• This record comes from PubMed

Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos

. 2024 Mar 28 ; 15 (4) : . [epub] 20240328

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
GAČR 23-07347S Czech Science Foundation
402122 Charles University Grant Agency

Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.

See more in PubMed

Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI

Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI

Walsh J.B. Persistence of tandem arrays: Implications for satellite and simple-sequence DNAs. Genetics. 1987;115:553–567. doi: 10.1093/genetics/115.3.553. PubMed DOI PMC

Csink A.K., Henikoff S. Something from nothing: The evolution and utility of satellite repeats. Trends Genet. 1998;14:200–204. doi: 10.1016/S0168-9525(98)01444-9. PubMed DOI

Montiel E.E., Panzera F., Palomeque T., Lorite P., Pita S. Satellitome analysis of Rhodnius prolixus, one of the main Chagas disease vector species. Int. J. Mol. Sci. 2021;22:6052. doi: 10.3390/ijms22116052. PubMed DOI PMC

Pita S., Panzera F., Mora P., Vela J., Cuadrado A., Sánchez A., Palomeque T., Lorite P. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS ONE. 2017;12:e0181635. doi: 10.1371/journal.pone.0181635. PubMed DOI PMC

Balzano E., Giunta S. Centromeres under pressure: Evolutionary innovation in conflict with conserved function. Genes. 2020;11:912. doi: 10.3390/genes11080912. PubMed DOI PMC

Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021;22:4309. doi: 10.3390/ijms22094309. PubMed DOI PMC

Rovatsos M., Marchal J.A., Giagia-Athanasopoulou E., Sánchez A. Molecular composition of heterochromatin and its contribution to chromosome variation in the Microtus thomasi/Microtus atticus species complex. Genes. 2021;12:807. doi: 10.3390/genes12060807. PubMed DOI PMC

Dover G. Molecular drive. Trends Genet. 2002;18:587–589. doi: 10.1016/S0168-9525(02)02789-0. PubMed DOI

Ugarković D., Plohl M. Variation in satellite DNA profiles—Causes and effects. EMBO J. 2002;21:5955–5959. doi: 10.1093/emboj/cdf612. PubMed DOI PMC

Plohl M., Luchetti A., Mestrović N., Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI

Smith G.P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191:528–535. doi: 10.1126/science.1251186. PubMed DOI

Lovett S.T., Drapkin P.T., Sutera V.A., Jr., Gluckman-Peskind T.J. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics. 1993;135:431–642. doi: 10.1093/genetics/135.3.631. PubMed DOI PMC

Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. BioEssays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI

Liao D., Pavelitz T., Kidd J.R., Kidd K.K., Weiner A.M. Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J. 1997;16:588–598. doi: 10.1093/emboj/16.3.588. PubMed DOI PMC

Chaves R., Adega F., Heslop-Harrison J.S., Guedes-Pinto H., Wienberg J. Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosome Res. 2003;11:641–648. doi: 10.1023/A:1025952507959. PubMed DOI

Adega F., Guedes-Pinto H., Chaves R. Satellite DNA in the karyotype evolution of domestic animals—Clinical considerations. Cytogenet. Genome Res. 2009;126:12–20. doi: 10.1159/000245903. PubMed DOI

Farré M., Robinson T.J., Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays. 2015;37:479–488. doi: 10.1002/bies.201400174. PubMed DOI

Redi C.A., Garagna S., Della Valle G., Bottiroli G., Dell’Orto P., Viale G., Peverali F., Raimondi E., Forejt J. Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma. 1990;99:11–17. doi: 10.1007/BF01737284. PubMed DOI

Garagna S., Marziliano N., Zuccotti M., Searle J.B., Capanna E., Redi C.A. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc. Natl. Acad. Sci. USA. 2001;98:171–175. doi: 10.1073/pnas.98.1.171. PubMed DOI PMC

Bolzán A.D. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis. 2012;27:1–15. doi: 10.1093/mutage/ger052. PubMed DOI

Bolzán A.D., Bianchi M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. Rev. Mutat. Res. 2006;612:189–214. doi: 10.1016/j.mrrev.2005.12.003. PubMed DOI

Ohno S. So much “junk” DNA in our genome. Brookhaven Symp. Biol. 1972;23:366–370. PubMed

Orgel L., Crick F. Selfish DNA: The ultimate parasite. Nature. 1980;284:604–607. doi: 10.1038/284604a0. PubMed DOI

Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

Volpe T.A., Kidner C., Hall I.M., Teng G., Grewal S.I., Martienssen R.A. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297:1833–1837. doi: 10.1126/science.1074973. PubMed DOI

Martienssen R.A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI

Velazquez Camacho O., Galan C., Swist-Rosowska K., Ching R., Gamalinda M., Karabiber F., De La Rosa-Velazquez I., Engist B., Koschorz B., Shukeir N., et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. Elife. 2017;6:e25293. doi: 10.7554/eLife.25293. PubMed DOI PMC

Granok H., Leibovitch B.A., Shaffer C.D., Elgin S.C. Chromatin. Ga-ga over GAGA factor. Curr. Biol. 1995;5:238–241. doi: 10.1016/S0960-9822(95)00048-0. PubMed DOI

Pezer Ž., Brajković J., Feliciello I., Ugarković D. Satellite DNA-mediated effects on genome regulation. Repetitive DNA. 2012;7:153–169. PubMed

Uetz P., Freed P., Aguilar R., Reyes F., Kudera J., Hošek J., editors. The Reptile Database. 2024. [(accessed on 20 February 2024)]. Available online: http://www.reptile-database.org.

Ahmad S.F., Singchat W., Jehangir M., Panthum T., Srikulnath K. Consequence of paradigm shift with repeat landscapes in reptiles: Powerful facilitators of chromosomal rearrangements for diversity and evolution. Genes. 2020;11:827. doi: 10.3390/genes11070827. PubMed DOI PMC

Ahmad S.F., Singchat W., Panthum T., Srikulnath K. Impact of repetitive DNA elements on snake genome biology and evolution. Cells. 2021;10:1707. doi: 10.3390/cells10071707. PubMed DOI PMC

Capriglione T. Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates. In: Olmo E., Redi C.A., editors. Chromosomes Today. Birkhäuser Verlag; Basel, Switzerland: 2000. pp. 183–194.

Capriglione T., Cardone A., Odierna G., Olmo E. Evolution of a centromeric satellite DNA and phylogeny of lacertid lizards. Comp. Biochem. Physiol. Part B Biochem. 1991;100:641–645. doi: 10.1016/0305-0491(91)90233-4. PubMed DOI

Capriglione T., Cardone A., Odierna G., Olmo E. Further data on the occurrence and evolution of satellite DNA families in the lacertid genome. Chromosome Res. 1994;2:327–330. doi: 10.1007/BF01552726. PubMed DOI

Capriglione T., De Santo M.G., Odierna G., Olmo E. An alphoid-like satellite DNA sequence is present in the genome of a lacertid lizard. J. Mol. Evol. 1998;46:240–244. doi: 10.1007/PL00006299. PubMed DOI

Capriglione T., Olmo E., Odierna G., Smith D.I., Miller O.J. Genome composition and tandemly repetitive sequence at some centromeres in the lizard Podarcis s. sicula Raf. Genetica. 1989;79:85–91. doi: 10.1007/BF00057925. DOI

Ciobanu D.G., Grechko V.V., Darevskiĭ I.S. Molekuliarnaia évoliutsiia satellitnoĭ DNK CLsat iashcherits roda Darevskia (Sauria: Lacertidae): Korreliatsiia s vidovym raznoobraziem [Molecular evolution of satellite DNA CLsat in lizards of the Darevskia species (Sauria: Lacertidae): Correlation with species diversity] Genetika. 2003;39:1527–1541. PubMed

Ciobanu D., Grechko V.V., Darevsky I.S., Kramerov D.A. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): Evolutionary pathways and phylogenetic impact. J. Exp. Zool. Part B Mol. Dev. Evol. 2004;302:505–516. doi: 10.1002/jez.b.21014. PubMed DOI

Grechko V.V., Ciobanu D.G., Darevsky I.S., Kosushkin S.A., Kramerov D.A. Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae) Genome. 2006;49:1297–1307. doi: 10.1139/g06-089. PubMed DOI

Grechko V.V., Ciobanu D.G., Darevsky I.S., Kramerov D.A. Satellite DNA of lizards of the genus Lacerta s. str. (the group L. agilis), the family Lacertidae. Dokl. Biochem. Biophys. 2005;400:44–47. doi: 10.1007/s10628-005-0029-3. PubMed DOI

Giovannotti M., Cerioni P.N., Splendiani A., Ruggeri P., Olmo E., Barucchi V.C. Slow evolving satellite DNAs: The case of a centromeric satellite in Chalcides ocellatus (Forskål, 1775) (Reptilia, Scincidae) Amphib. Reptil. 2014;34:401–411. doi: 10.1163/15685381-00002905. DOI

Giovannotti M., Nisi Cerioni P., Rojo V., Olmo E., Slimani T., Splendiani A., Caputo Barucchi V. Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. J. Exp. Zool. Part B Mol. Dev. Evol. 2018;330:83–95. doi: 10.1002/jez.b.22790. PubMed DOI

Giovannotti M., S’Khifa A., Nisi Cerioni P., Splendiani A., Slimani T., Fioravanti T., Olmo E., Caputo Barucchi V. Isolation and characterization of two satellite DNAs in Atlantolacerta andreanskyi (Werner, 1929) (Reptilia, Lacertidae) J. Exp. Zool. Part B Mol. Dev. 2020;334:178–191. doi: 10.1002/jez.b.22937. PubMed DOI

Giovannotti M., Nisi Cerioni P., Caputo V., Olmo E. Characterisation of a GC-rich telomeric satellite DNA in Eumeces schneideri Daudin (Reptilia, Scincidae) Cytogenet. Genome Res. 2009;125:272–278. doi: 10.1159/000235933. PubMed DOI

Castoe T.A., Hall K.T., Guibotsy Mboulas M.L., Gu W., de Koning A.P., Fox S.E., Poole A.W., Vemulapalli V., Daza J.M., Mockler T., et al. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol. 2011;3:641–653. doi: 10.1093/gbe/evr043. PubMed DOI PMC

Matsubara K., Uno Y., Srikulnath K., Seki R., Nishida C., Matsuda Y. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae) Chromosoma. 2015;124:529–539. doi: 10.1007/s00412-015-0529-6. PubMed DOI

Thongchum R., Singchat W., Laopichienpong N., Tawichasri P., Kraichak E., Prakhongcheep O., Sillapaprayoon S., Muangmai N., Baicharoen S., Suntrarachun S., et al. Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles. Sci. Rep. 2019;9:15459. doi: 10.1038/s41598-019-51863-w. PubMed DOI PMC

Lisachov A., Rumyantsev A., Prokopov D., Ferguson-Smith M., Trifonov V. Conservation of major satellite DNAs in snake heterochromatin. Animals. 2023;13:334. doi: 10.3390/ani13030334. PubMed DOI PMC

Chaiprasertsri N., Uno Y., Peyachoknagul S., Prakhongcheep O., Baicharoen S., Charernsuk S., Nishida C., Matsuda Y., Koga A., Srikulnath K. Highly species-specific centromeric repetitive DNA sequences in lizards: Molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) J. Hered. 2013;104:798–806. doi: 10.1093/jhered/est061. PubMed DOI

Prakhongcheep O., Thapana W., Suntronpong A., Singchat W., Pattanatanang K., Phatcharakullawarawat R., Muangmai N., Peyachoknagul S., Matsubara K., Ezaz T., et al. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata) BMC Evol. Biol. 2017;17:193. doi: 10.1186/s12862-017-1044-6. PubMed DOI PMC

Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in Squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI

Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC

Srikulnath K., Azad B., Singchat W., Ezaz T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE. 2019;14:e0212683. doi: 10.1371/journal.pone.0212683. PubMed DOI PMC

Charvát T., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis of the members of the snake genera Cylindrophis, Eryx, Python, and Tropidophis. Genes. 2022;13:1185. doi: 10.3390/genes13071185. PubMed DOI PMC

Chrostek G., Domaradzka A., Yurchenko A., Kratochvíl L., Mazzoleni S., Rovatsos M. Cytogenetic analysis of seven species of gekkonid and phyllodactylid geckos. Genes. 2023;14:178. doi: 10.3390/genes14010178. PubMed DOI PMC

Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC

Rovatsos M., Vukić J., Altmanová M., Johnson Pokorná M., Moravec J., Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 2016;25:3120–3126. doi: 10.1111/mec.13635. PubMed DOI

Rovatsos M., Vukić J., Mrugała A., Suwala G., Lymberakis P., Kratochvíl L. Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards. Sci. Rep. 2019;9:7832. doi: 10.1038/s41598-019-44192-5. PubMed DOI PMC

Rovatsos M., Rehák I., Velenský P., Kratochvíl L. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 2019;36:1113–1120. doi: 10.1093/molbev/msz024. PubMed DOI

Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI

Matsubara K., Sarre S.D., Georges A., Matsuda Y., Marshall Graves J.A., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC

Suwala G., Altmanová M., Mazzoleni S., Karameta E., Pafilis P., Kratochvíl L., Rovatsos M. Evolutionary variability of W-linked repetitive content in lacertid lizards. Genes. 2020;11:531. doi: 10.3390/genes11050531. PubMed DOI PMC

Kofler R., Schlötterer C., Lelley T. SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinformatics. 2007;23:1683–1685. doi: 10.1093/bioinformatics/btm157. PubMed DOI

Short K.H., Petren K. Isolation and characterization of 12 polymorphic microsatellite markers in the tropical house gecko (Hemidactylus mabouia) Mol. Ecol. Resour. 2008;8:1319–1321. doi: 10.1111/j.1755-0998.2008.02270.x. PubMed DOI

Thongnetr W., Aiumsumang S., Kongkaew R., Tanomtong A., Suwannapoom C., Phimphan S. Cytogenetic characterisation and chromosomal mapping of microsatellite and telomeric repeats in two gecko species (Reptilia, Gekkonidae) from Thailand. Comp. Cytogenet. 2021;15:41–52. doi: 10.3897/CompCytogen.v15i1.58208. PubMed DOI PMC

Pensabene E., Yurchenko A., Kratochvíl L., Rovatsos M. Madagascar leaf-tail geckos (Uroplatus spp.) share independently evolved differentiated ZZ/ZW sex chromosomes. Cells. 2023;12:260. doi: 10.3390/cells12020260. PubMed DOI PMC

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. [(accessed on 26 May 2023)]. Available online: http://www.repeatmasker.org.

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016;6:28333. doi: 10.1038/srep28333. PubMed DOI PMC

Šatović-Vukšić E., Plohl M. Satellite DNAs—From localized to highly dispersed genome components. Genes. 2023;14:742. doi: 10.3390/genes14030742. PubMed DOI PMC

Liu Y., Zhou Q., Wang Y., Luo L., Yang J., Yang L., Liu M., Li Y.R., Qian T.M., Zheng Y., et al. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat. Commun. 2015;24:10033. doi: 10.1038/ncomms10033. PubMed DOI PMC

Hara Y., Takeuchi M., Kageyama Y., Tatsumi K., Hibi M., Kiyonari H., Kuraku S. Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol. 2018;16:40. doi: 10.1186/s12915-018-0509-4. PubMed DOI PMC

Pavlek M., Gelfand Y., Plohl M., Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res. 2015;22:387–401. doi: 10.1093/dnares/dsv021. PubMed DOI PMC

Westhorpe F.G., Straight A.F. The centromere: Epigenetic control of chromosome segregation during mitosis. Cold Spring Harb. Perspect. Biol. 2015;7:a015818. doi: 10.1101/cshperspect.a015818. PubMed DOI PMC

Prosée R.F., Wenda J.M., Steiner F.A. Adaptations for centromere function in meiosis. Essays Biochem. 2020;64:193–203. PubMed PMC

Chakravarti D., LaBella K.A., DePinho R.A. Telomeres: History, health, and hallmarks of aging. Cell. 2021;184:306–322. doi: 10.1016/j.cell.2020.12.028. PubMed DOI PMC

Srinivas N., Rachakonda S., Kumar R. Telomeres and telomere length: A general overview. Cancers. 2020;12:558. doi: 10.3390/cancers12030558. PubMed DOI PMC

Olovnikov A.M., Solovieva A.S., Shubernetskaya O.S. Subtelomere. In: Gu D., Dupre M.E., editors. Encyclopedia of Gerontology and Population Aging. Springer International Publishing; Cham, Switzerland: 2021.

Srikulnath K., Uno Y., Nishida C., Ota H., Matsuda Y. Karyotype reorganization in the Hokou gecko (Gekko hokouensis, Gekkonidae): The process of microchromosome disappearance in Gekkota. PLoS ONE. 2015;10:e0134829. doi: 10.1371/journal.pone.0134829. PubMed DOI PMC

Townsend T., Larson A., Louis E., Macey J.R. Molecular phylogenetics of squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 2004;53:735–757. doi: 10.1080/10635150490522340. PubMed DOI

Wiens J.J., Hutter C.R., Mulcahy D.G., Noonan B.P., Townsend T.M., Sites J.W., Jr., Reeder T.W. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol. Lett. 2012;8:1043–1046. doi: 10.1098/rsbl.2012.0703. PubMed DOI PMC

Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC

Reeder T.W., Townsend T.M., Mulcahy D.G., Noona B.P., Wood P.L., Jr., Sites J.W., Jr., Wiens J.J. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE. 2015;10:e0118199. doi: 10.1371/journal.pone.0118199. PubMed DOI PMC

Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI

Streicher J.W., Wiens J.J. Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biol. Lett. 2017;13:20170393. doi: 10.1098/rsbl.2017.0393. PubMed DOI PMC

Burbrink F.T., Grazziotin F.G., Pyron R.A., Cundall D., Donnellan S., Irish F., Keogh J.S., Kraus F., Murphy R.W., Noonan B., et al. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst. Biol. 2020;69:502–520. doi: 10.1093/sysbio/syz062. PubMed DOI

Singhal S., Colston T.J., Grundler M.R., Smith S.A., Costa G.C., Colli G.R., Moritz C., Pyron R.A., Rabosky D.L. Congruence and conflict in the higher-level phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Syst. Biol. 2021;70:542–557. doi: 10.1093/sysbio/syaa054. PubMed DOI

Gorman G.C. The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Chiarelli A.B., Capanna E., editors. Cytotaxonomy and Vertebrate Evolution. Academic Press; London, UK: 1973. pp. 349–424.

King M. Chromosomal and immunogenetic data: A new perspective on the origin of Australia’s reptiles. In: Olmo E., editor. Cytogenetics of Amphibians and Reptiles. Birkhäuser Verlag; Berlin, Germany: 1990. pp. 153–180.

Pokorná M., Rábová M., Ráb P., Ferguson-Smith M.A., Rens W., Kratochvíl L. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 2010;18:809–820. doi: 10.1007/s10577-010-9154-7. PubMed DOI

Koubová M. Bachelor Thesis. Charles University; Prague, Czech Republic: 2011. Evolution of sex chromosomes and karyotypes in geckos (Squamata: Gekkota) (Evoluce pohlavních chromozomů a karyotypů u gekonů (Squamata: Gekkota))

Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI

Clark F.E., Akera T. Unravelling the mystery of female meiotic drive: Where we are. Open Biol. 2021;11:210074. doi: 10.1098/rsob.210074. PubMed DOI PMC

Akera T., Chmátal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D.M., Janke C., Schultz R.M., Lampson M.A. Spindle asymmetry drives non-Mendelian chromosome segregation. Science. 2017;358:668–672. doi: 10.1126/science.aan0092. PubMed DOI PMC

Iwata-Otsubo A., Dawicki-McKenna J.M., Akera T., Falk S.J., Chmátal L., Yang K., Sullivan B.A., Schultz R.M., Lampson M.A., Black B.E. Expanded satellite repeats amplify a discrete CENP-a nucleosome assembly site on chromosomes that drive in female meiosis. Curr. Biol. 2017;27:2365–2373. doi: 10.1016/j.cub.2017.06.069. PubMed DOI PMC

Lampson M.A., Black B.E. Cellular and molecular mechanisms of centromere drive. Cold Spring Harb. Symp. Quant. Biol. 2018;82:249–257. doi: 10.1101/sqb.2017.82.034298. PubMed DOI PMC

Garagna S., Broccoli D., Redi C.A., Searle J.B., Cooke H.J., Capanna E. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma. 1995;103:685–692. doi: 10.1007/BF00344229. PubMed DOI

Garagna S., Page J., Fernandez-Donoso R., Zuccotti M., Searle J.B. The Robertsonian phenomenon in the house mouse: Mutation, meiosis and speciation. Chromosoma. 2014;123:529–544. doi: 10.1007/s00412-014-0477-6. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...