Effect of Cellular and Microenvironmental Multidrug Resistance on Tumor-Targeted Drug Delivery in Triple-Negative Breast cancer
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
864121
European Research Council - International
PubMed
36599395
PubMed Central
PMC7614501
DOI
10.1016/j.jconrel.2022.12.056
PII: S0168-3659(22)00870-7
Knihovny.cz E-zdroje
- Klíčová slova
- Drug targeting, EPR effect, Multidrug resistance, Nanomedicine, Tumor microenvironment,
- MeSH
- chemorezistence MeSH
- doxorubicin MeSH
- lidé MeSH
- liposomy MeSH
- mnohočetná léková rezistence MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nádory prsu * MeSH
- polymery farmakologie MeSH
- triple-negativní karcinom prsu * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- liposomy MeSH
- polymery MeSH
Multidrug resistance (MDR) reduces the efficacy of chemotherapy. Besides inducing the expression of drug efflux pumps, chemotherapy treatment alters the composition of the tumor microenvironment (TME), thereby potentially limiting tumor-directed drug delivery. To study the impact of MDR signaling in cancer cells on TME remodeling and nanomedicine delivery, we generated multidrug-resistant 4T1 triple-negative breast cancer (TNBC) cells by exposing sensitive 4T1 cells to gradually increasing doxorubicin concentrations. In 2D and 3D cell cultures, resistant 4T1 cells are presented with a more mesenchymal phenotype and produced increased amounts of collagen. While sensitive and resistant 4T1 cells showed similar tumor growth kinetics in vivo, the TME of resistant tumors was enriched in collagen and fibronectin. Vascular perfusion was also significantly increased. Fluorophore-labeled polymeric (∼10 nm) and liposomal (∼100 nm) drug carriers were administered to mice with resistant and sensitive tumors. Their tumor accumulation and penetration were studied using multimodal and multiscale optical imaging. At the whole tumor level, polymers accumulate more efficiently in resistant than in sensitive tumors. For liposomes, the trend was similar, but the differences in tumor accumulation were insignificant. At the individual blood vessel level, both polymers and liposomes were less able to extravasate out of the vasculature and penetrate the interstitium in resistant tumors. In a final in vivo efficacy study, we observed a stronger inhibitory effect of cellular and microenvironmental MDR on liposomal doxorubicin performance than free doxorubicin. These results exemplify that besides classical cellular MDR, microenvironmental drug resistance features should be considered when aiming to target and treat multidrug-resistant tumors more efficiently.
Zobrazit více v PubMed
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature reviews Clinical oncology. 2017;14:611–629. PubMed PMC
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nature reviews cancer. 2002;2:48–58. PubMed
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews Cancer. 2018;18:452–464. PubMed PMC
Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22:7468–7485. PubMed
Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced drug delivery reviews. 2013;65:1784–1802. PubMed
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature reviews Drug discovery. 2008;7:771–782. PubMed
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. Journal of controlled release. 2012;161:175–187. PubMed
Pattanshetty R, Rao MS. Cancer-related fibrosis: Prevention or treatment?–A descriptive review. Journal of Dr. NTR University of Health Sciences. 2021;10:222.
Czubryt MP. Common threads in cardiac fibrosis, infarct scar formation, and wound healing. Fibrogenesis & tissue repair. 2012;5:1–11. PubMed PMC
Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ. The processes and mechanisms of cardiac and pulmonary fibrosis. Frontiers in physiology. 2017;8:777. PubMed PMC
Januchowski R, Zawierucha P, Ruciński M, Nowicki M, Zabel M. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. BioMed research international. 2014:2314–6133. PubMed PMC
Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Al Mazeedi MA, Almazyadi HA, Kallmeyer K, Dandara C, Pepper MS. The role of tumor microenvironment in chemoresistance: to survive keep your enemies closer. International journal of molecular sciences. 2017;18:1586. PubMed PMC
Theek B, Baues M, Gremse F, Pola R, Pechar M, Negwer I, Koynov K, Weber B, Barz M, Jahnen-Dechent W. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. Journal of controlled release. 2018;282:25–34. PubMed PMC
Ergen C, Heymann F, Gremse F, Bartneck M, Panzer U, Pola R, Pechar M, Storm G, Mohr N, Barz M. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials. 2017;114:106–120. PubMed
Doube M, Kłosowski MM, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010;47:1076–1079. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012;9:676–682. PubMed PMC
Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Scientific reports. 2018;8:1–14. PubMed PMC
Schrörs B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtsträter C, Ritzel C, Manninen K, Tadmor AD, Vormehr M. Multi-omics characterization of the 4T1 murine mammary gland tumor model. Frontiers in oncology. 2020;10:1195. PubMed PMC
Gibalová L, Šereš M, Rusnák A, Ditte P, Labudová M, Uhrík B, Pastorek J, Sedlák J, Breier A, Sulová Z. P-glycoprotein depresses cisplatin sensitivity in L1210 cells by inhibiting cisplatin-induced caspase-3 activation. Toxicology in Vitro. 2012;26:435–444. PubMed
Li F, Zhou X, Zhou H, Jia J, Li L, Zhai S, Yan B. Reducing both Pgp overexpression and drug efflux with anti-cancer gold-paclitaxel nanoconjugates. PLoS One. 2016;11:1932–6203. PubMed PMC
Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Tagde P, Ahmed Z, Khan FS. Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life. 2022;12:897. PubMed PMC
Tezcan O, Gündüz U. Vimentin silencing effect on invasive and migration characteristics of doxorubicin resistant MCF-7 cells. Biomedicine & Pharmacotherapy. 2014;68:357–364. PubMed
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiological reviews. 2006;86:1179–1236. PubMed
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nature reviews Drug discovery. 2006;5:219–234. PubMed
Shi J, Liu W, Fu Y, Yin N, Zhang H, Chang J, Zhang Z. US-detonated nano bombs, facilitate targeting treatment of resistant breast cancer. Journal of Controlled Release. 2018;274:9–23. PubMed
Liu J, Zhu C, Xu L, Wang D, Liu W, Zhang K, Zhang Z, Shi J. Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells. Nano Letters. 2020;20:8102–8111. PubMed
Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP. Differentiation state and invasiveness of human breast cancer cell lines. Breast cancer research and treatment. 1994;31:325–335. PubMed
Işeri ÖD, Kars MD, Arpaci F, Atalay C, Pak I, Gündüz U. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomedicine & Pharmacotherapy. 2011;65:40–45. PubMed
Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC cancer. 2012;12:1–10. PubMed PMC
Li Q-Q, Xu J-D, Wang W-J, Cao X-X, Chen Q, Tang F, Chen Z-Q, Liu X-P, Xu Z-D. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clinical cancer research. 2009;15:2657–2665. PubMed
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins; Seminars in cancer biology; Elsevier; 2020. pp. 166–181. PubMed
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Advanced drug delivery reviews. 2022:114504. PubMed
Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of surgical oncology. 2007;14:3629–3637. PubMed
Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R, Gray MJ, Cheng H, Hoff PM, Ellis LM. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clinical cancer research. 2006;12:4147–4153. PubMed
Konecny G, Venkatesan N, Yang G, Dering J, Ginther C, Finn R, Rahmeh M, Fejzo MS, Toft D, Jiang S. Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. British journal of cancer. 2008;98:1076–1084. PubMed PMC
Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang L-H. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer research. 2007;67:1979–1987. PubMed
Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, Kikkawa F. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. International journal of oncology. 2007;31:277–283. PubMed
Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell and tissue research. 2016;365:495–506. PubMed PMC
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of clinical investigation. 2003;112:1776–1784. PubMed PMC
Peng DH, Ungewiss C, Tong P, Byers LA, Wang J, Canales JR, Villalobos PA, Uraoka N, Mino B, Behrens C. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene. 2017;36:1925–1938. PubMed PMC
Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S, Zhou X, Cai S, Tu Y, McCoy A, Peoples M. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Science translational medicine. 2019;11:1946–6234. PubMed PMC
Tezcan O, Ojha T, Storm G, Kiessling F, Lammers T. Targeting cellular and microenvironmental multidrug resistance. Expert opinion on drug delivery. 2016;13:1199–1202. PubMed PMC
Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. Journal of controlled release. 2012;162:45–55. PubMed
Zhang L, Wang Y, Yang Y, Liu Y, Ruan S, Zhang Q, Tai X, Chen J, Xia T, Qiu Y. High tumor penetration of paclitaxel loaded pH sensitive cleavable liposomes by depletion of tumor collagen I in breast cancer. ACS applied materials & interfaces. 2015;7:9691–9701. PubMed
Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA oncology. 2019;5:1020–1027. PubMed PMC