Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31912737
PubMed Central
PMC7009173
DOI
10.1021/acsami.9b18922
Knihovny.cz E-zdroje
- Klíčová slova
- PGM-free fuel cells, bio-inspired catalysis, graphenic acid, molecular HOR, molecular electrocatalysis, non-covalent catalyst immobilization,
- Publikační typ
- časopisecké články MeSH
Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm-2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst.
Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
Univ Grenoble Alpes CEA CNRS IRIG SYMMES F 38000 Grenoble France
Zobrazit více v PubMed
Armaroli N.; Balzani V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36. 10.1002/cssc.201000182. PubMed DOI
Staffell I.; Scamman D.; Velazquez Abad A.; Balcombe P.; Dodds P. E.; Ekins P.; Shah N.; Ward K. R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. 10.1039/c8ee01157e. DOI
Gordon R. B.; Bertram M.; Graedel T. E. Metal Stocks and Sustainability. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1209–1214. 10.1073/pnas.0509498103. PubMed DOI PMC
Sealy C. The Problem with Platinum. Mater. Today 2008, 11, 65–68. 10.1016/s1369-7021(08)70254-2. DOI
Brouzgou A.; Song S. Q.; Tsiakaras P. Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects. Appl. Catal., B 2012, 127, 371–388. 10.1016/j.apcatb.2012.08.031. DOI
Jaouen F.; Jones D.; Coutard N.; Artero V.; Strasser P.; Kucernak A. Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells. Johnson Matthey Technol. Rev. 2018, 62, 231–255. 10.1595/205651318x696828. DOI
Sheng W.; Bivens A. P.; Myint M.; Zhuang Z.; Forest R. V.; Fang Q.; Chen J. G.; Yan Y. Non-Precious Metal Electrocatalysts with High Activity for Hydrogen Oxidation Reaction in Alkaline Electrolytes. Energy Environ. Sci. 2014, 7, 1719–1724. 10.1039/c3ee43899f. DOI
Zhuang Z.; Giles S. A.; Zheng J.; Jenness G. R.; Caratzoulas S.; Vlachos D. G.; Yan Y. Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte. Nat. Commun. 2016, 7, 10141.10.1038/ncomms10141. PubMed DOI PMC
Davydova E. S.; Speck F. D.; Paul M. T. Y.; Dekel D. R.; Cherevko S. Stability Limits of Ni-Based Hydrogen Oxidation Electrocatalysts for Anion Exchange Membrane Fuel Cells. ACS Catal. 2019, 9, 6837–6845. 10.1021/acscatal.9b01582. DOI
Palanker V. S.; Gajyev R. A.; Sokolsky D. V. On Adsorption and Electro-Oxidation of Some Compounds on Tungsten Carbide; Their Effect on Hydrogen Electro-Oxidation. Electrochim. Acta 1977, 22, 133–136. 10.1016/0013-4686(77)85025-1. DOI
McIntyre D. R.; Burstein G. T.; Vossen A. Effect of Carbon Monoxide on the Electrooxidation of Hydrogen by Tungsten Carbide. J. Power Sources 2002, 107, 67–73. 10.1016/s0378-7753(01)00987-9. DOI
Nagai M.; Yoshida M.; Tominaga H. Tungsten and Nickel Tungsten Carbides as Anode Electrocatalysts. Electrochim. Acta 2007, 52, 5430–5436. 10.1016/j.electacta.2007.02.065. DOI
Izhar S.; Nagai M. Cobalt Molybdenum Carbides as Anode Electrocatalyst for Proton Exchange Membrane Fuel Cell. J. Power Sources 2008, 182, 52–60. 10.1016/j.jpowsour.2008.03.084. DOI
Izhar S.; Yoshida M.; Nagai M. Characterization and Performances of Cobalt–tungsten and Molybdenum–tungsten Carbides as Anode Catalyst for PEFC. Electrochim. Acta 2009, 54, 1255–1262. 10.1016/j.electacta.2008.08.049. DOI
Fontecilla-Camps J. C.; Volbeda A.; Cavazza C.; Nicolet Y. Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem. Rev. 2007, 107, 4273–4303. 10.1021/cr050195z. PubMed DOI
Vincent K. A.; Parkin A.; Armstrong F. A. Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases. Chem. Rev. 2007, 107, 4366–4413. 10.1021/cr050191u. PubMed DOI
Lubitz W.; Ogata H.; Rüdiger O.; Reijerse E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. 10.1021/cr4005814. PubMed DOI
Xu L.; Armstrong F. A. Optimizing the Power of Enzyme-Based Membrane-Less Hydrogen Fuel Cells for Hydrogen-Rich H2–air Mixtures. Energy Environ. Sci. 2013, 6, 2166–2171. 10.1039/c3ee40791h. DOI
Lalaoui N.; de Poulpiquet A.; Haddad R.; Le Goff A.; Holzinger M.; Gounel S.; Mermoux M.; Infossi P.; Mano N.; Lojou E.; Cosnier S. A Membraneless Air-Breathing Hydrogen Biofuel Cell Based on Direct Wiring of Thermostable Enzymes on Carbon Nanotube Electrodes. Chem. Commun. 2015, 51, 7447–7450. 10.1039/c5cc02166a. PubMed DOI
So K.; Kitazumi Y.; Shirai O.; Nishikawa K.; Higuchi Y.; Kano K. Direct Electron Transfer-Type Dual Gas Diffusion H2/O2 Biofuel Cells. J. Mater. Chem. A 2016, 4, 8742–8749. 10.1039/c6ta02654k. DOI
Plumeré N.; Rüdiger O.; Oughli A. A.; Williams R.; Vivekananthan J.; Pöller S.; Schuhmann W.; Lubitz W. A Redox Hydrogel Protects Hydrogenase from High-Potential Deactivation and Oxygen Damage. Nat. Chem. 2014, 6, 822–827. 10.1038/nchem.2022. PubMed DOI
Fourmond V.; Stapf S.; Li H.; Buesen D.; Birrell J.; Rüdiger O.; Lubitz W.; Schuhmann W.; Plumeré N.; Léger C. Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films. J. Am. Chem. Soc. 2015, 137, 5494–5505. 10.1021/jacs.5b01194. PubMed DOI
Oughli A. A.; Conzuelo F.; Winkler M.; Happe T.; Lubitz W.; Schuhmann W.; Rüdiger O.; Plumeré N. A Redox Hydrogel Protects the O2-Sensitive [FeFe]-Hydrogenase from Chlamydomonas Reinhardtii from Oxidative Damage. Angew. Chem., Int. Ed. 2015, 54, 12329–12333. 10.1002/anie.201502776. PubMed DOI
Ciaccafava A.; Infossi P.; Ilbert M.; Guiral M.; Lecomte S.; Giudici-Orticoni M. T.; Lojou E. Electrochemistry, AFM, and PM-IRRA Spectroscopy of Immobilized Hydrogenase: Role of a Hydrophobic Helix in Enzyme Orientation for Efficient H2 Oxidation. Angew. Chem. 2012, 124, 977–980. 10.1002/ange.201107053. PubMed DOI
Monsalve K.; Mazurenko I.; Gutierrez-Sanchez C.; Ilbert M.; Infossi P.; Frielingsdorf S.; Giudici-Orticoni M. T.; Lenz O.; Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016, 3, 2179–2188. 10.1002/celc.201600460. DOI
Gentil S.; Che Mansor S. M.; Jamet H.; Cosnier S.; Cavazza C.; Le Goff A. Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. ACS Catal. 2018, 8, 3957–3964. 10.1021/acscatal.8b00708. DOI
Alonso-Lomillo M. A.; Rüdiger O.; Maroto-Valiente A.; Velez M.; Rodríguez-Ramos I.; Muñoz F. J.; Fernández V. M.; De Lacey A. L. Hydrogenase-Coated Carbon Nanotubes for Efficient H2 Oxidation. Nano Lett. 2007, 7, 1603–1608. 10.1021/nl070519u. PubMed DOI
Mazurenko I.; Monsalve K.; Infossi P.; Giudici-Orticoni M.-T.; Topin F.; Mano N.; Lojou E. Impact of Substrate Diffusion and Enzyme Distribution in 3D-Porous Electrodes: A Combined Electrochemical and Modelling Study of a Thermostable H 2 /O 2 Enzymatic Fuel Cell. Energy Environ. Sci. 2017, 10, 1966–1982. 10.1039/c7ee01830d. DOI
Curtis C. J.; Miedaner A.; Ciancanelli R.; Ellis W. W.; Noll B. C.; Rakowski DuBois M.; DuBois D. L. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a Functional Model for Hydrogenases. Inorg. Chem. 2003, 42, 216–227. 10.1021/ic020610v. PubMed DOI
Gloaguen F.; Rauchfuss T. B. Small Molecule Mimics of Hydrogenases: Hydrides and Redox. Chem. Soc. Rev. 2008, 38, 100–108. 10.1039/b801796b. PubMed DOI PMC
Liu T.; DuBois D. L.; Bullock R. M. An Iron Complex with Pendent Amines as a Molecular Electrocatalyst for Oxidation of Hydrogen. Nat. Chem. 2013, 5, 228–233. 10.1038/nchem.1571. PubMed DOI
Schilter D.; Camara J. M.; Huynh M. T.; Hammes-Schiffer S.; Rauchfuss T. B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem. Rev. 2016, 116, 8693–8749. 10.1021/acs.chemrev.6b00180. PubMed DOI PMC
Brazzolotto D.; Gennari M.; Queyriaux N.; Simmons T. R.; Pécaut J.; Demeshko S.; Meyer F.; Orio M.; Artero V.; Duboc C. Nickel-Centred Proton Reduction Catalysis in a Model of [NiFe] Hydrogenase. Nat. Chem. 2016, 8, 1054.10.1038/nchem.2575. PubMed DOI PMC
Wilson A. D.; Newell R. H.; McNevin M. J.; Muckerman J. T.; Rakowski DuBois M.; DuBois D. L. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays. J. Am. Chem. Soc. 2006, 128, 358–366. 10.1021/ja056442y. PubMed DOI
DuBois M. R.; DuBois D. L. The Roles of the First and Second Coordination Spheres in the Design of Molecular Catalysts for H2 Production and Oxidation. Chem. Soc. Rev. 2008, 38, 62–72. 10.1039/b801197b. PubMed DOI
Smith S. E.; Yang J. Y.; DuBois D. L.; Bullock R. M. Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic. Angew. Chem., Int. Ed. 2012, 51, 3152–3155. 10.1002/anie.201108461. PubMed DOI
Wilson A. D.; Shoemaker R. K.; Miedaner A.; Muckerman J. T.; DuBois D. L.; DuBois M. R. Nature of Hydrogen Interactions with Ni(II) Complexes Containing Cyclic Phosphine Ligands with Pendant Nitrogen Bases. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6951–6956. 10.1073/pnas.0608928104. PubMed DOI PMC
DuBois D. L.; Bullock R. M. Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen – The Role of Pendant Amines as Proton Relays. Eur. J. Inorg. Chem. 2011, 1017–1027. 10.1002/ejic.201001081. DOI
O’Hagan M.; Shaw W. J.; Raugei S.; Chen S.; Yang J. Y.; Kilgore U. J.; DuBois D. L.; Bullock R. M. Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen. J. Am. Chem. Soc. 2011, 133, 14301–14312. 10.1021/ja201838x. PubMed DOI
O’Hagan M.; Ho M.-H.; Yang J. Y.; Appel A. M.; DuBois M. R.; Raugei S.; Shaw W. J.; DuBois D. L.; Bullock R. M. Proton Delivery and Removal in [Ni(PR2NR′2)2]2+ Hydrogen Production and Oxidation Catalysts. J. Am. Chem. Soc. 2012, 134, 19409–19424. 10.1021/ja307413x. PubMed DOI
Ginovska-Pangovska B.; Dutta A.; Reback M. L.; Linehan J. C.; Shaw W. J. Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation. Acc. Chem. Res. 2014, 47, 2621–2630. 10.1021/ar5001742. PubMed DOI
Jain A.; Lense S.; Linehan J. C.; Raugei S.; Cho H.; DuBois D. L.; Shaw W. J. Incorporating Peptides in the Outer-Coordination Sphere of Bioinspired Electrocatalysts for Hydrogen Production. Inorg. Chem. 2011, 50, 4073–4085. 10.1021/ic1025872. PubMed DOI
Jain A.; Reback M. L.; Lindstrom M. L.; Thogerson C. E.; Helm M. L.; Appel A. M.; Shaw W. J. Investigating the Role of the Outer-Coordination Sphere in [Ni(PPh2NPh-R2)2]2+ Hydrogenase Mimics. Inorg. Chem. 2012, 51, 6592–6602. 10.1021/ic300149x. PubMed DOI
Dutta A.; Lense S.; Hou J.; Engelhard M. H.; Roberts J. A. S.; Shaw W. J. Minimal Proton Channel Enables H2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst. J. Am. Chem. Soc. 2013, 135, 18490–18496. 10.1021/ja407826d. PubMed DOI
Dutta A.; DuBois D. L.; Roberts J. A. S.; Shaw W. J. Amino Acid Modified Ni Catalyst Exhibits Reversible H2 Oxidation/Production over a Broad PH Range at Elevated Temperatures. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 16286–16291. 10.1073/pnas.1416381111. PubMed DOI PMC
Dutta A.; Roberts J. A. S.; Shaw W. J. Arginine-Containing Ligands Enhance H2 Oxidation Catalyst Performance. Angew. Chem., Int. Ed. 2014, 53, 6487–6491. 10.1002/anie.201402304. PubMed DOI
Dutta A.; Ginovska B.; Raugei S.; Roberts J. A. S.; Shaw W. J. Optimizing Conditions for Utilization of an H2 Oxidation Catalyst with Outer Coordination Sphere Functionalities. Dalton Trans. 2016, 45, 9786–9793. 10.1039/c6dt00280c. PubMed DOI
Li F.; Yang H.; Li W.; Sun L. Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering. Joule 2018, 2, 36–60. 10.1016/j.joule.2017.10.012. DOI
Coutard N.; Kaeffer N.; Artero V. Molecular Engineered Nanomaterials for Catalytic Hydrogen Evolution and Oxidation. Chem. Commun. 2016, 52, 13728–13748. 10.1039/c6cc06311j. PubMed DOI
Bullock R. M.; Das A. K.; Appel A. M. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chem.—Eur. J. 2017, 23, 7626–7641. 10.1002/chem.201605066. PubMed DOI
Dalle K. E.; Warnan J.; Leung J. J.; Reuillard B.; Karmel I. S.; Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 2019, 119, 2752–2875. 10.1021/acs.chemrev.8b00392. PubMed DOI PMC
Blakemore J. D.; Gupta A.; Warren J. J.; Brunschwig B. S.; Gray H. B. Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production. J. Am. Chem. Soc. 2013, 135, 18288–18291. 10.1021/ja4099609. PubMed DOI
Downes C. A.; Marinescu S. C. Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal–Organic Surface. J. Am. Chem. Soc. 2015, 137, 13740–13743. 10.1021/jacs.5b07020. PubMed DOI
Hanna C. M.; Sanborn C. D.; Ardo S.; Yang J. Y. Interfacial Electron Transfer of Ferrocene Immobilized onto Indium Tin Oxide through Covalent and Noncovalent Interactions. ACS Appl. Mater. Interfaces 2018, 10, 13211–13217. 10.1021/acsami.8b01219. PubMed DOI
Hanna C. M.; Luu A.; Yang J. Y. Proton-Coupled Electron Transfer at Anthraquinone Modified Indium Tin Oxide Electrodes. ACS Appl. Energy Mater. 2019, 2, 59–65. 10.1021/acsaem.8b01568. DOI
Wadsworth B. L.; Khusnutdinova D.; Urbine J. M.; Reyes A. S.; Moore G. F. Expanding the Redox Range of Surface-Immobilized Metallocomplexes Using Molecular Interfaces. ACS Appl. Mater. Interfaces 2019, 10.1021/acsami.9b15286. PubMed DOI
Maurin A.; Robert M. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO2-to-CO Conversion in Water. J. Am. Chem. Soc. 2016, 138, 2492–2495. 10.1021/jacs.5b12652. PubMed DOI
Reuillard B.; Warnan J.; Leung J. J.; Wakerley D. W.; Reisner E. A Poly(Cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymer-Enhanced H2-Evolution Performance. Angew. Chem., Int. Ed. 2016, 55, 3952–3957. 10.1002/anie.201511378. PubMed DOI PMC
Kaeffer N.; Morozan A.; Fize J.; Martinez E.; Guetaz L.; Artero V. The Dark Side of Molecular Catalysis: Diimine–Dioxime Cobalt Complexes Are Not the Actual Hydrogen Evolution Electrocatalyst in Acidic Aqueous Solutions. ACS Catal. 2016, 6, 3727–3737. 10.1021/acscatal.6b00378. DOI
Beiler A. M.; Khusnutdinova D.; Wadsworth B. L.; Moore G. F. Cobalt Porphyrin–Polypyridyl Surface Coatings for Photoelectrosynthetic Hydrogen Production. Inorg. Chem. 2017, 56, 12178–12185. 10.1021/acs.inorgchem.7b01509. PubMed DOI
Zhanaidarova A.; Jones S. C.; Despagnet-Ayoub E.; Pimentel B. R.; Kubiak C. P. Re(TBu-Bpy)(CO)3Cl Supported on Multi-Walled Carbon Nanotubes Selectively Reduces CO2 in Water. J. Am. Chem. Soc. 2019, 141, 17270–17277. 10.1021/jacs.9b08445. PubMed DOI
Kramer W. W.; McCrory C. C. L. Polymer Coordination Promotes Selective CO2 Reduction by Cobalt Phthalocyanine. Chem. Sci. 2016, 7, 2506–2515. 10.1039/c5sc04015a. PubMed DOI PMC
Reuillard B.; Ly K. H.; Rosser T. E.; Kuehnel M. F.; Zebger I.; Reisner E. Tuning Product Selectivity for Aqueous CO2 Reduction with a Mn(Bipyridine)-Pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. J. Am. Chem. Soc. 2017, 139, 14425–14435. 10.1021/jacs.7b06269. PubMed DOI PMC
Leung J. J.; Vigil J. A.; Warnan J.; Edwardes Moore E.; Reisner E. Rational Design of Polymers for Selective CO2 Reduction Catalysis. Angew. Chem. 2019, 131, 7779–7783. 10.1002/ange.201902218. PubMed DOI
Goff A. L.; Artero V.; Jousselme B.; Tran P. D.; Guillet N.; Métayé R.; Fihri A.; Palacin S.; Fontecave M. From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H2 Production and Uptake. Science 2009, 326, 1384–1387. 10.1126/science.1179773. PubMed DOI
Tran P. D.; Le Goff A.; Heidkamp J.; Jousselme B.; Guillet N.; Palacin S.; Dau H.; Fontecave M.; Artero V. Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake. Angew. Chem. 2011, 123, 1407–1410. 10.1002/ange.201005427. PubMed DOI
Rodriguez-Maciá P.; Dutta A.; Lubitz W.; Shaw W. J.; Rüdiger O.; Guetaz P. D. Direct Comparison of the Performance of a Bio-Inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes. Angew. Chem., Int. Ed. 2015, 54, 12303–12307. 10.1002/anie.201502364. PubMed DOI
Huan T. N.; Benayad R. T.; Artero V.; Tran D.; Artero V. Bio-Inspired Noble Metal-Free Nanomaterials Approaching Platinum Performances for H 2 Evolution and Uptake. Energy Environ. Sci. 2016, 9, 940–947. 10.1039/c5ee02739j. DOI
Gentil S.; Lalaoui N.; Dutta A.; Nedellec Y.; Cosnier S.; Shaw W. J.; Artero V.; Le Goff A. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angew. Chem., Int. Ed. 2017, 56, 1845–1849. 10.1002/anie.201611532. PubMed DOI
Oughli A. A.; Ruff A.; Boralugodage N. P.; Rodríguez-Maciá P.; Plumeré N.; Lubitz W.; Shaw W. J.; Schuhmann W.; Rüdiger O. Dual Properties of a Hydrogen Oxidation Ni-Catalyst Entrapped within a Polymer Promote Self-Defense against Oxygen. Nat. Commun. 2018, 9, 864.10.1038/s41467-018-03011-7. PubMed DOI PMC
Tran P. D.; Morozan A.; Archambault S.; Heidkamp J.; Chenevier P.; Dau H.; Fontecave M.; Martinent A.; Jousselme B.; Artero V. A Noble Metal-Free Proton-Exchange Membrane Fuel Cell Based on Bio-Inspired Molecular Catalysts. Chem. Sci. 2015, 6, 2050–2053. 10.1039/c4sc03774j. PubMed DOI PMC
Gentil S.; Molloy J. K.; Carrière M.; Hobballah A.; Dutta A.; Cosnier S.; Shaw W. J.; Gellon G.; Belle C.; Artero V.; Thomas F.; Le Goff A. A Nanotube-Supported Dicopper Complex Enhances Pt-Free Molecular H2/Air Fuel Cells. Joule 2019, 3, 2020–2029. 10.1016/j.joule.2019.07.001. DOI
Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Mosconi D.; Blanco M.; Gatti T.; Calvillo L.; Otyepka M.; Bakandritsos A.; Menna E.; Agnoli S.; Granozzi G. Arene CH Insertion Catalyzed by Ferrocene Covalently Heterogenized on Graphene Acid. Carbon 2019, 143, 318–328. 10.1016/j.carbon.2018.11.010. DOI
Blanco M.; Mosconi D.; Tubaro C.; Biffis A.; Badocco D.; Pastore P.; Otyepka M.; Bakandritsos A.; Liu Z.; Ren W.; Agnoli S.; Granozzi G. Palladium Nanoparticles Supported on Graphene Acid: A Stable and Eco-Friendly Bifunctional C–C Homo- and Cross-Coupling Catalyst. Green Chem. 2019, 21, 5238–5247. 10.1039/c9gc01436e. DOI
Blanco M.; Mosconi D.; Otyepka M.; Medved′ M.; Bakandritsos A.; Agnoli S.; Granozzi G. Combined High Degree of Carboxylation and Electronic Conduction in Graphene Acid Sets New Limits for Metal Free Catalysis in Alcohol Oxidation. Chem. Sci. 2019, 10, 9438–9445. 10.1039/c9sc02954k. PubMed DOI PMC
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative