Thiophenol-Modified Fluorographene Derivatives for Nonlinear Optical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
5002735
Cooperation ELI-LASERLAB Europe, HiPER & IPERION-CH.gr
NSRF 2014-2020
"Competitiveness, Entrepreneurship and Innovation"
European Regional Development Fund
CZ.1.05/2.1.00/19.0377
Ministry of Education, Youth and Sports of the Czech Republic
LM2015073
Research Infrastructure NanoEnviCz
CZ.02.1.01/0.0/0.0/16_019/0000754
Operational Programme Research, Development and Education-European Regional Development Fund
683024
ERC
CEP - Centrální evidence projektů
PubMed
31944032
DOI
10.1002/cplu.201800643
Knihovny.cz E-zdroje
- Klíčová slova
- fluorographene, nonlinear optical properties, optical limiting, surface modification, thiophenol derivatives,
- Publikační typ
- časopisecké články MeSH
The synthesis and characterization of two thiophenol-modified fluorographene derivatives, namely methoxythiophenol-and dimethylaminothiophenol-modified fluorographenes, are reported, while their third-order nonlinear optical response were thoroughly investigated under both visible (532 nm) and infrared (1064 nm) with 35 ps and 4 ns laser pulses. The graphene derivatives were obtained by partial nucleophilic substitution/reduction of fluorographene by the corresponding organic thiophenols, and were fully characterized by techniques including infrared/Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force spectroscopy, and high-resolution transmission microscopy. This type of modification resulted in graphenic structures where the attached thiol groups, sp2 domains, and the residual fluorine groups act as donors, π bridges, and acceptors, respectively. Both derivatives exhibited large nonlinear optical response compared to fluorographene, and have potential applications in optical limiting as an alternative to fullerenes.
Department of Physics University of Patras 26504 Patras Greece
Institute of Chemical Engineering Sciences P O Box 1414 Patras 26504 Greece
Zobrazit více v PubMed
R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010, 6, 2877-84.
M. Dubecký, E. Otyepková, P. Lazar, F. Karlický, M. Petr, K. Čépe, P. Banáš, R. Zbořil, M. Otyepka, J. Phys. Chem. Lett. 2015, 6, 1430-1434;
A. Bakandritsos, M. Pykal, P. Błoński, P. Jakubec, D. D. Chronopoulos, K. Poláková, V. Georgakilas, K. Čépe, O. Tomanec, V. Ranc, A. B. Bourlinos, R. Zbořil, M. Otyepka ACS Nano 2017, 11, 2982-91;
R. Zbořil, F. Karlický, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Šafářová, D. Jančík, C. Trapalis, M. Otyepka, Small 2010, 6, 2885-2891;
D. D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zbořil, M. Otyepka, Applied Materials Today 9 (Supplement C) 2017, 60-70.
A. Bakandritsos, D. D. Chronopoulos, P. Jakubec, M. Pykal, K. Čépe, Th. Steriotis, S. Kalytchuk, M. Petr, R. Zbořil, M. Otyepka, Adv. Funct. Mater. 2018, 28, 1801111.
C. Sun, Y. Feng, Y. Li, C. Qin, Q. Zhang, W. Feng, Nanoscale 2014, 6, 2634-41.
V. Urbanová, F. Karlický, A. Matěj, F. Šembera, Z. Janoušek, J. A. Perman, V. Ranc, K. Čépe, J. Michl, M. Otyepka, R. Zbořil, Nanoscale 2016, 8,12134-42.
M. Zhu, X. Xie, Y. Guo, P. Chen, X. Ou, G. Yu, M. Liu, Phys. Chem. Chem. Phys. 2013, 15, 20992-0.
S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, W. Choi, Adv. Funct. Mater. 2011, 21, 3729-3736.
L. F. Wang, T. B. Ma, Y. Z. Hu, H. Wang, T. M. Shao, J. Phys. Chem. C. 2013, 117, 12520-25.
Y. Wang, W. C. Lee, K. K. Manga, P. K. Ang, J. Lu, Y. P. Liu, C. T. Lim, K. P. Loh, Adv. Mater. 2012, 24, 4285-4290.
J. Zhao, C. R. Cabrera, Z. Xia, Z. Chen, Carbon 2016, 104,56-63.
A. B. Bourlinos, K. Safarova, K. Siskova, R. Zbořil, Carbon 2012 50,1425-28.
J. Papadakis, Z. Bouza, S. Couris, A. B. Bourlinos, V. Mouselimis, A. Kouloumpis, D. Gournis, A. Bakandritsos, J. Ugolotti, R. Zboril, J. Phys. Chem. C. 2017, 121, 22567-22575
M. Sobkowiak, P. Painter, Fuel 1992, 71,1105-1125;
A. Fujii, E. Fujimaki, T. Ebata, N. Mikami, Chem. Phys. Lett. 1999, 303, 289-294.
J. Coates in Encyclopedia of Analytical Chemistry (eds. R. A. Meyers and M. L. McKelvy), Chichester, UK 2006. pp. 10815-10837.
J. R. Anderson, J. D. Bendell, P. W. Groundwater in Organic Spectroscopic Analysis (eds. R. J. Anderson, D. J. Bendell, & P. W. Groundwater) The Royal Society of Chemistry 2004. pp. 24-50.
F. Karlický, K. K. R. Datta, M. Otyepka, R. Zbořil, ACS Nano 2013, 7, 6434-64.
V. Mazanek, O. Jankovský, J. Luxa, D. Sedmidubský, Z. Janoušek, F. Šembera, M. Mikulics, Z. Sofer, Nanoscale 2015, 7,13646-55.
P. Gong, J. Wang, W. Sun, D. Wu, Z. Wang, Z. Fan, H. Wang, X. Han, S. Yang, Nanoscale 2014, 6, 3316-24.
Z. Wang, Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu, and X. W. D. Lou, Nat. Commun. 2014, 5;
K. Smaali, S. Lenfant, S. Karpe, M. Oçafrain, P. Blanchard, D. Deresmes, S. Godey, A. Rochefort, J. Roncali, and D. Vuillaume, ACS Nano 2010, 4, 2411-21.
P. Kovařiček, Z. Bastl, V. Valeš, M. Kalbac, Chem. Eur. J. 2016, 22, 5404-8;
L. Zhang, L. Ji, P. A. Glans, Y. Zhang, J. Zhu, J. Guo, Phys. Chem. Chem. Phys. 2012, 14, 13670-13675.
Q. L. Bao, H. Zhang, Y. Wang, N. Zhenhua, Y. Yongli, S. Ze Xiang, L. Kian Ping, T. Ding Yuan Adv. Funct. Mater. 2009, 19: 3077-3083.
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308.
R. W. Boyd in Nonlinear Opt. (3rd ed.; Academic Press) Orlando, FL, USA 2008. pp. 207-211;
G. de la Torre, P. Vázquez, F. Agulló-López, T. Torres, Chem. Rev. 2004, 104, 3723-3750.
J. Papadakis, Z. Bouza, S. Couris, V. Mouselimis, A. B. Bourlinos, J. Phys. Chem. C. 2018, 122, 25573-25579.
L. Cheng, S. Jandhyala, G. Mordi, A. T. Lucero, J. Huang, A. Azcatl, R. Addou, R. M. Wallace, L. Colombo, J. Kim, ACS Appl. Mater. Interfaces 2016, 8, 5002-5008;
C. Martinelli, G. M. Farinola, V. Pinto, A. Cardone, Materials 2013, 6, 1205-1236;
H. Y. Liu, Z. F. Hou, C. H. Hu, Y. Yang, Z. Z. Zhu, J. Phys. Chem. C. 2012, 116, 18193-18201;
S. Zhou, S. D. Sherpa, D. W. Hess, A. Bongiorno, J. Phys. Chem. C. 2014, 118, 26402-26408.
Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian, Appl. Phys. Lett. 2009, 94, 021902;
N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K. S. Andrikopoulos, D. Gournis, R. Zboril, S. Couris, Nanoscale 2016, 8, 2908-2917;
X. L. Zhang, Z. B. Liu, X. C. Li, Q. Ma, X. D. Chen, J. G. Tian, Y. F. Xu, Y. S. Chen, Opt. Express 2013, 21, 7511-7520
N. Liaros, S. Couris, E. Koudoumas, P. A. Loukakos, J. Phys. Chem. C. 2016, 120, 4104-4111.
N. Liaros, A. B. Bourlinos, R. Zboril, S. Couris, Opt. Express 2013, 21, 21027-21038.
S. Couris, E. Koudoumas, A. A. Ruth, S. Leach, J. Phys. B: At. Mol. Opt. Phys. 1996, 28, 4537.
J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben in Handbook of X-ray Photoelectron Spectroscopy, A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, (Eds J. Chastain; Perkin-Elmer Corporation Physical Electronics Division), Minnesota, USA 1992, pp. 14-29.
M. Sheik-bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 1989, 14, 955-957.
Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors