• Je něco špatně v tomto záznamu ?

K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins

W. Magits, M. Steklov, H. Jang, RN. Sewduth, A. Florentin, B. Lechat, A. Sheryazdanova, M. Zhang, M. Simicek, G. Prag, R. Nussinov, A. Sablina

. 2024 ; 43 (14) : 2862-2877. [pub] 20240610

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019879

Grantová podpora
GA CR 22-26981S Technologická Agentura České Republiky (Czech Technological Agency)
940283 Israel Cancer Research Fund (ICRF)
HHSN261201500003C NCI NIH HHS - United States
ub-RASDisease,ID: 772649 EC | Horizon 2020 Framework Programme (H2020)
1440/21 Israel Science Foundation (ISF)
HHSN261201500003I NCI NIH HHS - United States

The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019879
003      
CZ-PrNML
005      
20241024111018.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s44318-024-00146-w $2 doi
035    __
$a (PubMed)38858602
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Magits, Wout $u VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium $1 https://orcid.org/0000000240688300
245    10
$a K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins / $c W. Magits, M. Steklov, H. Jang, RN. Sewduth, A. Florentin, B. Lechat, A. Sheryazdanova, M. Zhang, M. Simicek, G. Prag, R. Nussinov, A. Sablina
520    9_
$a The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
650    12
$a ubikvitinace $7 D054875
650    _2
$a lidé $7 D006801
650    12
$a protoonkogenní proteiny p21(ras) $x metabolismus $x genetika $7 D016283
650    12
$a vazba proteinů $7 D011485
650    _2
$a signální transdukce $7 D015398
650    _2
$a protein-serin-threoninkinasy $x metabolismus $x genetika $7 D017346
650    _2
$a zvířata $7 D000818
650    _2
$a protein aktivující GTPasu p120 $x metabolismus $x genetika $7 D020729
650    _2
$a myši $7 D051379
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a GTP-fosfohydrolasy $x metabolismus $x genetika $7 D020558
650    _2
$a lysin $x metabolismus $7 D008239
650    _2
$a membránové proteiny $x metabolismus $x genetika $7 D008565
650    _2
$a Ras proteiny $x metabolismus $x genetika $7 D018631
650    _2
$a neurofibromin 1 $7 D025542
655    _2
$a časopisecké články $7 D016428
700    1_
$a Steklov, Mikhail $u VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
700    1_
$a Jang, Hyunbum $u Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
700    1_
$a Sewduth, Raj N $u VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium $u Department of Oncology, KU Leuven, 3000, Leuven, Belgium $1 https://orcid.org/0000000292383242
700    1_
$a Florentin, Amir $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel $1 https://orcid.org/0009000780592139
700    1_
$a Lechat, Benoit $u VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
700    1_
$a Sheryazdanova, Aidana $u VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium $1 https://orcid.org/0000000163513493
700    1_
$a Zhang, Mingzhen $u Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
700    1_
$a Simicek, Michal $u Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
700    1_
$a Prag, Gali $u School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel $1 https://orcid.org/0000000347037161
700    1_
$a Nussinov, Ruth $u Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA $u Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel $1 https://orcid.org/0000000281156415
700    1_
$a Sablina, Anna $u VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium. anna.sablina@kuleuven.be $u Department of Oncology, KU Leuven, 3000, Leuven, Belgium. anna.sablina@kuleuven.be $1 https://orcid.org/0000000195264014
773    0_
$w MED00001509 $t The EMBO journal $x 1460-2075 $g Roč. 43, č. 14 (2024), s. 2862-2877
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38858602 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111012 $b ABA008
999    __
$a ok $b bmc $g 2202223 $s 1231852
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 43 $c 14 $d 2862-2877 $e 20240610 $i 1460-2075 $m The EMBO journal $n EMBO J $x MED00001509
GRA    __
$a GA CR 22-26981S $p Technologická Agentura České Republiky (Czech Technological Agency)
GRA    __
$a 940283 $p Israel Cancer Research Fund (ICRF)
GRA    __
$a HHSN261201500003C $p NCI NIH HHS $2 United States
GRA    __
$a ub-RASDisease,ID: 772649 $p EC | Horizon 2020 Framework Programme (H2020)
GRA    __
$a 1440/21 $p Israel Science Foundation (ISF)
GRA    __
$a HHSN261201500003I $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...