Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation

. 2020 Feb 05 ; 12 (5) : 5805-5811. [epub] 20200122

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31912737

Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm-2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst.

Zobrazit více v PubMed

Armaroli N.; Balzani V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36. 10.1002/cssc.201000182. PubMed DOI

Staffell I.; Scamman D.; Velazquez Abad A.; Balcombe P.; Dodds P. E.; Ekins P.; Shah N.; Ward K. R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. 10.1039/c8ee01157e. DOI

Gordon R. B.; Bertram M.; Graedel T. E. Metal Stocks and Sustainability. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1209–1214. 10.1073/pnas.0509498103. PubMed DOI PMC

Sealy C. The Problem with Platinum. Mater. Today 2008, 11, 65–68. 10.1016/s1369-7021(08)70254-2. DOI

Brouzgou A.; Song S. Q.; Tsiakaras P. Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects. Appl. Catal., B 2012, 127, 371–388. 10.1016/j.apcatb.2012.08.031. DOI

Jaouen F.; Jones D.; Coutard N.; Artero V.; Strasser P.; Kucernak A. Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells. Johnson Matthey Technol. Rev. 2018, 62, 231–255. 10.1595/205651318x696828. DOI

Sheng W.; Bivens A. P.; Myint M.; Zhuang Z.; Forest R. V.; Fang Q.; Chen J. G.; Yan Y. Non-Precious Metal Electrocatalysts with High Activity for Hydrogen Oxidation Reaction in Alkaline Electrolytes. Energy Environ. Sci. 2014, 7, 1719–1724. 10.1039/c3ee43899f. DOI

Zhuang Z.; Giles S. A.; Zheng J.; Jenness G. R.; Caratzoulas S.; Vlachos D. G.; Yan Y. Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte. Nat. Commun. 2016, 7, 10141.10.1038/ncomms10141. PubMed DOI PMC

Davydova E. S.; Speck F. D.; Paul M. T. Y.; Dekel D. R.; Cherevko S. Stability Limits of Ni-Based Hydrogen Oxidation Electrocatalysts for Anion Exchange Membrane Fuel Cells. ACS Catal. 2019, 9, 6837–6845. 10.1021/acscatal.9b01582. DOI

Palanker V. S.; Gajyev R. A.; Sokolsky D. V. On Adsorption and Electro-Oxidation of Some Compounds on Tungsten Carbide; Their Effect on Hydrogen Electro-Oxidation. Electrochim. Acta 1977, 22, 133–136. 10.1016/0013-4686(77)85025-1. DOI

McIntyre D. R.; Burstein G. T.; Vossen A. Effect of Carbon Monoxide on the Electrooxidation of Hydrogen by Tungsten Carbide. J. Power Sources 2002, 107, 67–73. 10.1016/s0378-7753(01)00987-9. DOI

Nagai M.; Yoshida M.; Tominaga H. Tungsten and Nickel Tungsten Carbides as Anode Electrocatalysts. Electrochim. Acta 2007, 52, 5430–5436. 10.1016/j.electacta.2007.02.065. DOI

Izhar S.; Nagai M. Cobalt Molybdenum Carbides as Anode Electrocatalyst for Proton Exchange Membrane Fuel Cell. J. Power Sources 2008, 182, 52–60. 10.1016/j.jpowsour.2008.03.084. DOI

Izhar S.; Yoshida M.; Nagai M. Characterization and Performances of Cobalt–tungsten and Molybdenum–tungsten Carbides as Anode Catalyst for PEFC. Electrochim. Acta 2009, 54, 1255–1262. 10.1016/j.electacta.2008.08.049. DOI

Fontecilla-Camps J. C.; Volbeda A.; Cavazza C.; Nicolet Y. Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem. Rev. 2007, 107, 4273–4303. 10.1021/cr050195z. PubMed DOI

Vincent K. A.; Parkin A.; Armstrong F. A. Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases. Chem. Rev. 2007, 107, 4366–4413. 10.1021/cr050191u. PubMed DOI

Lubitz W.; Ogata H.; Rüdiger O.; Reijerse E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. 10.1021/cr4005814. PubMed DOI

Xu L.; Armstrong F. A. Optimizing the Power of Enzyme-Based Membrane-Less Hydrogen Fuel Cells for Hydrogen-Rich H2–air Mixtures. Energy Environ. Sci. 2013, 6, 2166–2171. 10.1039/c3ee40791h. DOI

Lalaoui N.; de Poulpiquet A.; Haddad R.; Le Goff A.; Holzinger M.; Gounel S.; Mermoux M.; Infossi P.; Mano N.; Lojou E.; Cosnier S. A Membraneless Air-Breathing Hydrogen Biofuel Cell Based on Direct Wiring of Thermostable Enzymes on Carbon Nanotube Electrodes. Chem. Commun. 2015, 51, 7447–7450. 10.1039/c5cc02166a. PubMed DOI

So K.; Kitazumi Y.; Shirai O.; Nishikawa K.; Higuchi Y.; Kano K. Direct Electron Transfer-Type Dual Gas Diffusion H2/O2 Biofuel Cells. J. Mater. Chem. A 2016, 4, 8742–8749. 10.1039/c6ta02654k. DOI

Plumeré N.; Rüdiger O.; Oughli A. A.; Williams R.; Vivekananthan J.; Pöller S.; Schuhmann W.; Lubitz W. A Redox Hydrogel Protects Hydrogenase from High-Potential Deactivation and Oxygen Damage. Nat. Chem. 2014, 6, 822–827. 10.1038/nchem.2022. PubMed DOI

Fourmond V.; Stapf S.; Li H.; Buesen D.; Birrell J.; Rüdiger O.; Lubitz W.; Schuhmann W.; Plumeré N.; Léger C. Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films. J. Am. Chem. Soc. 2015, 137, 5494–5505. 10.1021/jacs.5b01194. PubMed DOI

Oughli A. A.; Conzuelo F.; Winkler M.; Happe T.; Lubitz W.; Schuhmann W.; Rüdiger O.; Plumeré N. A Redox Hydrogel Protects the O2-Sensitive [FeFe]-Hydrogenase from Chlamydomonas Reinhardtii from Oxidative Damage. Angew. Chem., Int. Ed. 2015, 54, 12329–12333. 10.1002/anie.201502776. PubMed DOI

Ciaccafava A.; Infossi P.; Ilbert M.; Guiral M.; Lecomte S.; Giudici-Orticoni M. T.; Lojou E. Electrochemistry, AFM, and PM-IRRA Spectroscopy of Immobilized Hydrogenase: Role of a Hydrophobic Helix in Enzyme Orientation for Efficient H2 Oxidation. Angew. Chem. 2012, 124, 977–980. 10.1002/ange.201107053. PubMed DOI

Monsalve K.; Mazurenko I.; Gutierrez-Sanchez C.; Ilbert M.; Infossi P.; Frielingsdorf S.; Giudici-Orticoni M. T.; Lenz O.; Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016, 3, 2179–2188. 10.1002/celc.201600460. DOI

Gentil S.; Che Mansor S. M.; Jamet H.; Cosnier S.; Cavazza C.; Le Goff A. Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. ACS Catal. 2018, 8, 3957–3964. 10.1021/acscatal.8b00708. DOI

Alonso-Lomillo M. A.; Rüdiger O.; Maroto-Valiente A.; Velez M.; Rodríguez-Ramos I.; Muñoz F. J.; Fernández V. M.; De Lacey A. L. Hydrogenase-Coated Carbon Nanotubes for Efficient H2 Oxidation. Nano Lett. 2007, 7, 1603–1608. 10.1021/nl070519u. PubMed DOI

Mazurenko I.; Monsalve K.; Infossi P.; Giudici-Orticoni M.-T.; Topin F.; Mano N.; Lojou E. Impact of Substrate Diffusion and Enzyme Distribution in 3D-Porous Electrodes: A Combined Electrochemical and Modelling Study of a Thermostable H 2 /O 2 Enzymatic Fuel Cell. Energy Environ. Sci. 2017, 10, 1966–1982. 10.1039/c7ee01830d. DOI

Curtis C. J.; Miedaner A.; Ciancanelli R.; Ellis W. W.; Noll B. C.; Rakowski DuBois M.; DuBois D. L. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a Functional Model for Hydrogenases. Inorg. Chem. 2003, 42, 216–227. 10.1021/ic020610v. PubMed DOI

Gloaguen F.; Rauchfuss T. B. Small Molecule Mimics of Hydrogenases: Hydrides and Redox. Chem. Soc. Rev. 2008, 38, 100–108. 10.1039/b801796b. PubMed DOI PMC

Liu T.; DuBois D. L.; Bullock R. M. An Iron Complex with Pendent Amines as a Molecular Electrocatalyst for Oxidation of Hydrogen. Nat. Chem. 2013, 5, 228–233. 10.1038/nchem.1571. PubMed DOI

Schilter D.; Camara J. M.; Huynh M. T.; Hammes-Schiffer S.; Rauchfuss T. B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem. Rev. 2016, 116, 8693–8749. 10.1021/acs.chemrev.6b00180. PubMed DOI PMC

Brazzolotto D.; Gennari M.; Queyriaux N.; Simmons T. R.; Pécaut J.; Demeshko S.; Meyer F.; Orio M.; Artero V.; Duboc C. Nickel-Centred Proton Reduction Catalysis in a Model of [NiFe] Hydrogenase. Nat. Chem. 2016, 8, 1054.10.1038/nchem.2575. PubMed DOI PMC

Wilson A. D.; Newell R. H.; McNevin M. J.; Muckerman J. T.; Rakowski DuBois M.; DuBois D. L. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays. J. Am. Chem. Soc. 2006, 128, 358–366. 10.1021/ja056442y. PubMed DOI

DuBois M. R.; DuBois D. L. The Roles of the First and Second Coordination Spheres in the Design of Molecular Catalysts for H2 Production and Oxidation. Chem. Soc. Rev. 2008, 38, 62–72. 10.1039/b801197b. PubMed DOI

Smith S. E.; Yang J. Y.; DuBois D. L.; Bullock R. M. Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic. Angew. Chem., Int. Ed. 2012, 51, 3152–3155. 10.1002/anie.201108461. PubMed DOI

Wilson A. D.; Shoemaker R. K.; Miedaner A.; Muckerman J. T.; DuBois D. L.; DuBois M. R. Nature of Hydrogen Interactions with Ni(II) Complexes Containing Cyclic Phosphine Ligands with Pendant Nitrogen Bases. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6951–6956. 10.1073/pnas.0608928104. PubMed DOI PMC

DuBois D. L.; Bullock R. M. Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen – The Role of Pendant Amines as Proton Relays. Eur. J. Inorg. Chem. 2011, 1017–1027. 10.1002/ejic.201001081. DOI

O’Hagan M.; Shaw W. J.; Raugei S.; Chen S.; Yang J. Y.; Kilgore U. J.; DuBois D. L.; Bullock R. M. Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen. J. Am. Chem. Soc. 2011, 133, 14301–14312. 10.1021/ja201838x. PubMed DOI

O’Hagan M.; Ho M.-H.; Yang J. Y.; Appel A. M.; DuBois M. R.; Raugei S.; Shaw W. J.; DuBois D. L.; Bullock R. M. Proton Delivery and Removal in [Ni(PR2NR′2)2]2+ Hydrogen Production and Oxidation Catalysts. J. Am. Chem. Soc. 2012, 134, 19409–19424. 10.1021/ja307413x. PubMed DOI

Ginovska-Pangovska B.; Dutta A.; Reback M. L.; Linehan J. C.; Shaw W. J. Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation. Acc. Chem. Res. 2014, 47, 2621–2630. 10.1021/ar5001742. PubMed DOI

Jain A.; Lense S.; Linehan J. C.; Raugei S.; Cho H.; DuBois D. L.; Shaw W. J. Incorporating Peptides in the Outer-Coordination Sphere of Bioinspired Electrocatalysts for Hydrogen Production. Inorg. Chem. 2011, 50, 4073–4085. 10.1021/ic1025872. PubMed DOI

Jain A.; Reback M. L.; Lindstrom M. L.; Thogerson C. E.; Helm M. L.; Appel A. M.; Shaw W. J. Investigating the Role of the Outer-Coordination Sphere in [Ni(PPh2NPh-R2)2]2+ Hydrogenase Mimics. Inorg. Chem. 2012, 51, 6592–6602. 10.1021/ic300149x. PubMed DOI

Dutta A.; Lense S.; Hou J.; Engelhard M. H.; Roberts J. A. S.; Shaw W. J. Minimal Proton Channel Enables H2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst. J. Am. Chem. Soc. 2013, 135, 18490–18496. 10.1021/ja407826d. PubMed DOI

Dutta A.; DuBois D. L.; Roberts J. A. S.; Shaw W. J. Amino Acid Modified Ni Catalyst Exhibits Reversible H2 Oxidation/Production over a Broad PH Range at Elevated Temperatures. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 16286–16291. 10.1073/pnas.1416381111. PubMed DOI PMC

Dutta A.; Roberts J. A. S.; Shaw W. J. Arginine-Containing Ligands Enhance H2 Oxidation Catalyst Performance. Angew. Chem., Int. Ed. 2014, 53, 6487–6491. 10.1002/anie.201402304. PubMed DOI

Dutta A.; Ginovska B.; Raugei S.; Roberts J. A. S.; Shaw W. J. Optimizing Conditions for Utilization of an H2 Oxidation Catalyst with Outer Coordination Sphere Functionalities. Dalton Trans. 2016, 45, 9786–9793. 10.1039/c6dt00280c. PubMed DOI

Li F.; Yang H.; Li W.; Sun L. Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering. Joule 2018, 2, 36–60. 10.1016/j.joule.2017.10.012. DOI

Coutard N.; Kaeffer N.; Artero V. Molecular Engineered Nanomaterials for Catalytic Hydrogen Evolution and Oxidation. Chem. Commun. 2016, 52, 13728–13748. 10.1039/c6cc06311j. PubMed DOI

Bullock R. M.; Das A. K.; Appel A. M. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chem.—Eur. J. 2017, 23, 7626–7641. 10.1002/chem.201605066. PubMed DOI

Dalle K. E.; Warnan J.; Leung J. J.; Reuillard B.; Karmel I. S.; Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 2019, 119, 2752–2875. 10.1021/acs.chemrev.8b00392. PubMed DOI PMC

Blakemore J. D.; Gupta A.; Warren J. J.; Brunschwig B. S.; Gray H. B. Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production. J. Am. Chem. Soc. 2013, 135, 18288–18291. 10.1021/ja4099609. PubMed DOI

Downes C. A.; Marinescu S. C. Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal–Organic Surface. J. Am. Chem. Soc. 2015, 137, 13740–13743. 10.1021/jacs.5b07020. PubMed DOI

Hanna C. M.; Sanborn C. D.; Ardo S.; Yang J. Y. Interfacial Electron Transfer of Ferrocene Immobilized onto Indium Tin Oxide through Covalent and Noncovalent Interactions. ACS Appl. Mater. Interfaces 2018, 10, 13211–13217. 10.1021/acsami.8b01219. PubMed DOI

Hanna C. M.; Luu A.; Yang J. Y. Proton-Coupled Electron Transfer at Anthraquinone Modified Indium Tin Oxide Electrodes. ACS Appl. Energy Mater. 2019, 2, 59–65. 10.1021/acsaem.8b01568. DOI

Wadsworth B. L.; Khusnutdinova D.; Urbine J. M.; Reyes A. S.; Moore G. F. Expanding the Redox Range of Surface-Immobilized Metallocomplexes Using Molecular Interfaces. ACS Appl. Mater. Interfaces 2019, 10.1021/acsami.9b15286. PubMed DOI

Maurin A.; Robert M. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO2-to-CO Conversion in Water. J. Am. Chem. Soc. 2016, 138, 2492–2495. 10.1021/jacs.5b12652. PubMed DOI

Reuillard B.; Warnan J.; Leung J. J.; Wakerley D. W.; Reisner E. A Poly(Cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymer-Enhanced H2-Evolution Performance. Angew. Chem., Int. Ed. 2016, 55, 3952–3957. 10.1002/anie.201511378. PubMed DOI PMC

Kaeffer N.; Morozan A.; Fize J.; Martinez E.; Guetaz L.; Artero V. The Dark Side of Molecular Catalysis: Diimine–Dioxime Cobalt Complexes Are Not the Actual Hydrogen Evolution Electrocatalyst in Acidic Aqueous Solutions. ACS Catal. 2016, 6, 3727–3737. 10.1021/acscatal.6b00378. DOI

Beiler A. M.; Khusnutdinova D.; Wadsworth B. L.; Moore G. F. Cobalt Porphyrin–Polypyridyl Surface Coatings for Photoelectrosynthetic Hydrogen Production. Inorg. Chem. 2017, 56, 12178–12185. 10.1021/acs.inorgchem.7b01509. PubMed DOI

Zhanaidarova A.; Jones S. C.; Despagnet-Ayoub E.; Pimentel B. R.; Kubiak C. P. Re(TBu-Bpy)(CO)3Cl Supported on Multi-Walled Carbon Nanotubes Selectively Reduces CO2 in Water. J. Am. Chem. Soc. 2019, 141, 17270–17277. 10.1021/jacs.9b08445. PubMed DOI

Kramer W. W.; McCrory C. C. L. Polymer Coordination Promotes Selective CO2 Reduction by Cobalt Phthalocyanine. Chem. Sci. 2016, 7, 2506–2515. 10.1039/c5sc04015a. PubMed DOI PMC

Reuillard B.; Ly K. H.; Rosser T. E.; Kuehnel M. F.; Zebger I.; Reisner E. Tuning Product Selectivity for Aqueous CO2 Reduction with a Mn(Bipyridine)-Pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. J. Am. Chem. Soc. 2017, 139, 14425–14435. 10.1021/jacs.7b06269. PubMed DOI PMC

Leung J. J.; Vigil J. A.; Warnan J.; Edwardes Moore E.; Reisner E. Rational Design of Polymers for Selective CO2 Reduction Catalysis. Angew. Chem. 2019, 131, 7779–7783. 10.1002/ange.201902218. PubMed DOI

Goff A. L.; Artero V.; Jousselme B.; Tran P. D.; Guillet N.; Métayé R.; Fihri A.; Palacin S.; Fontecave M. From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H2 Production and Uptake. Science 2009, 326, 1384–1387. 10.1126/science.1179773. PubMed DOI

Tran P. D.; Le Goff A.; Heidkamp J.; Jousselme B.; Guillet N.; Palacin S.; Dau H.; Fontecave M.; Artero V. Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake. Angew. Chem. 2011, 123, 1407–1410. 10.1002/ange.201005427. PubMed DOI

Rodriguez-Maciá P.; Dutta A.; Lubitz W.; Shaw W. J.; Rüdiger O.; Guetaz P. D. Direct Comparison of the Performance of a Bio-Inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes. Angew. Chem., Int. Ed. 2015, 54, 12303–12307. 10.1002/anie.201502364. PubMed DOI

Huan T. N.; Benayad R. T.; Artero V.; Tran D.; Artero V. Bio-Inspired Noble Metal-Free Nanomaterials Approaching Platinum Performances for H 2 Evolution and Uptake. Energy Environ. Sci. 2016, 9, 940–947. 10.1039/c5ee02739j. DOI

Gentil S.; Lalaoui N.; Dutta A.; Nedellec Y.; Cosnier S.; Shaw W. J.; Artero V.; Le Goff A. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angew. Chem., Int. Ed. 2017, 56, 1845–1849. 10.1002/anie.201611532. PubMed DOI

Oughli A. A.; Ruff A.; Boralugodage N. P.; Rodríguez-Maciá P.; Plumeré N.; Lubitz W.; Shaw W. J.; Schuhmann W.; Rüdiger O. Dual Properties of a Hydrogen Oxidation Ni-Catalyst Entrapped within a Polymer Promote Self-Defense against Oxygen. Nat. Commun. 2018, 9, 864.10.1038/s41467-018-03011-7. PubMed DOI PMC

Tran P. D.; Morozan A.; Archambault S.; Heidkamp J.; Chenevier P.; Dau H.; Fontecave M.; Martinent A.; Jousselme B.; Artero V. A Noble Metal-Free Proton-Exchange Membrane Fuel Cell Based on Bio-Inspired Molecular Catalysts. Chem. Sci. 2015, 6, 2050–2053. 10.1039/c4sc03774j. PubMed DOI PMC

Gentil S.; Molloy J. K.; Carrière M.; Hobballah A.; Dutta A.; Cosnier S.; Shaw W. J.; Gellon G.; Belle C.; Artero V.; Thomas F.; Le Goff A. A Nanotube-Supported Dicopper Complex Enhances Pt-Free Molecular H2/Air Fuel Cells. Joule 2019, 3, 2020–2029. 10.1016/j.joule.2019.07.001. DOI

Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC

Mosconi D.; Blanco M.; Gatti T.; Calvillo L.; Otyepka M.; Bakandritsos A.; Menna E.; Agnoli S.; Granozzi G. Arene CH Insertion Catalyzed by Ferrocene Covalently Heterogenized on Graphene Acid. Carbon 2019, 143, 318–328. 10.1016/j.carbon.2018.11.010. DOI

Blanco M.; Mosconi D.; Tubaro C.; Biffis A.; Badocco D.; Pastore P.; Otyepka M.; Bakandritsos A.; Liu Z.; Ren W.; Agnoli S.; Granozzi G. Palladium Nanoparticles Supported on Graphene Acid: A Stable and Eco-Friendly Bifunctional C–C Homo- and Cross-Coupling Catalyst. Green Chem. 2019, 21, 5238–5247. 10.1039/c9gc01436e. DOI

Blanco M.; Mosconi D.; Otyepka M.; Medved′ M.; Bakandritsos A.; Agnoli S.; Granozzi G. Combined High Degree of Carboxylation and Electronic Conduction in Graphene Acid Sets New Limits for Metal Free Catalysis in Alcohol Oxidation. Chem. Sci. 2019, 10, 9438–9445. 10.1039/c9sc02954k. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...