DC-SIGN, a C-type lectin receptor expressed on immune cells, is considered a promising target for immunomodulatory and antiviral therapies. While mannose-based glycomimetics have been extensively studied as DC-SIGN ligands, fucose-based strategies remain underexplored. This study explores the fucosylation of linear alcohols and sugars using eight different fucosyl donors, aiming at designing strategies for the development of fucose-based glycomimetics targeting DC-SIGN. Four types of leaving groups and two different acyl-based protecting groups on the donors were tested. The glycosylation of 3-azidopropan-1-ol exclusively yielded the β-anomer, demonstrating high stereoselectivity. The azido group in the product is versatile, allowing for direct click chemistry reactions or reduction to an amine for further functionalization. Both types of reactions were demonstrated in a model reaction. In the glycosylation of a sugar, a disaccharide moiety of Lewis X antigen was selected as a target molecule. Only one of the eight tested fucosyl donors worked well in this reaction and provided the product in a reasonable yield. The disaccharide was also equipped with the 3-azidopropyl linker, facilitating future modifications. Finally, NMR studies confirmed compatibility of the linker with canonical Ca2+-dependent carbohydrate binding to DC-SIGN, suggesting potential for further development of fucose-based glycomimetics targeting this C-type lectin receptor.
- MeSH
- Fucose * chemistry MeSH
- Glycosides * chemistry chemical synthesis pharmacology metabolism MeSH
- Glycosylation MeSH
- Lectins, C-Type * metabolism antagonists & inhibitors MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Adhesion Molecules * metabolism antagonists & inhibitors MeSH
- Receptors, Cell Surface * metabolism antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Recent advances in optical sensing technologies underpin the development of high-performance, surface-sensitive analytical tools capable of reliable and precise detection of molecular targets in complex biological media in non-laboratory settings. Optical fibre sensors guide light to and from a region of interest, enabling sensitive measurements of localized environments. This positions optical fibre sensors as a highly promising technology for a wide range of biochemical and healthcare applications. However, their performance in real-world biological media is often limited by the absence of robust post-modification strategies that provide both high biorecognition and antifouling capabilities. In this study, we present the proof-of-concept antifouling and biorecognition performance of a polymer brush nano-coating synthesized at the sensing region of optical fibre long-period grating (LPG) sensors. Using a newly developed antifouling terpolymer brush (ATB) composed of carboxybetaine methacrylamide, sulfobetaine methacrylamide, and N-(2-hydroxypropyl)methacrylamide, we achieve state-of-the-art antifouling properties. The successful on-fibre ATB synthesis is confirmed through scanning electron microscopy (SEM), fluorescence microscopy, and label-free bio-detection experiments based on antibody-functionalized ATB-coated LPG optical fibres. Despite the challenges in handling optical fibres during polymerization, the resulting nano-coating retains its remarkable antifouling properties upon exposure to blood plasma and enables biorecognition element functionalization. These capabilities are demonstrated through the detection of IgG in buffer and diluted blood plasma using anti-IgG-functionalized ATB-coated sensing regions of LPG fibres in both label-based (fluorescence) and label-free real-time detection experiments. The results show the potential of ATB-coated LPG fibres for use in analytical biosensing applications.
Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant's stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO2) nanotubes (TNTs) onto the native surface through the anodic oxidation method. While the influence of nanotube diameter on cell behaviour and osteogenesis is very well documented, information regarding the effects of nanotube lateral spacing on the in vivo new bone formation process is insufficient and hard to find. Considering this, the present study's aim was to evaluate the mechanical properties and the osteogenic ability of two types of TNTs-based pins with different lateral spacing, e.g., 25 nm (TNTs) and 92 nm (spTNTs). The mechanical properties of the TNT-coated implants were characterised from a morphological point of view (tube diameter, spacing, and tube length) using scanning electron microscopy (SEM). In addition, the chemical composition of the implants was evaluated using X-ray photoelectron spectroscopy, while surface roughness and topography were characterised using atomic force microscopy (AFM). Finally, the implants' hardness and elastic modulus were investigated using nanoindentation measurements. The in vivo new bone formation was histologically evaluated (haematoxylin and eosin-HE staining) at 6 and 30 days post-implantation in a rat model. Mechanical characterisation revealed that the two morphologies presented a similar chemical composition and mechanical strength, but, in terms of surface roughness, the spTNTs exhibited a higher average roughness. The microscopic examination at 1 month post-implantation revealed that spTNTs pins (57.21 ± 34.93) were capable of promoting early new bone tissue formation to a greater extent than the TNTs-coated implants (24.37 ± 6.5), with a difference in the average thickness of the newly formed bone tissue of ~32.84 μm, thus highlighting the importance of this parameter when designing future dental/orthopaedic implants.
