Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes

. 2020 Nov 23 ; 10 (11) : . [epub] 20201123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33238499

Fluorographene has been recently shown to be a suitable platform for synthesizing numerous graphene derivatives with desired properties. In that respect, N-octylamine-modified fluorographenes with variable degrees of functionalization are studied and their nonlinear optical properties are assessed using 4 ns pulses. A very strong enhancement of the nonlinear optical response and a very efficient optical limiting action are observed, being strongly dependent on the degree of functionalization of fluorographene. The observed enhanced response is attributed to the increasing number of defects because of the incorporation of N-heteroatoms in the graphitic network upon functionalization with N-octylamine. The present work paves the way for the controlled covalent functionalization of graphene enabling a scalable access to a wide portfolio of graphene derivatives with custom-tailored properties.

Zobrazit více v PubMed

Nair R.R., Ren W.C., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S.J., et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small. 2010;6:2877–2884. doi: 10.1002/smll.201001555. PubMed DOI

Zbořil R., Karlický F., Bourlinos A.B., Steriotis T.A., Stubos A.K., Georgakilas V., Šafářová K., Jančík D., Trapalis C., Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and Its Chemical Conversion to Graphene. Small. 2010;6:2885–2891. doi: 10.1002/smll.201001401. PubMed DOI PMC

Whitener K.E., Stine R., Robinson J.T., Sheehan P.E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C. 2015;119:10507–10512. doi: 10.1021/acs.jpcc.5b02730. DOI

Bakandritsos A., Pykal M., Blonski P., Jakubec P., Chronopoulos D.D., Polakova K., Georgakilas V., Cepe K., Tomanec O., Ranc V., et al. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC

Urbanova V., Hola K., Bourlinos A.B., Cepe K., Ambrosi A., Loo A.H., Pumera M., Karlicky F., Otyepka M., Zboril R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015;27:2305–2310. doi: 10.1002/adma.201500094. PubMed DOI

Urbanova V., Karlicky F., Matej A., Sembera F., Janousek Z., Perman J.A., Ranc V., Cepe K., Michl J., Otyepka M., et al. Fluorinated Gaphenes as Advanced Biosensors—Effect of Fluorine Coverage on Electron Transfer Properties and Adsorption of Biomolecules. Nanoscale. 2016;8:12134–12142. doi: 10.1039/C6NR00353B. PubMed DOI

Liang S.-Z., Chen G., Harutyunyan A.R., Cole M.W., Sofo J.O. Analysis and Optimization of Carbon Nanotubes and Graphene Sensors Based on Adsorption-Desorption Kinetics. Appl. Phys. Lett. 2013;103:233108. doi: 10.1063/1.4841535. DOI

Das S., Sudhagar P., Verma V., Song D., Ito E., Lee S.Y., Kang Y.S., Choi W. Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2011;21:3729–3736. doi: 10.1002/adfm.201101191. DOI

Worsley K.A., Ramesh P., Mandal S.K., Niyogi S., Itkis M.E., Haddon R.C. Soluble Graphene Derived from Graphite Fluoride. Chem. Phys. Lett. 2007;445:51–56. doi: 10.1016/j.cplett.2007.07.059. DOI

Dubecky M., Otyepkova E., Lazar P., Karlicky F., Petr M., Cepe K., Banas P., Zboril R., Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015;6:1430–1434. doi: 10.1021/acs.jpclett.5b00565. PubMed DOI

Stathis A., Papadakis I., Karampitsos N., Couris S., Potsi G., Bourlinos A.B., Otyepka M., Zboril R. Thiophenol-Modified Fluorographene Derivatives for Nonlinear Optical Applications. ChemPlusChem. 2019;84:1288–1298. doi: 10.1002/cplu.201800643. PubMed DOI

Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustain. Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI

Papadakis I., Stathis A., Bourlinos A.B., Couris S. Diethylamino-Fluorographene: A 2D Material with Broadband and Efficient Optical Limiting Performance (from 500 to 1800 nm) with Very Large Nonlinear Optical Response. Nano Select. 2020;1:395–404. doi: 10.1002/nano.202000052. DOI

Li X.L., Wang X.R., Zhang L., Lee S.W., Dai H.J. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science. 2008;319:1229–1232. doi: 10.1126/science.1150878. PubMed DOI

Wang X.R., Li X.L., Zhang L., Yoon Y., Weber P.K., Wang H.L., Guo J., Dai H.J. N-Doping of Graphene through Electrothermal Reactions with Ammonia. Science. 2009;324:768–771. doi: 10.1126/science.1170335. PubMed DOI

Tuček J., Holá K., Bourlinos A.B., Błoński P., Bakandritsos A., Ugolotti J., Dubecký M., Karlický F., Ranc V., Čépe K., et al. Room Temperature Organic Magnets Derived from sp3 Functionalized Graphene. Nat. Commun. 2017;8:14525. doi: 10.1038/ncomms14525. PubMed DOI PMC

Matochová D., Medved’ M., Bakandritsos A., Steklý T., Zbořil R., Otyepka M. 2D Chemistry: Chemical Control of Graphene Derivatization. J. Phys. Chem. Lett. 2018;9:3580–3585. doi: 10.1021/acs.jpclett.8b01596. PubMed DOI PMC

