Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex

. 2021 May 25 ; 12 (6) : . [epub] 20210525

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070573

The voles of the Microtus thomasi/M. atticus species complex demonstrate a remarkable variability in diploid chromosomal number (2n = 38-44 chromosomes) and sex chromosome morphology. In the current study, we examined by in situ hybridization the topology of four satellite DNA motifs (Msat-160, Mth-Alu900, Mth-Alu2.2, TTAGGG telomeric sequences) and two transposons (LINE, SINE) on the karyotypes of nine chromosome races (i.e., populations with unique cytogenetic traits) of Microtus thomasi, and two chromosomal races of M. atticus. According to the topology of the repetitive DNA motifs, we were able to identify six types of biarmed chromosomes formed from either Robertsonian or/and tandem fusions. In addition, we identified 14 X chromosome variants and 12 Y chromosome variants, and we were able to reconstruct their evolutionary relations, caused mainly by distinct mechanisms of amplification of repetitive DNA elements, including the telomeric sequences. Our study used the model of the Microtus thomasi/M. atticus species complex to explore how repetitive centromeric content can alter from chromosomal rearrangements and can shape the morphology of sex chromosomes, resulting in extensive inter-species cytogenetic variability.

Zobrazit více v PubMed

Raudsepp T., Lee E.-J., Kata S.R., Brinkmeyer C., Mickelson J.R., Skow L.C., Womack J.E., Chowdhary B.P. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc. Natl. Acad. Sci. USA. 2004;101:2386–2391. doi: 10.1073/pnas.0308513100. PubMed DOI PMC

Bourque G., Pevzner P.A., Tesler G. Reconstructing the genomic architecture of ancestral mammals: Lessons from human, mouse, and rat genomes. Genome Res. 2004;14:507–516. doi: 10.1101/gr.1975204. PubMed DOI PMC

Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nature reviews. Genetics. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC

Hughes J.F., Page D.C. The Biology and Evolution of Mammalian Y Chromosomes. Annu. Rev. Genet. 2015;49:507–527. doi: 10.1146/annurev-genet-112414-055311. PubMed DOI

Musser G.G., Carleton M.D. Superfamily Muroidea. In: Wilson D.E., Reeder D.M., editors. Mammal Species of the World: A Taxonomic and Geographic Reference. JHU Press; Baltimore, MA, USA: 2005. pp. 894–1531.

Romanenko S.A., Serdyukova N.A., Perelman P.L., Pavlova S.V., Bulatova N.S., Golenishchev F.N., Stanyon R., Graphodatsky A.S. Intrachromosomal Rearrangements in Rodents from the Perspective of Comparative Region-Specific Painting. Genes. 2017;8:215. doi: 10.3390/genes8090215. PubMed DOI PMC

Romanenko S.A., Serdyukova N.A., Perelman P.L., Trifonov V.A., Golenishchev F.N., Bulatova N.S., Stanyon R., Graphodatsky A.S. Multiple intrasyntenic rearrangements and rapid speciation in voles. Sci. Rep. 2018;8:14980. doi: 10.1038/s41598-018-33300-6. PubMed DOI PMC

Gornung E., Castiglia R., Rovatsos M., Marchal J.A., Díaz de la Guardia-Quiles R., Sanchez A. Comparative cytogenetic study of two sister species of Iberian ground voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus (rodentia, cricetidae) Cytogenet. Genome Res. 2011;132:144–150. doi: 10.1159/000321572. PubMed DOI

Vogel W., Jainta S., Rau W., Geerkens C., Baumstark A., Correa-Cerro L.S., Ebenhoch C., Just W. Sex determination in Ellobius lutescens: The story of an enigma. Cytogenet. Cell Genet. 1998;80:214–221. doi: 10.1159/000014983. PubMed DOI

Acosta M.J., Marchal J.A., Romero-Fernández I., Megías-Nogales B., Modi W.S., Sánchez A. Sequence Analysis and Mapping of the Sry Gene in Species of the Subfamily Arvicolinae (Rodentia) Sex. Dev. 2010;4:336–347. doi: 10.1159/000319195. PubMed DOI

Acosta M.J., Romero-Fernández I., Sánchez A., Marchal J.A. Comparative analysis by chromosome painting of the sex chromosomes in arvicolid rodents. Cytogenet. Genome Res. 2011;132:47–54. doi: 10.1159/000318012. PubMed DOI

Borodin P.M., Basheva E.A., Torgasheva A.A., Dashkevich O.A., Golenishchev F.N., Kartavtseva I.V., Mekada K., Dumont B.L. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res. 2012;20:259–268. doi: 10.1007/s10577-011-9261-0. PubMed DOI

Borodin P.M., Basheva E.A., Golenischev F.N., Dashkevich O.A., Kartavtseva I.N., Lisachov A.P., Torgasheva A.A. Parallel occurrence of asynaptic sex chromosomes in gray voles (Microtus Schrank, 1798) Paleontol. J. 2013;47:1035–1040. doi: 10.1134/S0031030113090049. DOI

Burgos M., Jiménez R., Díaz de la Guardia R. XY females in Microtus cabrerae (Rodentia, Microtidae): A case of possibly Y-linked sex reversal. Cytogenet. Cell Genet. 1988;49:275–277. doi: 10.1159/000132676. PubMed DOI

Lamelas L., Arroyo M., Fernández F.J., Marchal J.A., Sánchez A. Structural and Evolutionary Relationships in the Giant Sex Chromosomes of Three Microtus Species. Genes. 2018;9:27. doi: 10.3390/genes9010027. PubMed DOI PMC

Marchal J.A., Acosta M.J., Bullejos M., Díaz de la Guardia R., Sánchez A. Sex chromosomes, sex determination, and sex-linked sequences in Microtidae. Cytogenet. Genome Res. 2003;101:266–273. doi: 10.1159/000074347. PubMed DOI

Marchal J.A., Acosta M.J., Nietzel H., Sperling K., Bullejos M., Díaz de la Guardia R., Sánchez A. X chromosome painting in Microtus: Origin and evolution of the giant sex chromosomes. Chromosome Res. 2004;12:767–776. doi: 10.1007/s10577-005-5077-0. PubMed DOI

Marchal J.A., Acosta M.J., Bullejos M., Díaz de la Guardia R., Sánchez A. A repeat DNA sequence from the Y chromosome in species of the genus Microtus. Chromosome Res. 2004;12:757–765. doi: 10.1007/s10577-005-5079-y. PubMed DOI

Marchal J.A., Acosta M.J., Bullejos M., Diaz de la Guardia R., Sanchez A. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: Role of L1elements. Genomics. 2008;91:142–151. doi: 10.1016/j.ygeno.2007.10.010. PubMed DOI

Megías-Nogales B., Marchal J.A., Acosta M.J., Bullejos M., Díaz de la Guardia R., Sánchez A. Sex chromosomes pairing in two Arvicolidae species: Microtus nivalis and Arvicola sapidus. Hereditas. 2003;138:114–121. doi: 10.1034/j.1601-5223.2003.01717.x. PubMed DOI

Ohno S., Jainchill J., Stenius C. The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The OY/XY constitution of the male. Cytogenetics. 1963;2:232–239. doi: 10.1159/000129781. PubMed DOI

Ohno S., Stenius C., Christian L. The XO as the normal female of the creeping vole (Microtus oregoni) In: Darlington C.D., Lewis K.R., editors. Chromosomes Today 1. Oliver & Boyd; London, UK: 1966. pp. 182–187.

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Arroyo M., Athanasopoulou E.B., Sánchez A. Extensive sex chromosome polymorphism of Microtus thomasi/Microtus atticus species complex associated with cryptic chromosomal rearrangements and independent accumulation of heterochromatin. Cytogenet. Genome Res. 2017;151:198–207. doi: 10.1159/000477114. PubMed DOI

Sitnikova N.A., Romanenko S.A., O’Brien P.C., Perelman P.L., Fu B., Rubtsova N.V., Serdukova N.A., Golenishchev F.N., Trifonov V.A., Ferguson-Smith M.A., et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007;15:447–456. doi: 10.1007/s10577-007-1137-y. PubMed DOI

Zakian S.M., Nesterova T.B., Cheryaukene O.V., Bochkarev M.N. Heterochromatin as a factor affecting the inactivation of the X-chromosome in interspecific hybrid voles (Microtidae, Rodentia) Genet. Res. 1991;58:105–110. doi: 10.1017/S0016672300029748. DOI

Fredga K., Jaarola M. The origin and distribution of the Lund Y chromosome in Microtus agrestis (Rodentia, Mammalia) Hereditas. 1997;126:25–34. doi: 10.1111/j.1601-5223.1997.00025.x. PubMed DOI

Mazurok N.A., Rubtsova N.V., Isaenko A.A., Pavlova M.E., Slobodyanyuk S.Y., Nesterova T.B., Zakian S.M. Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae) Chromosome Res. 2001;9:107–120. doi: 10.1023/A:1009226918924. PubMed DOI

Castiglia R., Annesi F., Aloise G., Amori G. Systematics of the Microtus savii complex (Rodentia, Cricetidae) via mitochondrial DNA analyses: Paraphyly and pattern of sex chromosome evolution. Mol. Phylogenet. Evol. 2008;46:1157–1164. doi: 10.1016/j.ympev.2007.12.005. PubMed DOI

