ZZ/ZW Sex Chromosomes in the Madagascar Girdled Lizard, Zonosaurus madagascariensis (Squamata: Gerrhosauridae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36672840
PubMed Central
PMC9859402
DOI
10.3390/genes14010099
PII: genes14010099
Knihovny.cz E-zdroje
- Klíčová slova
- C-banding, CGH, FISH, ZZ/ZW, cytogenetics, karyotype, rDNA loci, sex chromosomes, sex determination, telomeres,
- MeSH
- ještěři * genetika MeSH
- lidé MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Madagaskar MeSH
Scincoidea, the reptilian clade that includes girdled lizards, night lizards, plated lizards and skinks, are considered as a lineage with diversity in sex-determining systems. Recently, the hypothesis on the variability in sex determination in skinks and even more the absence of sex chromosomes in some of them has been rivalling. Homologous, evolutionary stable XX/XY sex chromosomes were documented to be widespread across skinks. However, sex determination in the other scincoidean families is highly understudied. ZZ/ZW sex chromosomes have been identified only in night lizards and a single species of plated lizards. It seems that although there are different sex chromosome systems among scincoidean lineages, they share one common trait: they are mostly poorly differentiated and often undetectable by cytogenetic methods. Here, we report one of the exceptions, demonstrating for the first time ZZ/ZW sex chromosomes in the plated lizard Zonosaurus madagascariensis. Its sex chromosomes are morphologically similar, but the W is clearly detectable by comparative genomic hybridization (CGH), suggesting that the Z and W chromosomes highly differ in sequence content. Our findings confirm the presence of female heterogamety in plated lizards and provides novel insights to expand our understanding of sex chromosome evolution in scincoidean lizards.
Zobrazit více v PubMed
Bull J.J. Evolution of Sex Determining Mechanisms. Benjamin/Cummings Publishing Company; Menlo Park, CA, USA: 1983.
Abbott J.K., Nordén A.K., Hansson B. Sex chromosome evolution: Historical insights and future perspectives. Proc. R. Soc. Lond. B Biol. Sci. 2017;284:20162806. doi: 10.1098/rspb.2016.2806. PubMed DOI PMC
Capel B. Vertebrate sex determination: Evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 2017;18:675–689. doi: 10.1038/nrg.2017.60. PubMed DOI
Kratochvíl L., Stöck M., Rovatsos M., Bullejos M., Herpin A., Jeffries D.L., Peichel C.L., Perrin N., Valenzuela N., Johnson Pokorná M. Expanding the classical paradigm: What we have learnt from vertebrates about sex chromosome evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021;376:20200097. doi: 10.1098/rstb.2020.0097. PubMed DOI PMC
Johnson Pokorná M., Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol. Rev. Camb. Philos. Soc. 2016;91:1–12. doi: 10.1111/brv.12156. PubMed DOI
Kratochvíl L., Gamble T., Rovatsos M. Sex chromosome evolution among amniotes: Is the origin of sex chromosomes non-random? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021;376:20200108. doi: 10.1098/rstb.2020.0108. PubMed DOI PMC
Cortez D., Marin R., Toledo-Flores D., Froidevaux L., Liechti A., Waters P.D., Grützner F., Kaessmann H. Origins and functional evolution of Y chromosomes across mammals. Nature. 2014;508:488–493. doi: 10.1038/nature13151. PubMed DOI
Rovatsos M., Pokorná M., Altmanová M., Kratochvíl L. Cretaceous park of sex determination: Sex chromosomes are conserved across iguanas. Biol. Lett. 2014;10:20131093. doi: 10.1098/rsbl.2013.1093. PubMed DOI PMC
Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. Lond. B Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. PubMed DOI PMC
Rovatsos M., Vukić J., Altmanová M., Johnson Pokorná M., Moravec J., Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 2016;25:3120–3126. doi: 10.1111/mec.13635. PubMed DOI
Rovatsos M., Rehák I., Velenský P., Kratochvíl L. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 2019;36:1113–1120. doi: 10.1093/molbev/msz024. PubMed DOI
Zhou Q., Zhang J., Bachtrog D., An N., Huang Q., Jarvis E.D., Gilbert M.T.P., Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346:1246338. doi: 10.1126/science.1246338. PubMed DOI PMC
Augstenová B., Pensabene E., Veselý M., Kratochvíl L., Rovatsos M. Are geckos special in sex determination? Independently evolved differentiated ZZ/ZW sex chromosomes in carphodactylid geckos. Genome Biol. Evol. 2021;13:evab119. doi: 10.1093/gbe/evab119. PubMed DOI PMC
Gamble T., Coryell J., Ezaz T., Lynch J., Scantlebury D.P., Zarkower D. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 2015;32:1296–1309. doi: 10.1093/molbev/msv023. PubMed DOI
Pinto B.J., Keating S.E., Nielsen S.V., Scantlebury D.P., Daza J.D., Gamble T. Chromosome-level genome assembly reveals dynamic sex chromosomes in neotropical leaf-litter geckos (Sphaerodactylidae: Sphaerodactylus) J. Hered. 2022;113:272–287. doi: 10.1093/jhered/esac016. PubMed DOI PMC
Uetz P., Freed P., Aguilar R., Hošek J., editors. The Reptile Database. 2022. [(accessed on 11 April 2022)]. Available online: http://www.reptile-database.org.
Bates M.F., Tolley K.A., Edwards S., Davids Z., Da Silva J.M., Branch W.R. A molecular phylogeny of the African plated lizards, genus Gerrhosaurus Wiegmann, 1828 (Squamata: Gerrhosauridae), with the description of two new genera. Zootaxa. 2013;3750:465. doi: 10.11646/zootaxa.3750.5.3. PubMed DOI
Bezy R.L. Karyotypic variation and evolution of the lizards in the family Xantusiidae. Los Angeles Cty. Mus. Contr. Sci. 1972;227:1–29. doi: 10.5962/p.241212. DOI
Hardy G.S. The karyotypes of two scincid lizards, and their bearing on relationships in genus Leiolopisma and its relatives (Scincidae: Lygosominae) N. Z. J. Zool. 1979;6:609–612. doi: 10.1080/03014223.1979.10428403. DOI
Odierna G., Olmo E. Chromosomal evolution and DNA of cordylid lizards. Herpetologica. 1980;36:311–316.
De Smet W. Description of the orcein stained karyotypes of 36 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta Zool. Pathol. Antverp. 1981;76:73–118.
Hass C.A., Hedges S.B. Karyotype of the Cuban lizard Cricosaura typica and its implications for xantusiid phylogeny. Copeia. 1992;1992:563. doi: 10.2307/1446221. DOI
Caputo V., Odierna G., Aprea G. A chromosomal study of Eumeces and Scincus, primitive members of the Scincidae (Reptilia, Squamata) Bolletino Zool. 1994;61:155–162. doi: 10.1080/11250009409355876. DOI
Odierna G., Canapa A., Andreone F., Aprea G., Barucca M., Capriglione T., Olmo E. A phylogenetic analysis of Cordyliformes (Reptilia: Squamata): Comparison of molecular and karyological data. Mol. Phylogenet. Evol. 2002;23:37–42. doi: 10.1006/mpev.2001.1077. PubMed DOI
Giovannotti M., Caputo V., O’Brien P., Lovell F., Trifonov V., Cerioni P.N., Olmo E., Ferguson-Smith M., Rens W. Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting. Cytogenet. Genome Res. 2009;127:224–231. doi: 10.1159/000295002. PubMed DOI
Kostmann A., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021;22:8670. doi: 10.3390/ijms22168670. PubMed DOI PMC
Kostmann A., Kratochvíl L., Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. Lond. B Biol. Sci. 2021;288:20202139. doi: 10.1098/rspb.2020.2139. PubMed DOI PMC
Mezzasalma M., Guarino F.M., Odierna G. Lizards as model organisms of sex chromosome evolution: What we really know from a systematic distribution of available data? Genes. 2021;12:1341. doi: 10.3390/genes12091341. PubMed DOI PMC
Kostmann A., Kratochvíl L., Rovatsos M. First report of sex chromosomes in plated lizards (Squamata: Gerrhosauridae) Sex. Dev. 2020;14:60–65. doi: 10.1159/000513764. PubMed DOI
Castiglia R., Bezerra A., Flores-Villela O., Annesi F., Muñoz A., Gornung E. Comparative cytogenetics of two species of ground skinks: Scincella assata and S. cherriei (Squamata: Scincidae: Lygosominae) from Chiapas, Mexico. Acta Herpetol. 2013;8:69–73.
Patawang I., Chuaynkern Y., Supanuam P., Maneechot N., Pinthong K., Tanomtong A. Cytogenetics of the skinks (Reptilia, Scincidae) from Thailand; IV: Newly investigated karyotypic features of Lygosoma quadrupes and Scincella melanosticta. Caryologia. 2018;71:29–34. doi: 10.1080/00087114.2017.1402249. DOI
Cornejo-Páramo P., Dissanayake D., Lira-Noriega A., Martínez-Pacheco M.L., Acosta A., Ramírez-Suástegui C., Méndez-De-La-Cruz F.R., Székely T., Urrutia A.O., Georges A., et al. Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes. Genome Biol. Evol. 2020;12:924–930. doi: 10.1093/gbe/evaa104. PubMed DOI PMC
Nielsen S.V., Pinto B.J., Guzmán-Méndez I.A., Gamble T. First report of sex chromosomes in night lizards (Scincoidea: Xantusiidae) J. Hered. 2020;111:307–313. doi: 10.1093/jhered/esaa007. PubMed DOI
Kratochvíl L., Vukić J., Červenka J., Kubička L., Johnson Pokorná M., Kukačková D., Rovatsos M., Piálek L. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol. Ecol. 2020;29:4118–4127. doi: 10.1111/mec.15617. PubMed DOI
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Endow S. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernandez F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI
Alföldi J., Di Palma F., Grabherr M., Williams C., Kong L., Mauceli E., Russell P., Lowe C.B., Glor R.E., Jaffe J.D., et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–591. doi: 10.1038/nature10390. PubMed DOI PMC
Capanna E., Castiglia R. Chromosomes and speciation in Mus musculus domesticus. Cytogenet. Genome Res. 2004;105:375–384. doi: 10.1159/000078210. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sánchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Augstenová B., Pensabene E., Kratochvíl L., Rovatsos M. Cytogenetic evidence for sex chromosomes and karyotype evolution in anguimorphan lizards. Cells. 2021;10:1612. doi: 10.3390/cells10071612. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC
Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 2007;8:272–285. doi: 10.1038/nrg2072. PubMed DOI
Wood J.G., Jones B.C., Jiang N., Chang C., Hosier S., Wickremesinghe P., Garcia M., Hartnett D.A., Burhenn L., Neretti N., et al. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc. Natl. Acad. Sci. USA. 2016;113:11277–11282. doi: 10.1073/pnas.1604621113. PubMed DOI PMC
Allshire R.C., Madhani H.D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. 2018;19:229–244. doi: 10.1038/nrm.2017.119. PubMed DOI PMC
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC
Park V.M., Gustashaw K.M., Wathen T.M. The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am. J. Hum. Genet. 1992;50:914–923. PubMed PMC
Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. BioEssays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI
Vermeesch J.R., Petit P., Speleman F., Devriendt K., Fryns J.P., Marynen P. Interstitial telomeric sequences at the junction site of a jumping translocation. Hum. Genet. 1997;99:735–737. doi: 10.1007/s004390050440. PubMed DOI
Shay J.R., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI
Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.
Porter C.A., Haiduk M.W., de Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI
Matsubara K., Kumazawa Y., Ota H., Nishida C., Matsuda Y. Karyotype analysis of four blind snake species (Reptilia: Squamata: Scolecophidia) and karyotypic changes in serpentes. Cytogenet. Genome Res. 2019;157:98–106. doi: 10.1159/000496554. PubMed DOI
Clemente L., Mazzoleni S., Pensabene E., Protiva T., Wagner P., Fritz U., Kratochvíl L., Rovatsos M. Cytogenetic analysis of the Asian box turtles of the genus Cuora (Testudines, Geoemydidae) Genes. 2021;12:156. doi: 10.3390/genes12020156. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Badenhorst D., Stanyon R., Engstrom T., Valenzuela N. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res. 2013;21:137–147. doi: 10.1007/s10577-013-9343-2. PubMed DOI
Montiel E.E., Badenhorst D., Lee L., Valenzuela N. Evolution and dosage compensation of nucleolar organizing regions (NORs) mediated by mobile elements in turtles with female (ZZ/ZW) but not with male (XX/XY) heterogamety. J. Evol. Biol. 2022;35:1709–1720. doi: 10.1111/jeb.14064. PubMed DOI PMC
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Traut W., Eickhoff U., Schorch J.-C. Identification and analysis of sex chromosomes by comparative genomic hybridization (CGH) Methods Cell Sci. 2001;23:155–161. doi: 10.1023/A:1013138925996. PubMed DOI
Matsubara K., Knopp T., Sarre S.D., Georges A., Ezaz T. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata) Mol. Cytogenet. 2013;6:60. doi: 10.1186/1755-8166-6-60. PubMed DOI PMC
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Mixed-up sex chromosomes: Identification of sex chromosomes in the X1X1X2X2/X1X2Y system of the legless lizards of the genus Lialis (Squamata: Gekkota: Pygopodidae) Cytogenet. Genome Res. 2016;149:282–289. doi: 10.1159/000450734. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2017;56:117–125. doi: 10.1111/jzs.12180. DOI
Viana P.F., Ezaz T., de Bello Cioffi M., Jackson Almeida B., Feldberg E. Evolutionary insights of the ZW sex chromosomes in snakes: A new chapter added by the Amazonian puffing snakes of the genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Wang C., Tang X., Xin Y., Yue F., Yan X., Liu B., An B., Wang X., Chen Q. Identification of sex chromosomes by means of comparative genomic hybridization in a lizard, Eremias multiocellata. Zool. Sci. 2015;32:151–156. doi: 10.2108/zs130246. PubMed DOI
Matsubara K., Sarre S.D., Georges A., Matsuda Y., Graves J.A.M., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC
Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Graves J. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–776. doi: 10.1007/s10577-005-1010-9. PubMed DOI
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Shine R., Elphick M.J., Donnellan S. Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecol. Lett. 2002;5:486–489. doi: 10.1046/j.1461-0248.2002.00351.x. DOI