Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33238499
PubMed Central
PMC7700198
DOI
10.3390/nano10112319
PII: nano10112319
Knihovny.cz E-zdroje
- Klíčová slova
- N-doped graphene, graphene functionalization, nonlinear optical response, optical limiting,
- Publikační typ
- časopisecké články MeSH
Fluorographene has been recently shown to be a suitable platform for synthesizing numerous graphene derivatives with desired properties. In that respect, N-octylamine-modified fluorographenes with variable degrees of functionalization are studied and their nonlinear optical properties are assessed using 4 ns pulses. A very strong enhancement of the nonlinear optical response and a very efficient optical limiting action are observed, being strongly dependent on the degree of functionalization of fluorographene. The observed enhanced response is attributed to the increasing number of defects because of the incorporation of N-heteroatoms in the graphitic network upon functionalization with N-octylamine. The present work paves the way for the controlled covalent functionalization of graphene enabling a scalable access to a wide portfolio of graphene derivatives with custom-tailored properties.
Department of Physics University of Patras 26504 Patras Greece
Institute of Chemical Engineering Sciences P O Box 1414 26504 Patras Greece
Zobrazit více v PubMed
Nair R.R., Ren W.C., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S.J., et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small. 2010;6:2877–2884. doi: 10.1002/smll.201001555. PubMed DOI
Zbořil R., Karlický F., Bourlinos A.B., Steriotis T.A., Stubos A.K., Georgakilas V., Šafářová K., Jančík D., Trapalis C., Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and Its Chemical Conversion to Graphene. Small. 2010;6:2885–2891. doi: 10.1002/smll.201001401. PubMed DOI PMC
Whitener K.E., Stine R., Robinson J.T., Sheehan P.E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C. 2015;119:10507–10512. doi: 10.1021/acs.jpcc.5b02730. DOI
Bakandritsos A., Pykal M., Blonski P., Jakubec P., Chronopoulos D.D., Polakova K., Georgakilas V., Cepe K., Tomanec O., Ranc V., et al. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Urbanova V., Hola K., Bourlinos A.B., Cepe K., Ambrosi A., Loo A.H., Pumera M., Karlicky F., Otyepka M., Zboril R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015;27:2305–2310. doi: 10.1002/adma.201500094. PubMed DOI
Urbanova V., Karlicky F., Matej A., Sembera F., Janousek Z., Perman J.A., Ranc V., Cepe K., Michl J., Otyepka M., et al. Fluorinated Gaphenes as Advanced Biosensors—Effect of Fluorine Coverage on Electron Transfer Properties and Adsorption of Biomolecules. Nanoscale. 2016;8:12134–12142. doi: 10.1039/C6NR00353B. PubMed DOI
Liang S.-Z., Chen G., Harutyunyan A.R., Cole M.W., Sofo J.O. Analysis and Optimization of Carbon Nanotubes and Graphene Sensors Based on Adsorption-Desorption Kinetics. Appl. Phys. Lett. 2013;103:233108. doi: 10.1063/1.4841535. DOI
Das S., Sudhagar P., Verma V., Song D., Ito E., Lee S.Y., Kang Y.S., Choi W. Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2011;21:3729–3736. doi: 10.1002/adfm.201101191. DOI
Worsley K.A., Ramesh P., Mandal S.K., Niyogi S., Itkis M.E., Haddon R.C. Soluble Graphene Derived from Graphite Fluoride. Chem. Phys. Lett. 2007;445:51–56. doi: 10.1016/j.cplett.2007.07.059. DOI
Dubecky M., Otyepkova E., Lazar P., Karlicky F., Petr M., Cepe K., Banas P., Zboril R., Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015;6:1430–1434. doi: 10.1021/acs.jpclett.5b00565. PubMed DOI
Stathis A., Papadakis I., Karampitsos N., Couris S., Potsi G., Bourlinos A.B., Otyepka M., Zboril R. Thiophenol-Modified Fluorographene Derivatives for Nonlinear Optical Applications. ChemPlusChem. 2019;84:1288–1298. doi: 10.1002/cplu.201800643. PubMed DOI
Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustain. Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI
Papadakis I., Stathis A., Bourlinos A.B., Couris S. Diethylamino-Fluorographene: A 2D Material with Broadband and Efficient Optical Limiting Performance (from 500 to 1800 nm) with Very Large Nonlinear Optical Response. Nano Select. 2020;1:395–404. doi: 10.1002/nano.202000052. DOI
Li X.L., Wang X.R., Zhang L., Lee S.W., Dai H.J. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science. 2008;319:1229–1232. doi: 10.1126/science.1150878. PubMed DOI
Wang X.R., Li X.L., Zhang L., Yoon Y., Weber P.K., Wang H.L., Guo J., Dai H.J. N-Doping of Graphene through Electrothermal Reactions with Ammonia. Science. 2009;324:768–771. doi: 10.1126/science.1170335. PubMed DOI
