2D Chemistry: Chemical Control of Graphene Derivatization
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29890828
PubMed Central
PMC6038093
DOI
10.1021/acs.jpclett.8b01596
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Controllable synthesis of graphene derivatives with defined composition and properties represents the holy grail of graphene chemistry, especially in view of the low reactivity of graphene. Recent progress in fluorographene (FG) chemistry has opened up new routes for synthesizing a plethora of graphene derivatives with widely applicable properties, but they are often difficult to control. We explored nucleophilic substitution on FG combining density functional theory calculations with experiments to achieve accurate control over the functionalization process. In-depth analysis revealed the complexity of the reaction and identified basic rules for controlling the 2D chemistry. Their application, that is, choice of solvent and reaction time, enabled facile control over the reaction of FG with N-octylamine to form graphene derivatives with tailored content of the alkylamine functional group (2.5-7.5% N atomic content) and F atoms (31.5-3.5% F atomic content). This work substantially extends prospects for the controlled covalent functionalization of graphene.
Zobrazit více v PubMed
Thakur V. J.; Thakur M. K.. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications; CRC Press: Boca Raton, FL, 2018.
Pumera M.; Sofer Z. Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 2017, 46, 4450–4463. 10.1039/C7CS00215G. PubMed DOI
Bueno R. A.; Martinez J. I.; Luccas R. F.; del Arbol N. R.; Munuera C.; Palacio I.; Palomares F. J.; Lauwaet K.; Thakur S.; Baranowski J. M.; Strupinski W.; Lopez M. F.; Mompean F.; Garcia-Hernandez M.; Martin-Gago J. A. Highly selective covalent organic functionalization of epitaxial graphene. Nat. Commun. 2017, 8, 15306.10.1038/ncomms15306. PubMed DOI PMC
Georgakilas V.Functionalization of Graphene; Wiley-VCH: Weinheim, Germany, 2014.
Criado A.; Melchionna M.; Marchesan S.; Prato M. The Covalent Functionalization of Graphene on Substrates. Angew. Chem., Int. Ed. 2015, 54, 10734–10750. 10.1002/anie.201501473. PubMed DOI
Eigler S.; Hirsch A. Chemistry with Graphene and Graphene Oxide-Challenges for Synthetic Chemists. Angew. Chem., Int. Ed. 2014, 53, 7720–7738. 10.1002/anie.201402780. PubMed DOI
Chaban V. V.; Prezhdo O. V. Synergistic Amination of Graphene: Molecular Dynamics and Thermodynamics. J. Phys. Chem. Lett. 2015, 6, 4397–4403. 10.1021/acs.jpclett.5b02206. PubMed DOI
Sturala J.; Luxa J.; Pumera M.; Sofer Z. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chem. - Eur. J. 2018, 24, 5992–6006. 10.1002/chem.201704192. PubMed DOI
Englert J. M.; Dotzer C.; Yang G. A.; Schmid M.; Papp C.; Gottfried J. M.; Steinruck H. P.; Spiecker E.; Hauke F.; Hirsch A. Covalent bulk functionalization of graphene. Nat. Chem. 2011, 3, 279–286. 10.1038/nchem.1010. PubMed DOI
Liao L.; Peng H. L.; Liu Z. F. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. 10.1021/ja5048297. PubMed DOI
Park J.; Yan M. D. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46, 181–189. 10.1021/ar300172h. PubMed DOI
Holzwarth J.; Amsharov K. Y.; Sharapa D. I.; Reger D.; Roshchyna K.; Lungerich D.; Jux N.; Hauke F.; Clark T.; Hirsch A. Highly Regioselective Alkylation of Hexabenzocoronenes: Fundamental Insights into the Covalent Chemistry of Graphene. Angew. Chem., Int. Ed. 2017, 56, 12184–12190. 10.1002/anie.201706437. PubMed DOI PMC
Sun Z. Z.; James D. K.; Tour J. M. Graphene Chemistry: Synthesis and Manipulation. J. Phys. Chem. Lett. 2011, 2, 2425–2432. 10.1021/jz201000a. DOI
Economopoulos S. P.; Rotas G.; Miyata Y.; Shinohara H.; Tagmatarchis N. Exfoliation and Chemical Modification Using Microwave Irradiation Affording Highly Functionalized Graphene. ACS Nano 2010, 4, 7499–7507. 10.1021/nn101735e. PubMed DOI
Bian S.; Scott A. M.; Cao Y.; Liang Y.; Osuna S.; Houk K. N.; Braunschweig A. B. Covalently Patterned Graphene Surfaces by a Force-Accelerated Diels–Alder Reaction. J. Am. Chem. Soc. 2013, 135, 9240–9243. 10.1021/ja4042077. PubMed DOI
Dubey G.; Urcuyo R.; Abb S.; Rinke G.; Burghard M.; Rauschenbach S.; Kern K. Chemical Modification of Graphene via Hyperthermal Molecular Reaction. J. Am. Chem. Soc. 2014, 136, 13482–13485. 10.1021/ja5046499. PubMed DOI
Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI
Gilje S.; Han S.; Wang M.; Wang K. L.; Kaner R. B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394–3398. 10.1021/nl0717715. PubMed DOI
Mazanek V.; Jankovsky O.; Luxa J.; Sedmidubsky D.; Janousek Z.; Sembera F.; Mikulics M.; Sofer Z. Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale 2015, 7, 13646–13655. 10.1039/C5NR03243A. PubMed DOI
Collins W. R.; Lewandowski W.; Schmois E.; Walish J.; Swager T. M. Claisen Rearrangement of Graphite Oxide: A Route to Covalently Functionalized Graphenes. Angew. Chem., Int. Ed. 2011, 50, 8848–8852. 10.1002/anie.201101371. PubMed DOI
Nair R. R.; Ren W. C.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S. J.; Katsnelson M. I.; Cheng H. M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI
Robinson J. T.; Burgess J. S.; Junkermeier C. E.; Badescu S. C.; Reinecke T. L.; Perkins F. K.; Zalalutdniov M. K.; Baldwin J. W.; Culbertson J. C.; Sheehan P. E.; Snow E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. 10.1021/nl101437p. PubMed DOI
Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC
Chronopoulos D. D.; Bakandritsos A.; Pykal M.; Zbořil R.; Otyepka M. Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 2017, 9, 60–70. 10.1016/j.apmt.2017.05.004. PubMed DOI PMC
Eng A. Y. S.; Sofer Z.; Bouša D.; Sedmidubský D.; Huber Š.; Pumera M. Near-Stoichiometric Bulk Graphane from Halogenated Graphenes (X = Cl/Br/I) by the Birch Reduction for High Density Energy Storage. Adv. Funct. Mater. 2017, 27, 1605797–1605805. 10.1002/adfm.201605797. DOI
Whitener K. E.; Stine R.; Robinson J. T.; Sheehan P. E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C 2015, 119, 10507–10512. 10.1021/acs.jpcc.5b02730. DOI
Stine R.; Ciszek J. W.; Barlow D. E.; Lee W.-K.; Robinson J. T.; Sheehan P. E. High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir 2012, 28, 7957–7961. 10.1021/la301091f. PubMed DOI
Bosch-Navarro C.; Walker M.; Wilson N. R.; Rourke J. P. Covalent modification of exfoliated fluorographite with nitrogen functionalities. J. Mater. Chem. C 2015, 3, 7627–7631. 10.1039/C5TC01633A. DOI
Li B.; He T.; Wang Z.; Cheng Z.; Liu Y.; Chen T.; Lai W.; Wang X.; Liu X. Chemical reactivity of C-F bonds attached to graphene with diamines depending on their nature and location. Phys. Chem. Chem. Phys. 2016, 18, 17495–17505. 10.1039/C6CP01929C. PubMed DOI
Ye X.; Ma L.; Yang Z.; Wang J.; Wang H.; Yang S. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant Additive. ACS Appl. Mater. Interfaces 2016, 8, 7483–7488. 10.1021/acsami.5b10579. PubMed DOI
Bakandritsos A.; Pykal M.; Blonski P.; Jakubec P.; Chronopoulos D. D.; Polakova K.; Georgakilas V.; Cepe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zboril R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Urbanova V.; Hola K.; Bourlinos A. B.; Cepe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlicky F.; Otyepka M.; Zboril R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27, 2305–2310. 10.1002/adma.201500094. PubMed DOI
Tucek J.; Hola K.; Bourlinos A. B.; Blonski P.; Bakandritsos A.; Ugolotti J.; Dubecky M.; Karlicky F.; Ranc V.; Cepe K.; Otyepka M.; Zboril R. Room temperature organic magnets derived from sp(3) functionalized graphene. Nat. Commun. 2017, 8, 14525–14533. 10.1038/ncomms14525. PubMed DOI PMC
Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Čépe K.; Zbořil R.; Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29, 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC
Mazanek V.; Libanska A.; Sturala J.; Bousa D.; Sedmidubsky D.; Pumera M.; Janousek Z.; Plutnar J.; Sofer Z. Fluorographene Modified by Grignard Reagents: A Broad Range of Functional Nanomaterials. Chem. - Eur. J. 2017, 23, 1956–1964. 10.1002/chem.201604989. PubMed DOI
Sun Z.; Pint C. L.; Marcano D. C.; Zhang C.; Yao J.; Ruan G.; Yan Z.; Zhu Y.; Hauge R. H.; Tour J. M. Towards hybrid superlattices in graphene. Nat. Commun. 2011, 2, 559–564. 10.1038/ncomms1577. PubMed DOI
Pumera M.; Wong C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 2013, 42, 5987–5995. 10.1039/c3cs60132c. PubMed DOI
Sofer Z.; Simek P.; Mazanek V.; Sembera F.; Janousek Z.; Pumera M. Fluorographane (C1HxF1-x-[small delta])n: synthesis and properties. Chem. Commun. 2015, 51, 5633–5636. 10.1039/C4CC08844A. PubMed DOI
Sandford G. Perfluoroalkanes. Tetrahedron 2003, 59, 437–454. 10.1016/S0040-4020(02)01568-5. DOI
Dubecky M.; Otyepkova E.; Lazar P.; Karlicky F.; Petr M.; Cepe K.; Banas P.; Zboril R.; Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015, 6, 1430–1434. 10.1021/acs.jpclett.5b00565. PubMed DOI
Hughes R. P.; LeHusebo T.; Maddock S. M.; Rheingold A. L.; Guzei I. A. Thallium(I) selectively abstracts fluoride from a tertiary carbon-fluorine bond under conditions where silver(I) selectively abstracts iodide from rhodium. J. Am. Chem. Soc. 1997, 119, 10231–10232. 10.1021/ja972398d. DOI
Richmond T. G. Organometallic transformations demonstrate that fluorocarbons are reactive molecules. Angew. Chem., Int. Ed. 2000, 39, 3241–3244. 10.1002/1521-3773(20000915)39:18<3241::AID-ANIE3241>3.0.CO;2-X. PubMed DOI
Borden W. T. Effects of electron donation into C-F sigma* orbitals: explanations, predictions and experimental tests. Chem. Commun. 1998, 0, 1919–1925. 10.1039/a803750g. DOI
Medved M.; Zoppellaro G.; Ugolotti J.; Matochova D.; Lazar P.; Pospisil T.; Bakandritsos A.; Tucek J.; Zboril R.; Otyepka M. Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale 2018, 10, 4696–4707. 10.1039/C7NR09426D. PubMed DOI PMC
Chai J. D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI
Lee J. H.; Koon G. K. W.; Shin D. W.; Fedorov V. E.; Choi J. Y.; Yoo J. B.; Ozyilmaz B. Property Control of Graphene by Employing ″Semi-Ionic″ Liquid Fluorination. Adv. Funct. Mater. 2013, 23, 3329–3334. 10.1002/adfm.201202822. DOI
Wang X.; Wang W. M.; Liu Y.; Ren M. M.; Xiao H. N.; Liu X. Y. Controllable defluorination of fluorinated graphene and weakening of C-F bonding under the action of nucleophilic dipolar solvent. Phys. Chem. Chem. Phys. 2016, 18, 3285–3293. 10.1039/C5CP06914A. PubMed DOI
Fedorov V. E.; Grayfer E. D.; Makotchenko V. G.; Nazarov A. S.; Shin H. J.; Choi J. Y. Highly Exfoliated Graphite Fluoride as a Precursor for Graphene Fluoride Dispersions and Films. Croat. Chem. Acta 2012, 85, 107–112. 10.5562/cca1972. DOI
Lai W. C.; Yuan Y. H.; Wang X.; Liu Y.; Li Y. L.; Liu X. Y. Radical mechanism of a nucleophilic reaction depending on a two-dimensional structure. Phys. Chem. Chem. Phys. 2018, 20, 489–497. 10.1039/C7CP06708A. PubMed DOI
Englert J. M.; Vecera P.; Knirsch K. C.; Schäfer R. A.; Hauke F.; Hirsch A. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano 2013, 7, 5472–5482. 10.1021/nn401481h. PubMed DOI
Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
Chemical Tuning of Specific Capacitance in Functionalized Fluorographene
Alkynylation of graphene via the Sonogashira C-C cross-coupling reaction on fluorographene