Stathis A., Stavrou M., Papadakis I., Bakandritsos A., Steklý T., Otyepka M., Couris S. Octylamine Modified Fluorographenes as a Versatile Platform for the Efficient Engineering of the Nonlinear Optical Properties of Fluorinated Graphenes. Adv. Photonics Res. 2020 doi: 10.1002/adpr.202000014. accepted. DOI

Medveď M., Zoppellaro G., Ugolotti J., Matochová D., Lazar P., Pospíšil T., Bakandritsos A., Tuček J., Zbořil R., Otyepka M. Reactivity of Fluorographene is Triggered by Point Defects: Beyond the Perfect 2D World. Nanoscale. 2018;10:4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC

Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., Van Stryland E.W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quant. Electr. 1990;26:760–769. doi: 10.1109/3.53394. DOI

Papagianouli I., Iliopoulos K., Gindre D., Sahraoui B., Krupka O., Smokal V., Kolendo A., Couris S. Third-Order Nonlinear Optical Response of Push–Pull Zzobenzene Polymers. Chem. Phys. Lett. 2012;554:107–112. doi: 10.1016/j.cplett.2012.10.007. DOI

Li D., Müller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008;3:101–105. doi: 10.1038/nnano.2007.451. PubMed DOI

Potsi G., Bourlinos A.B., Mouselimis V., Polakova K., Chalmpes N., Gournis D., Kalytchuk S., Tomanec O., Błonski P., Medved’ M., et al. Intrinsic Photo-Luminescence of Amine-Functionalized Graphene Derivatives for Bioimaging Applications. Appl. Mater. Today. 2019;17:112–122. doi: 10.1016/j.apmt.2019.08.002. DOI

Sutherland R.L. Handbook of Nonlinear Optics. 2nd ed. Dekker; New York, NY, USA: 2003. pp. 612–615.

Couris S., Koudoumas E., Ruth A.A., Leach S. Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solutions. J. Phys. B At. Mol. Opt. Phys. 1995;28:4537. doi: 10.1088/0953-4075/28/20/015. DOI

Yadav R., Dixit C.K. Synthesis, Characterization and Potential application of Nitrogen-doped Graphene. J. Sci. Adv. Mater. Devices. 2017;2:141–149. doi: 10.1016/j.jsamd.2017.05.007. DOI

Ferrari A.C., Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI

Jiang X.-F., Polavarapu L., Neo S.T., Venkatesan T., Xu Q.-H.J. Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. Phys. Chem. Lett. 2012;3:785–790. doi: 10.1021/jz300119t. PubMed DOI

Liaros N., Bourlinos A.B., Zboril R., Couris S. Fluoro-Graphene: Nonlinear Optical Properties. Opt. Express. 2013;21:21027. doi: 10.1364/OE.21.021027. PubMed DOI

Papadakis I., Bouza Z., Couris S., Bourlinos A.B., Mouselimis V., Kouloumpis A., Gournis D., Bakandritsos A., Ugolotti J., Zboril R. Hydrogenated Gluorographene: A 2D Counterpart of Graphene with Enhanced Nonlinear Optical Properties. J. Phys. Chem. C. 2017;121:22567–22575. doi: 10.1021/acs.jpcc.7b08470. DOI

Liaros N., Aloukos P., Kolokithas-Ntoukas A., Bakandritsos A., Szabo T., Zboril R., Couris S. Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. J. Phys. Chem. C. 2013;117:6842–6850. doi: 10.1021/jp400559q. DOI

Chen P., Wu X., Sun X., Lin J., Ji W., Tan K.L. Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes. Phys. Rev. Lett. 1999;82:2548–2551. doi: 10.1103/PhysRevLett.82.2548. DOI

Dong N., Li Y., Feng Y., Zhang S., Zhang X., Chang C., Fan J., Zhang L., Wang J. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Sci. Rep. 2015;5:14646. doi: 10.1038/srep14646. PubMed DOI PMC

Feng M., Zhan H., Chen Y. Nonlinear Optical and Optical Limiting Properties of Graphene Families. Appl. Phys. Lett. 2010;96:033107. doi: 10.1063/1.3279148. DOI

Wang J., Hernandez Y., Lotya M., Coleman J.N., Blau W.J. Broadband Nonlinear Optical Response of Graphene Dispersions. Adv. Mater. 2009;21:2430–2435. doi: 10.1002/adma.200803616. DOI

Mansour K., Soileau M.J., Van Stryland E.W. Nonlinear Optical Properties of Carbon-Black Suspensions (Ink) J. Opt. Soc. Am. B. 1992;9:1100–1109. doi: 10.1364/JOSAB.9.001100. DOI

Liaros N., Orfanos I., Papadakis I., Couris S. Nonlinear Optical Response of some Graphene Oxide and Graphene Fluoride Derivatives. Optofluid. Microfluid. Nanofluid. 2016;3:53–58. doi: 10.1515/optof-2016-0009. DOI

Anand B., Podila R., Ayala P., Oliviera L., Philip R., Siva Sankara Sai S., Zakhidov A.A., Rao A.M. Nonlinear Optical Properties of Boron Doped Single-Walled Carbon Nanotubes. Nanoscale. 2013;5:7271–7276. doi: 10.1039/c3nr01803b. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...