Tuček J., Holá K., Bourlinos A.B., Błoński P., Bakandritsos A., Ugolotti J., Dubecký M., Karlický F., Ranc V., Čépe K., et al. Room Temperature Organic Magnets Derived from sp3 Functionalized Graphene. Nat. Commun. 2017;8:14525. doi: 10.1038/ncomms14525. PubMed DOI PMC
Matochová D., Medved’ M., Bakandritsos A., Steklý T., Zbořil R., Otyepka M. 2D Chemistry: Chemical Control of Graphene Derivatization. J. Phys. Chem. Lett. 2018;9:3580–3585. doi: 10.1021/acs.jpclett.8b01596. PubMed DOI PMC
Stathis A., Stavrou M., Papadakis I., Bakandritsos A., Steklý T., Otyepka M., Couris S. Octylamine Modified Fluorographenes as a Versatile Platform for the Efficient Engineering of the Nonlinear Optical Properties of Fluorinated Graphenes. Adv. Photonics Res. 2020 doi: 10.1002/adpr.202000014. accepted. DOI
Medveď M., Zoppellaro G., Ugolotti J., Matochová D., Lazar P., Pospíšil T., Bakandritsos A., Tuček J., Zbořil R., Otyepka M. Reactivity of Fluorographene is Triggered by Point Defects: Beyond the Perfect 2D World. Nanoscale. 2018;10:4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC
Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., Van Stryland E.W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quant. Electr. 1990;26:760–769. doi: 10.1109/3.53394. DOI
Papagianouli I., Iliopoulos K., Gindre D., Sahraoui B., Krupka O., Smokal V., Kolendo A., Couris S. Third-Order Nonlinear Optical Response of Push–Pull Zzobenzene Polymers. Chem. Phys. Lett. 2012;554:107–112. doi: 10.1016/j.cplett.2012.10.007. DOI
Li D., Müller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008;3:101–105. doi: 10.1038/nnano.2007.451. PubMed DOI
Potsi G., Bourlinos A.B., Mouselimis V., Polakova K., Chalmpes N., Gournis D., Kalytchuk S., Tomanec O., Błonski P., Medved’ M., et al. Intrinsic Photo-Luminescence of Amine-Functionalized Graphene Derivatives for Bioimaging Applications. Appl. Mater. Today. 2019;17:112–122. doi: 10.1016/j.apmt.2019.08.002. DOI
Sutherland R.L. Handbook of Nonlinear Optics. 2nd ed. Dekker; New York, NY, USA: 2003. pp. 612–615.
Couris S., Koudoumas E., Ruth A.A., Leach S. Concentration and Wavelength Dependence of the Effective Third-Order Susceptibility and Optical Limiting of C60 in Toluene Solutions. J. Phys. B At. Mol. Opt. Phys. 1995;28:4537. doi: 10.1088/0953-4075/28/20/015. DOI
Yadav R., Dixit C.K. Synthesis, Characterization and Potential application of Nitrogen-doped Graphene. J. Sci. Adv. Mater. Devices. 2017;2:141–149. doi: 10.1016/j.jsamd.2017.05.007. DOI
Ferrari A.C., Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI
Jiang X.-F., Polavarapu L., Neo S.T., Venkatesan T., Xu Q.-H.J. Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. Phys. Chem. Lett. 2012;3:785–790. doi: 10.1021/jz300119t. PubMed DOI
Liaros N., Bourlinos A.B., Zboril R., Couris S. Fluoro-Graphene: Nonlinear Optical Properties. Opt. Express. 2013;21:21027. doi: 10.1364/OE.21.021027. PubMed DOI
Papadakis I., Bouza Z., Couris S., Bourlinos A.B., Mouselimis V., Kouloumpis A., Gournis D., Bakandritsos A., Ugolotti J., Zboril R. Hydrogenated Gluorographene: A 2D Counterpart of Graphene with Enhanced Nonlinear Optical Properties. J. Phys. Chem. C. 2017;121:22567–22575. doi: 10.1021/acs.jpcc.7b08470. DOI
Liaros N., Aloukos P., Kolokithas-Ntoukas A., Bakandritsos A., Szabo T., Zboril R., Couris S. Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. J. Phys. Chem. C. 2013;117:6842–6850. doi: 10.1021/jp400559q. DOI
Chen P., Wu X., Sun X., Lin J., Ji W., Tan K.L. Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes. Phys. Rev. Lett. 1999;82:2548–2551. doi: 10.1103/PhysRevLett.82.2548. DOI
Dong N., Li Y., Feng Y., Zhang S., Zhang X., Chang C., Fan J., Zhang L., Wang J. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Sci. Rep. 2015;5:14646. doi: 10.1038/srep14646. PubMed DOI PMC
Feng M., Zhan H., Chen Y. Nonlinear Optical and Optical Limiting Properties of Graphene Families. Appl. Phys. Lett. 2010;96:033107. doi: 10.1063/1.3279148. DOI
Wang J., Hernandez Y., Lotya M., Coleman J.N., Blau W.J. Broadband Nonlinear Optical Response of Graphene Dispersions. Adv. Mater. 2009;21:2430–2435. doi: 10.1002/adma.200803616. DOI
Mansour K., Soileau M.J., Van Stryland E.W. Nonlinear Optical Properties of Carbon-Black Suspensions (Ink) J. Opt. Soc. Am. B. 1992;9:1100–1109. doi: 10.1364/JOSAB.9.001100. DOI
Liaros N., Orfanos I., Papadakis I., Couris S. Nonlinear Optical Response of some Graphene Oxide and Graphene Fluoride Derivatives. Optofluid. Microfluid. Nanofluid. 2016;3:53–58. doi: 10.1515/optof-2016-0009. DOI
Anand B., Podila R., Ayala P., Oliviera L., Philip R., Siva Sankara Sai S., Zakhidov A.A., Rao A.M. Nonlinear Optical Properties of Boron Doped Single-Walled Carbon Nanotubes. Nanoscale. 2013;5:7271–7276. doi: 10.1039/c3nr01803b. PubMed DOI