- Publication type
- Journal Article MeSH
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.
- MeSH
- Anti-Bacterial Agents pharmacology therapeutic use MeSH
- Bacteria drug effects isolation & purification growth & development MeSH
- Bacterial Infections * diagnosis drug therapy microbiology MeSH
- Biofilms * drug effects growth & development MeSH
- Prosthesis-Related Infections * diagnosis microbiology drug therapy prevention & control therapy MeSH
- Humans MeSH
- Prostheses and Implants * microbiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
This work aims to describe the effect of the surface modification of TiO2 nanotube (TNT) layers on Ti-6Al-4V (TiAlV) alloy by ultrathin TiO2 coatings prepared via Atomic Layer Deposition (ALD) on the growth of MG-63 osteoblastic cells. The TNT layers with two distinctly different inner diameters, namely ∼15 nm and ∼50 nm, were prepared via anodic oxidation of the TiAlV alloy. Flat, i.e., non-anodized, TiAlV alloy foils were used as reference substrates. Additionally, a part of the TNT layers and alloy foils was coated with ultrathin coatings of TiO2 by ALD. The number of TiO2 ALD cycles used was 1 and 5 leading to a nominal TiO2 thickness of ∼0.055 and ∼0.3 nm, respectively. The ultrathin TiO2 coating by ALD enabled to optimize the surface hydrophilicity for optimal cell growth. In addition, coatings shaded impurities of V- and F-based species (stemming from the alloy and the anodization electrolyte) that affect the biocompatibility of the tested materials while preserving the original structure and morphology. The evaluation of the biocompatibility before and after TiO2 ALD coating on TiAlV flat surfaces and TNT layers was carried out using MG-63 osteoblastic cells and compared after incubation for up to 96 h. The cell growth, adhesion, and proliferation of the MG-63 on TiAlV foils and TNT layers showed significant enhancement after the surface modification by TiO2 ALD.
- Publication type
- Journal Article MeSH
PURPOSE OF STUDY: Total joint replacements (TJR) have become the cornerstone of modern orthopedic surgery. A great majority of TJR employs ultrahigh molecular weight polyethylene (UHMWPE) liners. TJR manufacturers use many different types of UHMWPE, which are modified by various combinations of crosslinking, thermal treatment, sterilization and/or addition of biocompatible stabilizers. The UHMWPE modifications are expected to improve the polymer's resistance to oxidative degradation and wear (release of microparticles from the polymer surface). This manuscript provides an objective, non-commercial comparison of current UHMWPE formulations currently employed in total knee replacements. MATERIALS AND METHODS: UHMWPE liners from 21 total knee replacements (TKR) were collected which represent the most implanted liners in the Czech Republic in the period 2020-2021. The UHMWPEs were characterized using several methods: infrared microspectroscopy (IR), non-instrumented and instrumented microindentation hardness testing (MH and MHI), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and solubility measurements. The above-listed methods yielded quite complete information about the structure and properties of each UHMWPE type, including its potential long-term oxidation resistance. RESULTS: For each UHMWPE liner, IR yielded information about immediate oxidative degradation (in the form of oxidation index, OI), level of crosslinking (trans-vinylene index, VI) and crystallinity (CI). The MH and MHI testing gave information about the impact of structure changes on mechanical properties. The remaining methods (DSC, TGA, and solubility measurements) provided additional information regarding the structure changes and resistance to long-term oxidative degradation. Statistical evaluation showed significant differences among the samples as well as interesting correlations among the UHMWPE modifications, structural changes, and mechanical performance. DISCUSSION: Surprisingly enough, UHMWPE materials from different manufacturers showed quite different properties, including the resistance against the long-term oxidative degradation, which is regarded as one of the main reasons of TJR failures. The most promising UHMWPE types were crosslinked materials with biocompatible stabilizers. CONCLUSIONS: Current UHMWPE liners from different manufactures used in total knee replacements exhibit significantly different structure and properties. From the point of view of clinical practice, the traditional UHMWPE types, which contained residual radicals from irradiation and/or gamma sterilization, showed inferior resistance to oxidative degradation and should be avoided. The best properties were observed in modern UHMWPE types, which combined crosslinking, biocompatible stabilizers, and sterilization by ethylenoxide or gas plasma. KEY WORDS: UHMWPE; knee replacements; oxidative degradation; infrared spectroscopy; microhardness.
- MeSH
- Biocompatible Materials chemistry MeSH
- Calorimetry, Differential Scanning MeSH
- Humans MeSH
- Polyethylenes * chemistry MeSH
- Prosthesis Design MeSH
- Knee Prosthesis * MeSH
- Thermogravimetry MeSH
- Materials Testing * methods MeSH
- Arthroplasty, Replacement, Knee * instrumentation methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- English Abstract MeSH
- Journal Article MeSH
- Comparative Study MeSH
High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.
Liposomes are one of the most important drug delivery vectors, nowadays used in clinics. In general, polyethylene glycol (PEG) is used to ensure the stealth properties of the liposomes. Here, we have employed hydrophilic, biocompatible and highly non-fouling N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers containing hydrophobic cholesterol anchors for the surface modification of liposomes, which were prepared by the method of lipid film hydration and extrusion through 100 nm polycarbonate filters. Efficient surface modification of liposomes was confirmed by transmission electron microscopy, atomic force microscopy, and gradient ultracentrifugation. The ability of long-term circulation in the vascular bed was demonstrated in rabbits after i.v. application of fluorescently labelled liposomes. Compared to PEGylated liposomes, HPMA-based copolymer-modified liposomes did not induce specific antibody formation and did not activate murine and human complement. Compared with PEGylated liposomes, HPMA-based copolymer-modified liposomes showed a better long-circulating effect after repeated administration. HPMA-based copolymer-modified liposomes thus represent suitable new candidates for a generation of safer and improved liposomal drug delivery platforms.
- MeSH
- Acrylamides chemistry MeSH
- Complement Activation drug effects MeSH
- Cholesterol chemistry blood MeSH
- Hydrophobic and Hydrophilic Interactions * MeSH
- Rabbits MeSH
- Drug Delivery Systems MeSH
- Humans MeSH
- Liposomes * MeSH
- Mice MeSH
- Polyethylene Glycols * chemistry MeSH
- Polymers chemistry MeSH
- Surface Properties * MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
- MeSH
- GTP Phosphohydrolases metabolism genetics MeSH
- Humans MeSH
- Lysine metabolism MeSH
- Membrane Proteins metabolism genetics MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neurofibromin 1 MeSH
- p120 GTPase Activating Protein metabolism genetics MeSH
- Protein Serine-Threonine Kinases metabolism genetics MeSH
- Proto-Oncogene Proteins p21(ras) * metabolism genetics MeSH
- ras Proteins metabolism genetics MeSH
- Signal Transduction MeSH
- Ubiquitination * MeSH
- Protein Binding * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.
- MeSH
- Epididymis * metabolism cytology MeSH
- Glycocalyx * metabolism MeSH
- Glycoproteins metabolism MeSH
- Lectins * metabolism MeSH
- Polysaccharides metabolism MeSH
- Cattle MeSH
- Spermatozoa * metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH