Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32055319
PubMed Central
PMC6991185
DOI
10.1039/c9sc02954k
PII: c9sc02954k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Graphene oxide, the most prominent carbocatalyst for several oxidation reactions, has severe limitations due to the overstoichiometric amounts required to achieve practical conversions. Graphene acid, a well-defined graphene derivative selectively and homogeneously covered by carboxylic groups but maintaining the high electronic conductivity of pristine graphene, sets new activity limits in the selective and general oxidation of a large gamut of alcohols, even working at 5 wt% loading for at least 10 reaction cycles without any influence from metal impurities. According to experimental data and first principles calculations, the selective and dense functionalization with carboxyl groups, combined with excellent electron transfer properties, accounts for the unprecedented catalytic activity of this graphene derivative. Moreover, the controlled structure of graphene acid allows shedding light upon the critical steps of the reaction and regulating precisely its selectivity toward different oxidation products.
Zobrazit více v PubMed
Su C., Loh K. P. Acc. Chem. Res. 2013;46:2275–2285. PubMed
Dreyer D. R., Bielawski C. W. Chem. Sci. 2011;2:1233–1240.
De S., Balu A. M., van der Waal J. C., Luque R. ChemCatChem. 2015;7:1608–1629.
Liu X., Dai L. Nat. Rev. Mater. 2016;1:16064.
Monai M., Melchionna M. and Fornasiero P., in Advances in Catalysis, ed. C. Song, Academic Press, 2018, vol. 63, pp. 1–73.
Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Chem. Rev. 2014;114:6179–6212. PubMed
Chen J., Yao B., Li C., Shi G. Carbon. 2013;64:225–229.
Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S. Adv. Mater. 2015;22:3906–3924. PubMed
Lerf A., He H., Foster M., Klinowski J. J. Phys. Chem. B. 1998;1998:4477–4482.
Dreyer D. R., Jia H.-P., Bielawski C. W. Angew. Chem., Int. Ed. 2010;49:6813–6816. PubMed
Jia H.-P., Dreyer D. R., Bielawski C. W. Tetrahedron. 2011;67:4431–4434.
Jia H.-P., Dreyer D. R., Bielawski C. W. Adv. Synth. Catal. 2011;353:528–532.
Kumar A. V., Rao K. R. Tetrahedron Lett. 2011;52:5188–5191.
Islam S. M., Roy A. S., Dey R. C., Paul S. J. Mol. Catal. A: Chem. 2014;394:66–73.
Su D. S., Perathoner S., Centi G. Chem. Rev. 2013;113:5782–5816. PubMed
Presolski S., Pumera M. Angew. Chem., Int. Ed. 2018;57:16713–16715. PubMed
Vinod C. P., Wilson K., Lee A. F. J. Chem. Technol. Biotechnol. 2010;86:161–171.
Rahimi A., Azarpira A., Kim H., Ralph J., Stahl S. S. J. Am. Chem. Soc. 2013;135:6415–6418. PubMed
Aellig C., Girard C., Hermans I. Angew. Chem., Int. Ed. 2011;50:12355–12360. PubMed
Kuang Y., Islam N. M., Nabae Y., Hayakawa T., Kakimoto M.-a. Angew. Chem., Int. Ed. 2010;122:446–450. PubMed
Cui Y., Lee Y. H., Yang J. W. Sci. Rep. 2017;7:3146. PubMed PMC
Joshi S. R., Kataria K. L., Sawant S. B., Joshi J. B. Ind. Eng. Chem. Res. 2005;44:325–333.
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M. ACS Nano. 2017;11:2982–2991. PubMed PMC
Pykal M., Jurečk P., Karlický F., Otyepka M. Phys. Chem. Chem. Phys. 2016;18:6351–6372. PubMed
Matochova D., Medveď M., Bakandritsos A., Stekly T., Zboril R., Otyepka M. J. Phys. Chem. Lett. 2018;9:3580–3585. PubMed PMC
Mosconi D., Blanco M., Gatti T., Calvillo L., Otyepka M., Bakandritsos A., Menna E., Agnoli S., Granozzi G. Carbon. 2019;143:318–328.
Carraro F., Calvillo L., Cattelan M., Favaro M., Righetto M., Nappini S., Píš I., Celorrio V., Fermín D. J., Martucci A., Agnoli S., Granozzi G. ACS Appl. Mater. Interfaces. 2015;7:25685–25692. PubMed
Frisch M., et al, Gaussian 09.D01, Gaussian, Inc., Wallingord, CT, 2009.
Ditchfield R., Herhe W. J., Pople J. A. J. Chem. Phys. 1971;54:724–728.
Chai J.-D., Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed
Marenich A. V., Cramer C. J., Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed
Carraro F., Calvillo L., Cattelan M., Favaro M., Righetto M., Nappini S., Píš I., Celorrio V., Fermín D. J., Martucci A., Agnoli S., Granozzi G. ACS Appl. Mater. Interfaces. 2015;7:25685–25692. PubMed
Favaro M., Agnoli S., Valentin C. D., Mattevi C., Cattelan M., Artiglia L., Magnano E., Bondino F., Nappini S., Granozzi G. Carbon. 2014;68:319–329.
Chua C. K., Pumera M. Chem. Soc. Rev. 2014;43:291–312. PubMed
Balandin A. A. Nat. Mater. 2011;10:569–581. PubMed
Larsen J. W., Freund M., Kim K. Y., Sidovar M., Stuart J. L. Carbon. 2000;38:655–661.
Blanco M., Nieto-Ortega B., Juan A. d., Vera-Hidalgo M., López-Moreno A., Casado S., González L. R., Sawada H., González-Calbet J. M., Pérez E. M. Nat. Commun. 2018;9:2671. PubMed PMC
Song Y., Qu K., Zhao C., Ren J., Qu X. Adv. Mater. 2010;22:2206–2210. PubMed
Wu K.-H., Wang D.-W., Zong X., Zhang B., Liu Y., Gentle I. R., Su D.-S. J. Mater. Chem. A. 2017;5:3239–3248.
New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative