Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation

. 2019 Nov 07 ; 10 (41) : 9438-9445. [epub] 20190906

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32055319

Graphene oxide, the most prominent carbocatalyst for several oxidation reactions, has severe limitations due to the overstoichiometric amounts required to achieve practical conversions. Graphene acid, a well-defined graphene derivative selectively and homogeneously covered by carboxylic groups but maintaining the high electronic conductivity of pristine graphene, sets new activity limits in the selective and general oxidation of a large gamut of alcohols, even working at 5 wt% loading for at least 10 reaction cycles without any influence from metal impurities. According to experimental data and first principles calculations, the selective and dense functionalization with carboxyl groups, combined with excellent electron transfer properties, accounts for the unprecedented catalytic activity of this graphene derivative. Moreover, the controlled structure of graphene acid allows shedding light upon the critical steps of the reaction and regulating precisely its selectivity toward different oxidation products.

Zobrazit více v PubMed

Su C., Loh K. P. Acc. Chem. Res. 2013;46:2275–2285. PubMed

Dreyer D. R., Bielawski C. W. Chem. Sci. 2011;2:1233–1240.

De S., Balu A. M., van der Waal J. C., Luque R. ChemCatChem. 2015;7:1608–1629.

Liu X., Dai L. Nat. Rev. Mater. 2016;1:16064.

Monai M., Melchionna M. and Fornasiero P., in Advances in Catalysis, ed. C. Song, Academic Press, 2018, vol. 63, pp. 1–73.

Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Chem. Rev. 2014;114:6179–6212. PubMed

Chen J., Yao B., Li C., Shi G. Carbon. 2013;64:225–229.

Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S. Adv. Mater. 2015;22:3906–3924. PubMed

Lerf A., He H., Foster M., Klinowski J. J. Phys. Chem. B. 1998;1998:4477–4482.

Dreyer D. R., Jia H.-P., Bielawski C. W. Angew. Chem., Int. Ed. 2010;49:6813–6816. PubMed

Jia H.-P., Dreyer D. R., Bielawski C. W. Tetrahedron. 2011;67:4431–4434.

Jia H.-P., Dreyer D. R., Bielawski C. W. Adv. Synth. Catal. 2011;353:528–532.

Kumar A. V., Rao K. R. Tetrahedron Lett. 2011;52:5188–5191.

Islam S. M., Roy A. S., Dey R. C., Paul S. J. Mol. Catal. A: Chem. 2014;394:66–73.

Su D. S., Perathoner S., Centi G. Chem. Rev. 2013;113:5782–5816. PubMed

Presolski S., Pumera M. Angew. Chem., Int. Ed. 2018;57:16713–16715. PubMed

Vinod C. P., Wilson K., Lee A. F. J. Chem. Technol. Biotechnol. 2010;86:161–171.

Rahimi A., Azarpira A., Kim H., Ralph J., Stahl S. S. J. Am. Chem. Soc. 2013;135:6415–6418. PubMed

Aellig C., Girard C., Hermans I. Angew. Chem., Int. Ed. 2011;50:12355–12360. PubMed

Kuang Y., Islam N. M., Nabae Y., Hayakawa T., Kakimoto M.-a. Angew. Chem., Int. Ed. 2010;122:446–450. PubMed

Cui Y., Lee Y. H., Yang J. W. Sci. Rep. 2017;7:3146. PubMed PMC

Joshi S. R., Kataria K. L., Sawant S. B., Joshi J. B. Ind. Eng. Chem. Res. 2005;44:325–333.

Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M. ACS Nano. 2017;11:2982–2991. PubMed PMC

Pykal M., Jurečk P., Karlický F., Otyepka M. Phys. Chem. Chem. Phys. 2016;18:6351–6372. PubMed

Matochova D., Medveď M., Bakandritsos A., Stekly T., Zboril R., Otyepka M. J. Phys. Chem. Lett. 2018;9:3580–3585. PubMed PMC

Mosconi D., Blanco M., Gatti T., Calvillo L., Otyepka M., Bakandritsos A., Menna E., Agnoli S., Granozzi G. Carbon. 2019;143:318–328.

Carraro F., Calvillo L., Cattelan M., Favaro M., Righetto M., Nappini S., Píš I., Celorrio V., Fermín D. J., Martucci A., Agnoli S., Granozzi G. ACS Appl. Mater. Interfaces. 2015;7:25685–25692. PubMed

Frisch M., et al, Gaussian 09.D01, Gaussian, Inc., Wallingord, CT, 2009.

Ditchfield R., Herhe W. J., Pople J. A. J. Chem. Phys. 1971;54:724–728.

Chai J.-D., Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed

Marenich A. V., Cramer C. J., Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed

Carraro F., Calvillo L., Cattelan M., Favaro M., Righetto M., Nappini S., Píš I., Celorrio V., Fermín D. J., Martucci A., Agnoli S., Granozzi G. ACS Appl. Mater. Interfaces. 2015;7:25685–25692. PubMed

Favaro M., Agnoli S., Valentin C. D., Mattevi C., Cattelan M., Artiglia L., Magnano E., Bondino F., Nappini S., Granozzi G. Carbon. 2014;68:319–329.

Chua C. K., Pumera M. Chem. Soc. Rev. 2014;43:291–312. PubMed

Balandin A. A. Nat. Mater. 2011;10:569–581. PubMed

Larsen J. W., Freund M., Kim K. Y., Sidovar M., Stuart J. L. Carbon. 2000;38:655–661.

Blanco M., Nieto-Ortega B., Juan A. d., Vera-Hidalgo M., López-Moreno A., Casado S., González L. R., Sawada H., González-Calbet J. M., Pérez E. M. Nat. Commun. 2018;9:2671. PubMed PMC

Song Y., Qu K., Zhao C., Ren J., Qu X. Adv. Mater. 2010;22:2206–2210. PubMed

Wu K.-H., Wang D.-W., Zong X., Zhang B., Liu Y., Gentle I. R., Su D.-S. J. Mater. Chem. A. 2017;5:3239–3248.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...