed DOI PMC
Prosée R.F., Wenda J.M., Steiner F.A. Adaptations for centromere function in meiosis. Essays Biochem. 2020;64:193–203. PubMed PMC
Chakravarti D., LaBella K.A., DePinho R.A. Telomeres: History, health, and hallmarks of aging. Cell. 2021;184:306–322. doi: 10.1016/j.cell.2020.12.028. PubMed DOI PMC
Srinivas N., Rachakonda S., Kumar R. Telomeres and telomere length: A general overview. Cancers. 2020;12:558. doi: 10.3390/cancers12030558. PubMed DOI PMC
Olovnikov A.M., Solovieva A.S., Shubernetskaya O.S. Subtelomere. In: Gu D., Dupre M.E., editors. Encyclopedia of Gerontology and Population Aging. Springer International Publishing; Cham, Switzerland: 2021.
Srikulnath K., Uno Y., Nishida C., Ota H., Matsuda Y. Karyotype reorganization in the Hokou gecko (Gekko hokouensis, Gekkonidae): The process of microchromosome disappearance in Gekkota. PLoS ONE. 2015;10:e0134829. doi: 10.1371/journal.pone.0134829. PubMed DOI PMC
Townsend T., Larson A., Louis E., Macey J.R. Molecular phylogenetics of squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 2004;53:735–757. doi: 10.1080/10635150490522340. PubMed DOI
Wiens J.J., Hutter C.R., Mulcahy D.G., Noonan B.P., Townsend T.M., Sites J.W., Jr., Reeder T.W. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol. Lett. 2012;8:1043–1046. doi: 10.1098/rsbl.2012.0703. PubMed DOI PMC
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Reeder T.W., Townsend T.M., Mulcahy D.G., Noona B.P., Wood P.L., Jr., Sites J.W., Jr., Wiens J.J. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE. 2015;10:e0118199. doi: 10.1371/journal.pone.0118199. PubMed DOI PMC
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Streicher J.W., Wiens J.J. Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biol. Lett. 2017;13:20170393. doi: 10.1098/rsbl.2017.0393. PubMed DOI PMC
Burbrink F.T., Grazziotin F.G., Pyron R.A., Cundall D., Donnellan S., Irish F., Keogh J.S., Kraus F., Murphy R.W., Noonan B., et al. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst. Biol. 2020;69:502–520. doi: 10.1093/sysbio/syz062. PubMed DOI
Singhal S., Colston T.J., Grundler M.R., Smith S.A., Costa G.C., Colli G.R., Moritz C., Pyron R.A., Rabosky D.L. Congruence and conflict in the higher-level phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Syst. Biol. 2021;70:542–557. doi: 10.1093/sysbio/syaa054. PubMed DOI
Gorman G.C. The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Chiarelli A.B., Capanna E., editors. Cytotaxonomy and Vertebrate Evolution. Academic Press; London, UK: 1973. pp. 349–424.
King M. Chromosomal and immunogenetic data: A new perspective on the origin of Australia’s reptiles. In: Olmo E., editor. Cytogenetics of Amphibians and Reptiles. Birkhäuser Verlag; Berlin, Germany: 1990. pp. 153–180.
Pokorná M., Rábová M., Ráb P., Ferguson-Smith M.A., Rens W., Kratochvíl L. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 2010;18:809–820. doi: 10.1007/s10577-010-9154-7. PubMed DOI
Koubová M. Bachelor Thesis. Charles University; Prague, Czech Republic: 2011. Evolution of sex chromosomes and karyotypes in geckos (Squamata: Gekkota) (Evoluce pohlavních chromozomů a karyotypů u gekonů (Squamata: Gekkota))
Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Clark F.E., Akera T. Unravelling the mystery of female meiotic drive: Where we are. Open Biol. 2021;11:210074. doi: 10.1098/rsob.210074. PubMed DOI PMC
Akera T., Chmátal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D.M., Janke C., Schultz R.M., Lampson M.A. Spindle asymmetry drives non-Mendelian chromosome segregation. Science. 2017;358:668–672. doi: 10.1126/science.aan0092. PubMed DOI PMC
Iwata-Otsubo A., Dawicki-McKenna J.M., Akera T., Falk S.J., Chmátal L., Yang K., Sullivan B.A., Schultz R.M., Lampson M.A., Black B.E. Expanded satellite repeats amplify a discrete CENP-a nucleosome assembly site on chromosomes that drive in female meiosis. Curr. Biol. 2017;27:2365–2373. doi: 10.1016/j.cub.2017.06.069. PubMed DOI PMC
Lampson M.A., Black B.E. Cellular and molecular mechanisms of centromere drive. Cold Spring Harb. Symp. Quant. Biol. 2018;82:249–257. doi: 10.1101/sqb.2017.82.034298. PubMed DOI PMC
Garagna S., Broccoli D., Redi C.A., Searle J.B., Cooke H.J., Capanna E. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma. 1995;103:685–692. doi: 10.1007/BF00344229. PubMed DOI
Garagna S., Page J., Fernandez-Donoso R., Zuccotti M., Searle J.B. The Robertsonian phenomenon in the house mouse: Mutation, meiosis and speciation. Chromosoma. 2014;123:529–544. doi: 10.1007/s00412-014-0477-6. PubMed DOI