Cytogenetically Elusive Sex Chromosomes in Scincoidean Lizards
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR 19-19672S
Grantová Agentura České Republiky
PRIMUS/SCI/46
Univerzita Karlova v Praze
Research Centre Program (204069)
Univerzita Karlova v Praze
1518119
Grantová Agentura, Univerzita Karlova
PubMed
34445371
PubMed Central
PMC8395508
DOI
10.3390/ijms22168670
PII: ijms22168670
Knihovny.cz E-zdroje
- Klíčová slova
- CGH, FISH, comparative genome hybridization, evolution, fluorescence in situ hybridization, heterochromatin, karyotype, rDNA, reptiles, sex chromosomes, sex determination, telomeres,
- MeSH
- cytogenetické vyšetření metody MeSH
- diploidie MeSH
- hybridizace in situ fluorescenční MeSH
- ještěři klasifikace genetika MeSH
- karyotypizace MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví MeSH
- ribozomální DNA genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ribozomální DNA MeSH
The lizards of the species-rich clade Scincoidea including cordylids, gerrhosaurids, skinks, and xantusiids, show an almost cosmopolitan geographical distribution and a remarkable ecological and morphological divergence. However, previous studies revealed limited variability in cytogenetic traits. The sex determination mode was revealed only in a handful of gerrhosaurid, skink, and xantusiid species, which demonstrated either ZZ/ZW or XX/XY sex chromosomes. In this study, we explored the karyotypes of six species of skinks, two species of cordylids, and one gerrhosaurid. We applied conventional and molecular cytogenetic methods, including C-banding, fluorescence in situ hybridization with probes specific for telomeric motifs and rDNA loci, and comparative genomic hybridization. The diploid chromosome numbers are rather conserved among these species, but the chromosome morphology, the presence of interstitial telomeric sequences, and the topology of rDNA loci vary significantly. Notably, XX/XY sex chromosomes were identified only in Tiliqua scincoides, where, in contrast to the X chromosome, the Y chromosome lacks accumulations of rDNA loci. We confirm that within the lizards of the scincoidean clade, sex chromosomes remained in a generally poor stage of differentiation.
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Department of Zoology Faculty of Science Charles University 12844 Prague Czech Republic
Zobrazit více v PubMed
Uetz P., Freed P., Aguilar R., Hošek J. The Reptile Database. [(accessed on 6 June 2021)]; Available online: http://www.reptile-database.org.
Odierna G., Canapa A., Andreone F., Aprea G., Barucca M., Capriglione T., Olmo E. A phylogenetic analysis of Cordyliformes (Reptilia: Squamata): Comparison of molecular and karyological data. Mol. Phylogenetics Evol. 2002;23:37–42. doi: 10.1006/mpev.2001.1077. PubMed DOI
Olmo E., Signorino G. Chromorep: A Reptile Chromosomes Database. [(accessed on 6 June 2021)]; Available online: http://chromorep.univpm.it.
Giovannotti M., Caputo V., O’Brien P., Lovell F., Trifonov V., Cerioni P.N., Olmo E., Ferguson-Smith M., Rens W. Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting. Cytogenet. Genome Res. 2009;127:224–231. doi: 10.1159/000295002. PubMed DOI
Deweese J.E., Wright J.W. A preliminary karyological analysis of scincid lizards. Mamm. Chromosome Newsl. 1970;11:95–96.
Branch W.R. Chromosome morphology of some reptiles from Oman and adjacent territories. J. Oman Stud. Rep. 1980;2:333–345.
Caputo V., Odierna G., Aprea G. A chromosomal study of Eumeces and Scincus, primitive members of the Scincidae (Reptilia, Squamata) Bolletino Zool. 1994;61:155–162. doi: 10.1080/11250009409355876. DOI
King M. Karyotypic studies of some Australian Scincidae (Reptilia) Aust. J. Zool. 1973;21:21–32. doi: 10.1071/ZO9730021. DOI
Ota H., Hikida T., Matsui M., Hasegawa M., Labang D., Nabhitabhata J. Chromosomal variation in the scincid genus Mabuya and its arboreal relatives (Reptilia: Squamata) Genetica. 1996;98:87–94. doi: 10.1007/BF00120222. DOI
Gordon D.H., Haacke W.D., Jacobsen N.H.G. Chromosomal studies of relationships in Gekkonidae, Chamaeleonidae and Scincidae in South Africa. J. Herpetol. Assoc. Afr. 1989;36:77. doi: 10.1080/04416651.1989.9650240. DOI
Hass C.A., Hedges S.B. Karyotype of the Cuban lizard Cricosaura typica and its implications for xantusiid phylogeny. Copeia. 1992;1992:563. doi: 10.2307/1446221. DOI
Bezy R.L. Karyotypic variation and evolution of the lizards in the family Xantusiidae. Los Angeles County Mus. Contr. Sci. 1972;227:1–29.
Hardy G.S. The karyotypes of two scincid lizards, and their bearing on relationships in genus Leiolopisma and its relatives (Scincidae: Lygosominae) N. Z. J. Zool. 1979;6:609–612. doi: 10.1080/03014223.1979.10428403. DOI
Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI
Hill P., Shams F., Burridge C., Wapstra E., Ezaz T. Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae) Cells. 2021;10:291. doi: 10.3390/cells10020291. PubMed DOI PMC
Donnellan S. Chromosomes of Australian lygosomine skinks (Lacertilia: Scincidae) Genetica. 1991;83:207–222. doi: 10.1007/BF00126227. DOI
Hutchinson M.N., Donnellan S. Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae: Lygosominae) J. Nat. Hist. 1992;26:215–264. doi: 10.1080/00222939200770091. DOI
Shine R., Elphick M.J., Donnellan S. Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecol. Lett. 2002;5:486–489. doi: 10.1046/j.1461-0248.2002.00351.x. DOI
Quinn A.E., Radder R.S., Sarre S.D., Georges A., Ezaz T., Shine R. Isolation and development of a molecular sex marker for Bassiana duperreyi, a lizard with XX/XY sex chromosomes and temperature-induced sex reversal. Mol. Genet. Genom. 2009;281:665–672. doi: 10.1007/s00438-009-0437-7. PubMed DOI
Wright J.W. Evolution of the X1X2Y sex chromosome mechanism in the scincid lizard Scincella laterale (Say) Chromosoma. 1973;43:101–108. PubMed
Castiglia R., Bezerra A., Flores-Villela O., Annesi F., Muñoz A., Gornung E. Comparative cytogenetics of two species of ground skinks: Scincella assata and S. cherriei (Squamata: Scincidae: Lygosominae) from Chiapas, Mexico. Acta Herpetol. 2013;8:69–73. doi: 10.13128/acta_herpetol-11315. DOI
Hedin M.C., Sudman P.D., Greenbaum I.F., Sites J.W. Synaptonemal complex analysis of sex chromosome pairing in the common ground skink, Scincella lateralis (Sauria, Scincidae) Copeia. 1990;1990:1114. doi: 10.2307/1446496. DOI
Patawang I., Chuaynkern Y., Supanuam P., Maneechot N., Pinthong K., Tanomtong A. Cytogenetics of the skinks (Reptilia, Scincidae) from Thailand; IV: Newly investigated karyotypic features of Lygosoma quadrupes and Scincella melanosticta. Caryologia. 2018;71:29–34. doi: 10.1080/00087114.2017.1402249. DOI
Kostmann A., Kratochvíl L., Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B Biol. Sci. 2021;288:20202139. doi: 10.1098/rspb.2020.2139. PubMed DOI PMC
Cornejo-Páramo P., Dissanayake D., Lira-Noriega A., Martínez-Pacheco M.L., Acosta A., Ramírez-Suástegui C., Méndez-De-La-Cruz F.R., Székely T., Urrutia A.O., Georges A., et al. Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes. Genome Biol. Evol. 2020;12:924–930. doi: 10.1093/gbe/evaa104. PubMed DOI PMC
Nielsen S.V., Pinto B.J., Guzmán-Méndez I.A., Gamble T. First report of sex chromosomes in night lizards (Scincoidea: Xantusiidae) J. Hered. 2020;111:307–313. doi: 10.1093/jhered/esaa007. PubMed DOI
Kratochvíl L., Vukić J., Červenka J., Kubička L., Pokorná M.J., Kukačková D., Rovatsos M., Piálek L. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol. Ecol. 2020;29:4118–4127. doi: 10.1111/mec.15617. PubMed DOI
Kostmann A., Kratochvíl L., Rovatsos M. First report of sex chromosomes in plated lizards (Squamata: Gerrhosauridae) Sex. Dev. 2020;14:1–6. doi: 10.1159/000513764. PubMed DOI
De Smet W. Description of the orcein stained karyotypes of 36 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta. Zool. Pathol. Antverp. 1981;76:73–118.
Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Badenhorst D., Stanyon R., Engstrom T., Valenzuela N. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res. 2013;21:137–147. doi: 10.1007/s10577-013-9343-2. PubMed DOI
Rovatsos M., Praschag P., Fritz U., Kratochvšl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:srep42150. doi: 10.1038/srep42150. PubMed DOI PMC
Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.
Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2007;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC
Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Graves J. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–776. doi: 10.1007/s10577-005-1010-9. PubMed DOI
Matsubara K., Sarre S.D., Georges A., Matsuda Y., Graves J.A.M., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Mixed-up sex chromosomes: Identification of sex chromosomes in the X1X1X2X2/X1X2Y system of the legless lizards of the genus Lialis (Squamata: Gekkota: Pygopodidae) Cytogenet. Genome Res. 2016;149:282–289. doi: 10.1159/000450734. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2017;56:117–125. doi: 10.1111/jzs.12180. DOI
Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC
Rice W.R. Evolution of the Y sex chromosome in animals. BioScience. 1996;46:331–343. doi: 10.2307/1312947. DOI
Charlesworth B., Charlesworth D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. B: Biol. Sci. 2000;355:1563–1572. doi: 10.1098/rstb.2000.0717. PubMed DOI PMC
Perrin N. Sex reversal: A fountain of youth for sex chromosomes? Evolution. 2009;63:3043–3049. doi: 10.1111/j.1558-5646.2009.00837.x. PubMed DOI
Jeffries D.L., Lavanchy G., Sermier R., Sredl M.J., Miura I., Borzée A., Barrow L.N., Canestrelli D., Crochet P.-A., Dufresnes C., et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 2018;9:4088. doi: 10.1038/s41467-018-06517-2. PubMed DOI PMC
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Bolzán A.D., Bianchi M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. Mutat. Res. 2006;612:189–214. doi: 10.1016/j.mrrev.2005.12.003. PubMed DOI
Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI
Aksenova A.Y., Greenwell P.W., Dominska M., Shishkin A.A., Kim J.C., Petes T.D., Mirkin S.M. Genome rearrangements caused by interstitial telomeric sequences in yeast. Proc. Natl. Acad. Sci. USA. 2013;110:19866–19871. doi: 10.1073/pnas.1319313110. PubMed DOI PMC
Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI
Shubernetskaya O., Skvortsov D., Dontsova O., Kireev I., Evfratov S., Rubtsova M., Belova E., Strelkova O., Cherepaninets V., Zhironkina O., et al. Interstitial telomeric repeats-associated DNA breaks. Nucleus. 2017;8:641–653. doi: 10.1080/19491034.2017.1356501. PubMed DOI PMC
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernandez F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2017;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Rovatsos M., Marchal J., Giagia-Athanasopoulou E., Sánchez A. Molecular composition of heterochromatin and its contribution to chromosome variation in the Microtus thomasi/Microtus atticus species complex. Genes. 2021;12:807. doi: 10.3390/genes12060807. PubMed DOI PMC
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Endow S. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC
Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC