2D Chemistry: Chemical Control of Graphene Derivatization

. 2018 Jul 05 ; 9 (13) : 3580-3585. [epub] 20180615

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29890828

Controllable synthesis of graphene derivatives with defined composition and properties represents the holy grail of graphene chemistry, especially in view of the low reactivity of graphene. Recent progress in fluorographene (FG) chemistry has opened up new routes for synthesizing a plethora of graphene derivatives with widely applicable properties, but they are often difficult to control. We explored nucleophilic substitution on FG combining density functional theory calculations with experiments to achieve accurate control over the functionalization process. In-depth analysis revealed the complexity of the reaction and identified basic rules for controlling the 2D chemistry. Their application, that is, choice of solvent and reaction time, enabled facile control over the reaction of FG with N-octylamine to form graphene derivatives with tailored content of the alkylamine functional group (2.5-7.5% N atomic content) and F atoms (31.5-3.5% F atomic content). This work substantially extends prospects for the controlled covalent functionalization of graphene.

Zobrazit více v PubMed

Thakur V. J.; Thakur M. K.. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications; CRC Press: Boca Raton, FL, 2018.

Pumera M.; Sofer Z. Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 2017, 46, 4450–4463. 10.1039/C7CS00215G. PubMed DOI

Bueno R. A.; Martinez J. I.; Luccas R. F.; del Arbol N. R.; Munuera C.; Palacio I.; Palomares F. J.; Lauwaet K.; Thakur S.; Baranowski J. M.; Strupinski W.; Lopez M. F.; Mompean F.; Garcia-Hernandez M.; Martin-Gago J. A. Highly selective covalent organic functionalization of epitaxial graphene. Nat. Commun. 2017, 8, 15306.10.1038/ncomms15306. PubMed DOI PMC

Georgakilas V.Functionalization of Graphene; Wiley-VCH: Weinheim, Germany, 2014.

Criado A.; Melchionna M.; Marchesan S.; Prato M. The Covalent Functionalization of Graphene on Substrates. Angew. Chem., Int. Ed. 2015, 54, 10734–10750. 10.1002/anie.201501473. PubMed DOI

Eigler S.; Hirsch A. Chemistry with Graphene and Graphene Oxide-Challenges for Synthetic Chemists. Angew. Chem., Int. Ed. 2014, 53, 7720–7738. 10.1002/anie.201402780. PubMed DOI

Chaban V. V.; Prezhdo O. V. Synergistic Amination of Graphene: Molecular Dynamics and Thermodynamics. J. Phys. Chem. Lett. 2015, 6, 4397–4403. 10.1021/acs.jpclett.5b02206. PubMed DOI

Sturala J.; Luxa J.; Pumera M.; Sofer Z. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chem. - Eur. J. 2018, 24, 5992–6006. 10.1002/chem.201704192. PubMed DOI

Englert J. M.; Dotzer C.; Yang G. A.; Schmid M.; Papp C.; Gottfried J. M.; Steinruck H. P.; Spiecker E.; Hauke F.; Hirsch A. Covalent bulk functionalization of graphene. Nat. Chem. 2011, 3, 279–286. 10.1038/nchem.1010. PubMed DOI

Liao L.; Peng H. L.; Liu Z. F. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. 10.1021/ja5048297. PubMed DOI

Park J.; Yan M. D. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46, 181–189. 10.1021/ar300172h. PubMed DOI

Holzwarth J.; Amsharov K. Y.; Sharapa D. I.; Reger D.; Roshchyna K.; Lungerich D.; Jux N.; Hauke F.; Clark T.; Hirsch A. Highly Regioselective Alkylation of Hexabenzocoronenes: Fundamental Insights into the Covalent Chemistry of Graphene. Angew. Chem., Int. Ed. 2017, 56, 12184–12190. 10.1002/anie.201706437. PubMed DOI PMC

Sun Z. Z.; James D. K.; Tour J. M. Graphene Chemistry: Synthesis and Manipulation. J. Phys. Chem. Lett. 2011, 2, 2425–2432. 10.1021/jz201000a. DOI

Economopoulos S. P.; Rotas G.; Miyata Y.; Shinohara H.; Tagmatarchis N. Exfoliation and Chemical Modification Using Microwave Irradiation Affording Highly Functionalized Graphene. ACS Nano 2010, 4, 7499–7507. 10.1021/nn101735e. PubMed DOI

Bian S.; Scott A. M.; Cao Y.; Liang Y.; Osuna S.; Houk K. N.; Braunschweig A. B. Covalently Patterned Graphene Surfaces by a Force-Accelerated Diels–Alder Reaction. J. Am. Chem. Soc. 2013, 135, 9240–9243. 10.1021/ja4042077. PubMed DOI

Dubey G.; Urcuyo R.; Abb S.; Rinke G.; Burghard M.; Rauschenbach S.; Kern K. Chemical Modification of Graphene via Hyperthermal Molecular Reaction. J. Am. Chem. Soc. 2014, 136, 13482–13485. 10.1021/ja5046499. PubMed DOI

Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI

Gilje S.; Han S.; Wang M.; Wang K. L.; Kaner R. B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394–3398. 10.1021/nl0717715. PubMed DOI

Mazanek V.; Jankovsky O.; Luxa J.; Sedmidubsky D.; Janousek Z.; Sembera F.; Mikulics M.; Sofer Z. Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale 2015, 7, 13646–13655. 10.1039/C5NR03243A. PubMed DOI

Collins W. R.; Lewandowski W.; Schmois E.; Walish J.; Swager T. M. Claisen Rearrangement of Graphite Oxide: A Route to Covalently Functionalized Graphenes. Angew. Chem., Int. Ed. 2011, 50, 8848–8852. 10.1002/anie.201101371. PubMed DOI

Nair R. R.; Ren W. C.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S. J.; Katsnelson M. I.; Cheng H. M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI

Robinson J. T.; Burgess J. S.; Junkermeier C. E.; Badescu S. C.; Reinecke T. L.; Perkins F. K.; Zalalutdniov M. K.; Baldwin J. W.; Culbertson J. C.; Sheehan P. E.; Snow E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. 10.1021/nl101437p. PubMed DOI

Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC

Chronopoulos D. D.; Bakandritsos A.; Pykal M.; Zbořil R.; Otyepka M. Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 2017, 9, 60–70. 10.1016/j.apmt.2017.05.004. PubMed DOI PMC

Eng A. Y. S.; Sofer Z.; Bouša D.; Sedmidubský D.; Huber Š.; Pumera M. Near-Stoichiometric Bulk Graphane from Halogenated Graphenes (X = Cl/Br/I) by the Birch Reduction for High Density Energy Storage. Adv. Funct. Mater. 2017, 27, 1605797–1605805. 10.1002/adfm.201605797. DOI

Whitener K. E.; Stine R.; Robinson J. T.; Sheehan P. E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C 2015, 119, 10507–10512. 10.1021/acs.jpcc.5b02730. DOI

Stine R.; Ciszek J. W.; Barlow D. E.; Lee W.-K.; Robinson J. T.; Sheehan P. E. High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir 2012, 28, 7957–7961. 10.1021/la301091f. PubMed DOI

Bosch-Navarro C.; Walker M.; Wilson N. R.; Rourke J. P. Covalent modification of exfoliated fluorographite with nitrogen functionalities. J. Mater. Chem. C 2015, 3, 7627–7631. 10.1039/C5TC01633A. DOI

Li B.; He T.; Wang Z.; Cheng Z.; Liu Y.; Chen T.; Lai W.; Wang X.; Liu X. Chemical reactivity of C-F bonds attached to graphene with diamines depending on their nature and location. Phys. Chem. Chem. Phys. 2016, 18, 17495–17505. 10.1039/C6CP01929C. PubMed DOI

Ye X.; Ma L.; Yang Z.; Wang J.; Wang H.; Yang S. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant Additive. ACS Appl. Mater. Interfaces 2016, 8, 7483–7488. 10.1021/acsami.5b10579. PubMed DOI

Bakandritsos A.; Pykal M.; Blonski P.; Jakubec P.; Chronopoulos D. D.; Polakova K.; Georgakilas V.; Cepe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zboril R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC

Urbanova V.; Hola K.; Bourlinos A. B.; Cepe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlicky F.; Otyepka M.; Zboril R. Thiofluorographene-Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27, 2305–2310. 10.1002/adma.201500094. PubMed DOI

Tucek J.; Hola K.; Bourlinos A. B.; Blonski P.; Bakandritsos A.; Ugolotti J.; Dubecky M.; Karlicky F.; Ranc V.; Cepe K.; Otyepka M.; Zboril R. Room temperature organic magnets derived from sp(3) functionalized graphene. Nat. Commun. 2017, 8, 14525–14533. 10.1038/ncomms14525. PubMed DOI PMC

Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Čépe K.; Zbořil R.; Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29, 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC

Mazanek V.; Libanska A.; Sturala J.; Bousa D.; Sedmidubsky D.; Pumera M.; Janousek Z.; Plutnar J.; Sofer Z. Fluorographene Modified by Grignard Reagents: A Broad Range of Functional Nanomaterials. Chem. - Eur. J. 2017, 23, 1956–1964. 10.1002/chem.201604989. PubMed DOI

Sun Z.; Pint C. L.; Marcano D. C.; Zhang C.; Yao J.; Ruan G.; Yan Z.; Zhu Y.; Hauge R. H.; Tour J. M. Towards hybrid superlattices in graphene. Nat. Commun. 2011, 2, 559–564. 10.1038/ncomms1577. PubMed DOI

Pumera M.; Wong C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 2013, 42, 5987–5995. 10.1039/c3cs60132c. PubMed DOI

Sofer Z.; Simek P.; Mazanek V.; Sembera F.; Janousek Z.; Pumera M. Fluorographane (C1HxF1-x-[small delta])n: synthesis and properties. Chem. Commun. 2015, 51, 5633–5636. 10.1039/C4CC08844A. PubMed DOI

Sandford G. Perfluoroalkanes. Tetrahedron 2003, 59, 437–454. 10.1016/S0040-4020(02)01568-5. DOI

Dubecky M.; Otyepkova E.; Lazar P.; Karlicky F.; Petr M.; Cepe K.; Banas P.; Zboril R.; Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015, 6, 1430–1434. 10.1021/acs.jpclett.5b00565. PubMed DOI

Hughes R. P.; LeHusebo T.; Maddock S. M.; Rheingold A. L.; Guzei I. A. Thallium(I) selectively abstracts fluoride from a tertiary carbon-fluorine bond under conditions where silver(I) selectively abstracts iodide from rhodium. J. Am. Chem. Soc. 1997, 119, 10231–10232. 10.1021/ja972398d. DOI

Richmond T. G. Organometallic transformations demonstrate that fluorocarbons are reactive molecules. Angew. Chem., Int. Ed. 2000, 39, 3241–3244. 10.1002/1521-3773(20000915)39:18<3241::AID-ANIE3241>3.0.CO;2-X. PubMed DOI

Borden W. T. Effects of electron donation into C-F sigma* orbitals: explanations, predictions and experimental tests. Chem. Commun. 1998, 0, 1919–1925. 10.1039/a803750g. DOI

Medved M.; Zoppellaro G.; Ugolotti J.; Matochova D.; Lazar P.; Pospisil T.; Bakandritsos A.; Tucek J.; Zboril R.; Otyepka M. Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale 2018, 10, 4696–4707. 10.1039/C7NR09426D. PubMed DOI PMC

Chai J. D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI

Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI

Lee J. H.; Koon G. K. W.; Shin D. W.; Fedorov V. E.; Choi J. Y.; Yoo J. B.; Ozyilmaz B. Property Control of Graphene by Employing ″Semi-Ionic″ Liquid Fluorination. Adv. Funct. Mater. 2013, 23, 3329–3334. 10.1002/adfm.201202822. DOI

Wang X.; Wang W. M.; Liu Y.; Ren M. M.; Xiao H. N.; Liu X. Y. Controllable defluorination of fluorinated graphene and weakening of C-F bonding under the action of nucleophilic dipolar solvent. Phys. Chem. Chem. Phys. 2016, 18, 3285–3293. 10.1039/C5CP06914A. PubMed DOI

Fedorov V. E.; Grayfer E. D.; Makotchenko V. G.; Nazarov A. S.; Shin H. J.; Choi J. Y. Highly Exfoliated Graphite Fluoride as a Precursor for Graphene Fluoride Dispersions and Films. Croat. Chem. Acta 2012, 85, 107–112. 10.5562/cca1972. DOI

Lai W. C.; Yuan Y. H.; Wang X.; Liu Y.; Li Y. L.; Liu X. Y. Radical mechanism of a nucleophilic reaction depending on a two-dimensional structure. Phys. Chem. Chem. Phys. 2018, 20, 489–497. 10.1039/C7CP06708A. PubMed DOI

Englert J. M.; Vecera P.; Knirsch K. C.; Schäfer R. A.; Hauke F.; Hirsch A. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano 2013, 7, 5472–5482. 10.1021/nn401481h. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene

. 2024 Feb 14 ; 146 (6) : 3992-4000. [epub] 20240131

Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection

. 2023 Feb 20 ; 25 (4) : 1647-1657. [epub] 20230207

Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts

. 2022 Sep 29 ; 14 (37) : 13490-13499. [epub] 20220929

Graphene with Covalently Grafted Amino Acid as a Route Toward Eco-Friendly and Sustainable Supercapacitors

. 2021 Sep 20 ; 14 (18) : 3904-3914. [epub] 20210818

Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes

. 2020 Nov 23 ; 10 (11) : . [epub] 20201123

Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation

. 2019 Nov 07 ; 10 (41) : 9438-9445. [epub] 20190906

Chemical Tuning of Specific Capacitance in Functionalized Fluorographene

. 2019 Jul 09 ; 31 (13) : 4698-4709. [epub] 20190607

Alkynylation of graphene via the Sonogashira C-C cross-coupling reaction on fluorographene

. 2019 Jan 22 ; 55 (8) : 1088-1091.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...