Rubtsov N.B., Rubtsova N.V., Anopriyenko O.V., Karamysheva T.V., Shevchenko A.I., Mazurok N.A., Nesterova T.B., Zakian S.M. Reorganization of the X chromosome in voles of the genus Microtus. Cytogenet. Genome Res. 2002;99:323–329. doi: 10.1159/000071611. PubMed DOI

Romanenko S.A., Fedorova Y.E., Serdyukova N.A., Zaccaroni M., Stanyon R., Graphodatsky A.S. Evolutionary rearrangements of X chromosomes in voles (Arvicolinae, Rodentia) Sci. Rep. 2020;10:13235. doi: 10.1038/s41598-020-70226-4. PubMed DOI PMC

Matthey R. Les chromosomes sexuels géants de Microtus agrestis L. Cellule. 1950;53:163–184.

Burgos M., Jiménez R., Olmos D.M., Díaz de la Guardia R. Heterogeneous heterochromatin and size variation in the sex chromosomes of Microtus cabrerae. Cytogenet. Cell Genet. 1988;47:75–79. doi: 10.1159/000132510. PubMed DOI

Burgos M., Olmos D.M., Jiménez R., Sánchez A., Díaz de la Guardia R. Fluorescence banding in four species of Microtidae: An analysis of the evolutive changes of the constitutive heterochromatin. Genetica. 1990;81:11–16. doi: 10.1007/BF00055231. PubMed DOI

Modi W.S. Heterogeneity in the concerted evolution process of a tandem satellite array in meadow mice (Microtus) J. Mol. Evol. 1993;37:48–56. doi: 10.1007/BF00170461. PubMed DOI

Modi W.S., Serdyukova N.A., Vorobieva N.V., Graphodatsky A.S. Chromosomal localization of six repeated DNA sequencesamong species of Microtus (Rodentia) Chromosom. Res. 2003;11:705–713. doi: 10.1023/A:1025922813756. PubMed DOI

Acosta M.J., Marchal J.A., Mitsainas G.P., Rovatsos M.T., Fernández-Espartero C.H., Giagia-Athanasopoulou E.B., Sánchez A. A new pericentromeric repeated DNA sequence in Microtus thomasi. Cytogenet. Genome Res. 2009;124:27–36. doi: 10.1159/000200085. PubMed DOI

Mitsainas G.P., Rovatsos M.T., Rizou E.I., Giagia-Athanasopoulou E.B. Sex chromosome variability outlines the pathway to the chromosomal evolution in Microtus thomasi (Rodentia, Arvicolinae) Biol. J. Linn. Soc. 2009;96:685–695. doi: 10.1111/j.1095-8312.2008.01161.x. DOI

Rovatsos M.T., Mitsainas G.P., Paspali G., Oruci S., Giagia-Athanasopoulou E.B. Geographical distribution and chromosomal study of the underground vole Microtus thomasi in Albania and Montenegro. Mamm. Biol. 2011;76:22–27. doi: 10.1016/j.mambio.2010.01.003. DOI

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Cano-Linares M., Fernández F.J., Giagia-Athanasopoulou E.B., Sánchez A. Molecular and physical characterization of the complex pericentromeric heterochromatin of the vole species Microtus thomasi. Cytogenet. Genome Res. 2014;144:131–141. doi: 10.1159/000368648. PubMed DOI

Rovatsos M.T., Giagia-Athanasopoulou E.B. Taxonomical status and phylogenetic relations between the “thomasi” and “atticus” chromosomal races of the underground vole Microtus thomasi (Rodentia, Arvicolinae) Mamm. Biol. 2012;77:6–12. doi: 10.1016/j.mambio.2011.09.001. DOI

Giagia-Athanasopoulou E.B., Chondropoulos B.P., Fraguedakis-Tsolis S.E. Robertsonian chromosomal variation in the subalpine voles Microtus (Terricola) (Rodentia, Arvicolidae) from Greece. Acta Theriol. 1995;40:139–143. doi: 10.4098/AT.arch.95-15. DOI

Acosta M.J., Marchal J.A., Fernández-Espartero C., Romero-Fernández I., Rovatsos M.T., Giagia-Athanasopoulou E.B., Gornung E., Castiglia R., Sánchez A. Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae) Genetica. 2010;138:1085–1098. doi: 10.1007/s10709-010-9496-2. PubMed DOI

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI

Rovatsos M.T., Mitsainas G.P., Stamatopoulos C., Giagia-Athanasopoulou E.B. First reports of XXY aneuploidy in natural populations of Thomas’ pine vole Microtus thomasi (Rodentia: Arvicolidae) from Greece. Mamm. Biol. 2008;73:342–349. doi: 10.1016/j.mambio.2007.10.010. DOI

Hsu T.C., Patton J.L. Bone marrow preparations for chromosome studies. In: Benirschke K., editor. Comparative Mammalian Cytogenetics. Springer; New York, NY, USA: 1969. pp. 454–460.

Acosta M.J., Marchal J.A., Fernández-Espartero C., Bullejos M., Sánchez A. Retroelements (Lines and Sines) in vole genomes: Differential distribution in the constitutive heterochromatin. Chromosome Res. 2008;16:949–959. doi: 10.1007/s10577-008-1253-3. PubMed DOI

Marchal J.A., Acosta M.J., Bullejos M., Puerma E., Díaz de la Guardia R., Sánchez A. Distribution of l1-retroposons on the giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): Functional and evolutionary implications. Chromosome Res. 2006;14:177–186. doi: 10.1007/s10577-006-1034-9. PubMed DOI

Frey J.K., Frey B.J., Moore D.W. Karyotypes of the Long-Tailed Vole (Microtus longicaudus) in Isolated Mountain Ranges of the American Southwest. West. N. Am. Nat. 2009;69:388–390.

Kartavtseva I., Sheremetyeva I.N., Korobitsina K.V., Nemkova G.A., Konovalova E.V., Korablev V.V., Voyta L. Chromosomal forms of Microtus maximowiczii (Schrenck, 1859) (Rodentia, Cricetidae): Variability in 2n and NF in different geographic regions. Russ. J. Theriol. 2008;7:89–97. doi: 10.15298/rusjtheriol.07.2.05. DOI

Giagia E.B., Ondrias J.C. Karyological analysis of the vole Pitymys atticus (Rodentia, Mammalia) from Greece. Biol. Gallo-Hellen. 1973;4:205–212.

Giagia E.B. Karyotypes of “44-chromosomes” Pitymys species (Rodentia, Mammalia) and their distribution in southern Greece. Säugetierkund. Mitt. 1985;32:169–173.

Giagia-Athanasopoulou E.B., Stamatopoulos C. Geographical distribution and interpopulation variation in the karyotypes of Microtus (Terricola) thomasi (Rodentia, Arvicolidae) in Greece. Caryologia. 1997;50:303–315. doi: 10.1080/00087114.1997.10797404. DOI

Modi W.S. Phylogenetic analyses of chromosomal banding patterns among the nearctic Arvicolidae (Mammalia: Rodentia) Syst. Zool. 1987;36:109–136. doi: 10.2307/2413264. DOI

Burgos M., Jiménez R., Díaz de la Guardia R. Comparative study of G- and C-banded chromosomes of five species of Microtidae. A chromosomal evolution analysis. Genome. 1988;30:540–546. doi: 10.1139/g88-091. PubMed DOI

Mitsainas G.P., Rovatsos M.T., Giagia-Athanasopoulou E.B. Heterochromatin study and geographical distribution of Microtus species (Rodentia, Arvicolinae) from Greece. Mamm. Biol. 2010;75:261–269. doi: 10.1016/j.mambio.2008.11.001. DOI

Chmátal L., Gabriel S.I., Mitsainas G.P., Martínez-Vargas J., Ventura J., Searle J.B., Schultz R.M., Lampson M.A. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 2014;24:2295–2300. doi: 10.1016/j.cub.2014.08.017. PubMed DOI PMC

Akera T., Trimm E., Lampson M.A. Molecular strategies of meiotic cheating by selfish centromeres. Cell. 2019;178:1132–1144. doi: 10.1016/j.cell.2019.07.001. PubMed DOI PMC

Yoshida K., Kitano J. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution. 2012;66:3198–3208. doi: 10.1111/j.1558-5646.2012.01681.x. PubMed DOI PMC

Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI

Searle J.B., Fedyk S., Fredga K., Hausser J., Volobouev V.T. Nomenclature for the chromosomes of the common shrew (sorex araneus) Comp. Cytogenet. 2010;4:87–96. doi: 10.3897/compcytogen.v4i1.28. DOI

Piálek J., Hauffe H.C., Searle J.B. Chromosomal variation in the house mouse. Biol. J. Linn. Soc. Lond. 2005;84:535–563. doi: 10.1111/j.1095-8312.2005.00454.x. DOI

White T.A., Bordewich M., Searle J.B. A network approach to study karyotypic evolution: The chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst. Biol. 2010;59:262–276. doi: 10.1093/sysbio/syq004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace