Mixed-sex offspring produced via cryptic parthenogenesis in a lizard

. 2020 Nov ; 29 (21) : 4118-4127. [epub] 20200930

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32881125

Facultative parthenogenesis in vertebrates is believed to be exceptional, and wherever documented, it always led to single-sex progeny with genome-wide homozygosity. We report the first challenge to this paradigm: frequent facultative parthenogenesis in the previously assumed sexually reproducing tropical night lizard Lepidophyma smithii results in offspring of both sexes and preserves heterozygosity in many loci polymorphic in their mothers. Moreover, we documented a mixture of sexually and parthenogenetically produced progeny in a single clutch, which documents how cryptic a facultative parthenogenesis can be. Next, we show that in the studied species, 1) parthenogenetically produced females can further reproduce parthenogenetically, 2) a sexually produced female can reproduce parthenogenetically, 3) a parthenogenetically produced female can reproduce sexually, and 4) a parthenogenetically produced male is fully fertile. We suggest that facultative parthenogenesis should be considered even in vertebrates with frequent males and genetically variable, heterozygous offspring.

Zobrazit více v PubMed

Allen, L., Sanders, K. L., & Thomson, V. A. (2018). Molecular evidence for the first records of facultative parthenogenesis in elapid snakes. Royal Society Open Science, 5, 171901.

Bezy, R. L., & Camarillo, J. L. (2002). Systematics of xantusiid lizards of the genus Lepidophyma. Contributions in Science, 493, 1-41.

Booth, W., & Schuett, G. L. (2016). The emerging phylogenetic pattern of parthenogenesis in snakes. Biological Journal of the Linnean Society, 118, 172-186. https://doi.org/10.1111/bij.12744

Booth, W., Schuett, G. W., Ridgway, A., Buxton, D. W., Castoe, T. A., Bastone, G., … McMahan, W. (2014). New insights on facultative parthenogenesis in pythons. Biological Journal of the Linnean Society, 112, 461-468. https://doi.org/10.1111/bij.12286

Booth, W., Smith, C. F., Eskridge, P. H., Hoss, S. K., Mendelson, J. R., & Schuett, G. W. (2012). Facultative parthenogenesis discovered in wild vertebrates. Biology Letters, 8, 983-985. https://doi.org/10.1098/rsbl.2012.0666

Cornejo-Páramo, P., Dissanayake, D. S. B., Lira-Noriega, A., Martínez-Pacheco, M. L., Acosta, A., Ramírez-Suástegui, C., … Cortez, D. (2020). Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes. Genome Biology and Evolution, 12, 924-930. https://doi.org/10.1093/gbe/evaa104

D'Souza, T. G., & Michiels, N. K. (2010). The costs and benefits of occasional sex: Theoretical predictions and a case study. Journal of Heredity, 101, S34-S41. https://doi.org/10.1093/jhered/esq005

Engelstädter, J. (2017). Asexual but not clonal: Evolutionary processes in automictic populations. Genetics, 206, 993-1009. https://doi.org/10.1534/genetics.116.196873

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

Johnson Pokorná, M., & Kratochvíl, L. (2016). What was the ancestral sex determining mechanism in amniote vertebrates? Biological Reviews, 91, 1-12. https://doi.org/10.1111/brv.12156

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199

Lampert, K. P. (2008). Facultative parthenogenesis in vertebrates: Reproductive error or chance? Sexual Development, 2, 290-301. https://doi.org/10.1159/000195678

Lutes, A. A., Neaves, W. B., Baumann, D. P., Wiegraebe, W., & Baumann, P. (2010). Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature, 464, 283-286. https://doi.org/10.1038/nature08818

Mackiewicz, M., Tatarenkov, A., Taylor, D. S., Turner, B. J., & Avise, J. C. (2006). Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite. Proceedings of the National Academy of Sciences of the United States of America, 103, 9924-9928. https://doi.org/10.1073/pnas.0603847103

Miller, K. L., Castañeda Rico, S., Muletz-Wolz, C. R., Campana, M. G., McInerney, N., Augustine, L., … Fleischer, R. C. (2019). Parthenogenesis in a captive Asian water dragon (Physignathus cocincinus) identified with novel microsatellites. PLoS One, 14, e0217489. https://doi.org/10.1371/journal.pone.0217489

Nielsen, S. V., Pinto, B. J., Guzmán-Méndez, I. A., & Gamble, T. (2020). First report of sex chromosomes in night lizards (Scincoidea: Xantusiidae). Journal of Heredity, 111, 307-313. https://doi.org/10.1093/jhered/esaa007

Pannell, J. R. (2002). The evolution and maintenance of androdioecy. Annual Reviews of Ecology, Evolution and Systematics, 33, 97-425. https://doi.org/10.1146/annurev.ecolsys.33.010802.150419

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double Digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7, e37135. https://doi.org/10.1371/journal.pone.0037135

Pokorná, M., Rens, W., Rovatsos, M., & Kratochvíl, L. (2014). A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenetic and Genome Research, 142, 190-196.

Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93. https://doi.org/10.1186/1471-2148-13-93

Shibata, H., Sakata, S., Hirano, Y., Nitasaka, E., & Sakabe, A. (2017). Facultative parthenogenesis validated by DNA analyses in the green anaconda (Eunectes murinus). PLoS ONE, 12, e0189654.

Sinclair, E. A., Pramuk, J. B., Bezy, R. L., Crandall, K. A., & Sites, J. W. Jr (2010). DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evolution, 64, 1346-1357.

Sinclair, E. A., Scholl, R., Bezy, R. L., Crandall, K. A., & Sites, J. W. (2006). Isolation and characterization of di- and tetranucleotide microsatellite loci in the yellow-spotted night lizard Lepidophyma flavimaculatum (Squamata: Xantusiidae). Molecular Ecology Notes, 6, 233-236. https://doi.org/10.1111/j.1471-8286.2005.01204.x

Sinclair, E. A., Bezy, R. L., Camarillo, J., Bolles, K., Crandall, K. A., & Sites, J. W. (2004). Testing species boundaries in an ancient species complex with deep phylogeographic history: Genus Xantusia (Squamata: Xantusiidae). The American Naturalist, 164, 396-414.

Spangenberg, V., Arakelyan, M., & Cioffi, M. B. (2020). Cytogenetic mechanisms of unisexuality in rock lizards. Scientific Reports. 10, 8697.

Straube, N., Lampert, K. P., Geiger, M. F., Weiß, J. D., & Kirchhauser, J. X. (2016). First record of second-generation facultative parthenogenesis in a vertebrate species, the whitespotted bambooshark. Chiloscyllium plagiosum. Journal of Fish Biology, 88, 668-675.

Thomas, C. G., Woodruff, G. C., & Haag, E. S. (2012). Causes and consequences of the evolution of reproductive mode in Caenorhabditis nematodes. Trends in Genetics, 28, 213-220. https://doi.org/10.1016/j.tig.2012.02.007

Weeks, S. C., Benvenuto, C., & Reed, S. K. (2006). When males and hermaphrodites coexist: A review of androdioecy in animals. Integrative and Comparative Biology, 46, 449-464. https://doi.org/10.1093/icb/icj048

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 18, 134. https://doi.org/10.1186/1471-2105-13-134

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...