Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review

. 2024 ; 19 () : 5637-5680. [epub] 20240611

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38882538

Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.

Zobrazit více v PubMed

European Commission Eurostat. Causes of Death Statistics; 2024. doi:10.2908/HLTH_CD_ASDR2 DOI

World Health Organization. Global health estimates: leading causes of death; 2020. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Accessed April 11, 2024.

World Health Organization. Cancer; 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed April 11, 2024.

Australian Institute of Health and Welfare. Deaths in Australia; 2023. Available from: https://www.aihw.gov.au/reports/life-expectancy-deaths/deaths-in-australia/contents/leading-causes-of-death. Accessed April 11, 2024.

Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol. 2019;8(1):1497–1509. doi:10.1016/J.JMRT.2018.03.007 DOI

Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience. 2016:6. doi:10.3332/ecancer.2012.ed16 PubMed DOI PMC

Liao JB. Viruses and Human Cancer. Eur J Cancer. 2006;79:1171. PubMed PMC

Parsonnet J. Bacterial Infection as a Cause of Cancer. Environ Health Perspectives. 1995;103(suppl 8):263. PubMed PMC

National Cancer Institute. Side Effects of Cancer Treatment; 2018. Available from: https://www.cancer.gov/about-cancer/treatment/side-effects. Accessed April 11, 2024.

Kwok KK, Vincent EC, Gibson JN. Antineoplastic Drugs. Pharmacology and Therapeutics for Dentistry. Seventh Edition. 2017;530–562. doi:10.1016/B978-0-323-39307-2.00036-9 DOI

Ngov L, Levin D. Chemotherapy Basics for Hospitalists. Hosp Med Clin. 2016;5(1):85–100. doi:10.1016/j.ehmc.2015.08.008 DOI

Yang CY, Shiranthika C, Wang CY, Chen KW, Sumathipala S. Reinforcement learning strategies in cancer chemotherapy treatments: a review. Comput Methods Programs Biomed. 2023;229. doi:10.1016/j.cmpb.2022.107280 PubMed DOI

Chen HHW, Kuo MT. Improving Radiotherapy in Cancer Treatment. Promises and Challenges. 2017. www.impactjournals.com/oncotarget. PubMed PMC

Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16(4):234–249. doi:10.1038/nrc.2016.18 PubMed DOI

Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60. doi:10.1016/j.canlet.2011.12.012 PubMed DOI PMC

Richardson RB, Harper ME Mitochondrial Stress Controls the Radiosensitivity of the Oxygen Effect: implications for Radiotherapy. Vol 7. Available from: www.impactjournals.com/oncotarget/. Accessed June 1, 2024. PubMed PMC

Tateishi Y, Sasabe E, Ueta E, Yamamoto T. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation. Biochem Biophys Res Commun. 2008;366(2):301–307. doi:10.1016/j.bbrc.2007.11.039 PubMed DOI

Kufe M DW, Pollock MP RE, Weichselbaum M RR, et al. Holland‐Frei Cancer Medicine. Wiley; 2016. doi:10.1002/9781119000822 DOI

National Cancer Institute. Surgery to Treat Cancer; 2015. Available from: https://www.cancer.gov/about-cancer/treatment/types/surgery. Accessed April 11, 2024.

Sabnis AJ, Bivona TG. Principles of Resistance to Targeted Cancer Therapy: lessons from Basic and Translational Cancer Biology. Trends Mol Med. 2019;25(3):185–197. doi:10.1016/j.molmed.2018.12.009 PubMed DOI PMC

Zargar A, Chang S, Kothari A, et al. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy. Chronic Dis Transl Med. 2019;5(4):258–266. doi:10.1016/j.cdtm.2019.11.001 PubMed DOI PMC

Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. Adv. Mater. 2019;31(9):662. doi:10.1002/adma.201800662 PubMed DOI

Saha S, Pradhan N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: investigating the causes for this agility. Semin Cancer Biol. 2023;88:138–156. doi:10.1016/j.semcancer.2022.12.005 PubMed DOI

Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer. 2020;122(4):465–472. doi:10.1038/s41416-019-0648-6 PubMed DOI PMC

Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489–499. doi:10.1038/s41586-019-1411-0 PubMed DOI

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726. doi:10.1038/nrc3599 PubMed DOI

Huang S. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. Prog Biophys Mol Biol. 2012;110(1):69–86. doi:10.1016/j.pbiomolbio.2012.05.001 PubMed DOI

Bell CC, Fennell KA, Chan YC, et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat Commun. 2019;10(1):652. doi:10.1038/s41467-019-10652-9 PubMed DOI PMC

Brock A, Chang H, Huang S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet. 2009;10(5):336–342. doi:10.1038/nrg2556 PubMed DOI

Hata AN, Niederst MJ, Archibald HL, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016;22(3):262–269. doi:10.1038/nm.4040 PubMed DOI PMC

Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol. 2019;16(9):549–562. doi:10.1038/s41571-019-0204-6 PubMed DOI PMC

Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol. 2021;11. doi:10.3389/fonc.2021.732081 PubMed DOI PMC

Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol. 2014;355:10–20. doi:10.1016/j.jtbi.2014.02.025 PubMed DOI PMC

Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med. 2017;7(7):1–14. doi:10.1101/cshperspect.a026781 PubMed DOI PMC

Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012;12(7):487–493. doi:10.1038/nrc3298 PubMed DOI PMC

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. doi:10.1038/nrclinonc.2017.166 PubMed DOI

Guo X, Gao C, Yang DH, Li S. Exosomal circular RNAs: a chief culprit in cancer chemotherapy resistance. Drug Resist Updates. 2023;67. doi:10.1016/j.drup.2023.100937 PubMed DOI

Khan FH, Reza MJ, Shao YF, et al. Role of exosomes in lung cancer: a comprehensive insight from immunomodulation to theragnostic applications. Biochim Biophys Acta Rev Cancer. 2022;1877(5):776. doi:10.1016/j.bbcan.2022.188776 PubMed DOI

Raguz S, Yagüe E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer. 2008;99(3):387–391. doi:10.1038/sj.bjc.6604510 PubMed DOI PMC

Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–425. doi:10.1038/nrc3958 PubMed DOI PMC

Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int J Mol Sci. 2019;20(13):3212. doi:10.3390/ijms20133212 PubMed DOI PMC

Krishnaswami V, Natarajan B, Sethuraman V, Natesan S, RajSelvaraj B. Nano based photodynamic therapy to target tumor microenvironment. Nano Trends. 2023;1:100003. doi:10.1016/j.nwnano.2023.100003 DOI

Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther. 2010;7(2):61–75. doi:10.1016/j.pdpdt.2010.02.001 PubMed DOI

Piette J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobiol Sci. 2015;14(8):1510–1517. doi:10.1039/c4pp00465e PubMed DOI

Berg K. Resistance mechanisms in photodynamic therapy. Photochem Photobiol Sci. 2015;14(8):1376–1377. doi:10.1039/c5pp90026c PubMed DOI

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013 PubMed DOI

Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of Resistance to Photodynamic Therapy. Curr Med Chem. 2011;18(16):2486. PubMed PMC

Fokas E, McKenna WG, Muschel RJ. The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev. 2012;31(3–4):823–842. doi:10.1007/s10555-012-9394-4 PubMed DOI

Casas A, Perotti C, Di Venosa G, Batlle A. Mechanisms of Resistance to Photodynamic Therapy: an Update. J Med. 2015:29–63. doi:10.1007/978-3-319-12730-9_2 DOI

Giuliani C, Bucci I, Napolitano G. The role of the transcription factor Nuclear Factor-kappa B in thyroid autoimmunity and cancer. Front Endocrinol (Lausanne). 2018;9(AUG):471. doi:10.3389/fendo.2018.00471 PubMed DOI PMC

Duan X, Chen B, Cui Y, et al. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis. 2018;23(11–12):587–606. doi:10.1007/s10495-018-1489-0 PubMed DOI

Thorburn A, Debnath J. Targeting chaperone-mediated autophagy in cancer. Sci Transl Med. 2011;3(109):3390. doi:10.1126/scitranslmed.3003390 PubMed DOI

Garg AD, Maes H, Romano E, Agostinis P. Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy. Photochem Photobiol Sci. 2015;14(8):1410–1424. doi:10.1039/c4pp00466c PubMed DOI

Garg AD, Agostinis P. Autophagy Induced by Photodynamic Therapy (PDT): shaping Resistance Against Cell Death and Anti-Tumor Immunity. Resistance Photodynamic Therapy Cancer. 2015:99–116. doi:10.1007/978-3-319-12730-9_4 DOI

Firczuk M, Gabrysiak M, Golab J. GRP78-targeting Sensitizes Cancer Cells to Cytotoxic Effects of Photodynamic Therapy. Resistance Photodynamic Therapy Cancer. 2015:149–161. doi:10.1007/978-3-319-12730-9_6 DOI

Toussaint M, Barberi-Heyob M, Pinel S, Frochot C. How Nanoparticles Can Solve Resistance and Limitation in PDT Efficiency. Resistance Photodynamic Therapy Cancer. 2015:197–211. doi:10.1007/978-3-319-12730-9_9 DOI

Rivarola VA, Cogno IS. Optimization of Photodynamic Therapy Response by Survivin Gene. Resistance Photodynamic Therapy Cancer. 2015:163–182. doi:10.1007/978-3-319-12730-9_7 PubMed DOI

Dong D, Ko B, Baumeister P, et al. Vascular Targeting and Antiangiogenesis Agents Induce Drug Resistance Effector GRP78 within the Tumor Microenvironment. Available from: http://cancerres.aacrjournals.org/. Accessed June 1, 2024. PubMed

Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 2006;66(16):7849–7853. doi:10.1158/0008-5472.CAN-06-1660 PubMed DOI

Pyrko P, Schöntha AH, Hofman FM, Chen TC, Lee AS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 2007;67(20):9809–9816. doi:10.1158/0008-5472.CAN-07-0625 PubMed DOI

Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC. A new family of potent AB5 cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med. 2004;200(1):35–46. doi:10.1084/jem.20040392 PubMed DOI PMC

Byres E, Paton AW, Paton JC, et al. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature. 2008;456(7222):648–652. doi:10.1038/nature07428 PubMed DOI PMC

Li F, Ackermann EJ, Bennett CF, et al. Pleiotropic Cell-Division Defects and Apoptosis Induced by Interference with Survivin Function. Resistance Photodynamic Therapy Cancer. 1999;1. PubMed

Konan N, Gurny R, Allemann E State of the Art in the Delivery of Photosensitizers for Photodynamic Therapy. Vol 66; 2002. Available from: www.elsevier.com/locate/jphotobiol. Accessed June 1, 2024. PubMed

Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5(8):497–508. doi:10.1016/S1470-2045(04)01529-3 PubMed DOI

Kachatkou D, Sasnouski S, Zorin V, et al. Unusual photoinduced response of mTHPC liposomal formulation (foslip). Photochem Photobiol. 2009;85(3):719–724. doi:10.1111/j.1751-1097.2008.00466.x PubMed DOI

Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1590. doi:10.1002/wnan.1590 PubMed DOI

Aghebati-Maleki A, Dolati S, Ahmadi M, et al. Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol. 2020;235(3):1962–1972. doi:10.1002/jcp.29126 PubMed DOI

Karra N, Benita S. The Ligand Nanoparticle Conjugation Approach for Targeted Cancer Therapy. Resistance Photodynamic Therapy Cancer. 2012;13. PubMed

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: a Review; 2000. Available from: www.elsevier.com/locate/jconrel. Accessed June 1, 2024. PubMed

Master A, Malamas A, Solanki R, Clausen DM, Eiseman JL, Sen Gupta A. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol Pharm. 2013;10(5):1988–1997. doi:10.1021/mp400007k PubMed DOI PMC

Gary-Bobo M, Hocine O, Brevet D, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423(2):509–515. doi:10.1016/j.ijpharm.2011.11.045 PubMed DOI

Trivedi DN, Rachchh NV. Graphene and its application in thermoplastic polymers as nano-filler- A review. Polymer (Guildf). 2022;240. doi:10.1016/j.polymer.2021.124486 DOI

Foo CY, Fu RZ. Unravelling the potential of graphene in glioblastoma therapy. Mater Sci Eng C. 2021;128. doi:10.1016/j.msec.2021.112330 PubMed DOI

Ajala OJ, Tijani JO, Bankole MT, Abdulkareem AS. A critical review on graphene oxide nanostructured material: properties, Synthesis, characterization and application in water and wastewater treatment. Environ Nanotechnol Monit Manag. 2022;18. doi:10.1016/j.enmm.2022.100673 DOI

Wang K, Ruan J, Song H, et al. Biocompatibility of Graphene Oxide. Nanoscale Res Lett. 2011;6(1):1–8. doi:10.1007/s11671-010-9751-6 PubMed DOI PMC

Morales-Narváez E, Sgobbi LF, Machado SAS, Merkoçi A. Graphene-encapsulated materials: synthesis, applications and trends. Prog Mater Sci. 2017;86:1–24. doi:10.1016/j.pmatsci.2017.01.001 DOI

Kurian M. Recent progress in the chemical reduction of graphene oxide by green reductants–A Mini review. Carbon Trends. 2021;5. doi:10.1016/j.cartre.2021.100120 DOI

Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK. Surface modifications and analytical applications of graphene oxide: a review. TrAC - Trends Anal Chem. 2021;144. doi:10.1016/j.trac.2021.116448 DOI

Kim T, Jung G, Yoo S, Suh KS, Ruoff RS. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano. 2013;7(8):6899–6905. doi:10.1021/nn402077v PubMed DOI

Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem Rev. 2016;116(9):5464–5519. doi:10.1021/acs.chemrev.5b00620 PubMed DOI

Dhamodharan D, Ghoderao PP, Dhinakaran V, Mubarak S, Divakaran N, Byun HS. A review on graphene oxide effect in energy storage devices. J Ind Eng Chem. 2022;106:20–36. doi:10.1016/j.jiec.2021.10.033 DOI

Berrio ME, Oñate A, Salas A, Fernández K, Meléndrez MF. Synthesis and applications of graphene oxide aerogels in bone tissue regeneration: a review. Mater Today Chem. 2021;20. doi:10.1016/j.mtchem.2021.100422 DOI

Ikram R, Jan BM, Ahmad W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. J Mater Res Technol. 2020;9(5):11587–11610. doi:10.1016/j.jmrt.2020.08.050 DOI

Qi X, Jiang F, Zhou M, Zhang W, Jiang X. Graphene oxide as a promising material in dentistry and tissue regeneration: a review. Smart Mater Med. 2021;2:280–291. doi:10.1016/j.smaim.2021.08.001 DOI

Fahmi T, Branch LD, Nima ZA, et al. Mechanism of graphene-induced cytotoxicity: role of endonucleases. J Appl Toxicol. 2017;37(11):1325–1332. doi:10.1002/jat.3462 PubMed DOI

Chaudhary K, Kumar K, Venkatesu P, Masram DT. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: influence over activity, structural and thermal stability of protein. Adv Colloid Interface Sci. 2021;289. doi:10.1016/j.cis.2021.102367 PubMed DOI

Feng W, Wang Z. Biomedical applications of chitosan-graphene oxide nanocomposites. Iscience. 2022:26. doi:10.1016/j.isci PubMed DOI PMC

Liu S, Zeng TH, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–6980. doi:10.1021/nn202451x PubMed DOI

Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. J Am Chem Soc. 2008;130(48):16201–16206. doi:10.1021/ja806499w PubMed DOI

Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–212. doi:10.1007/s12274-008-8021-8 PubMed DOI PMC

Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008;8(2):586–590. doi:10.1021/nl072949q PubMed DOI

Zhu Y, James DK, Tour JM. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012;24(36):4924–4955. doi:10.1002/adma.201202321 PubMed DOI

Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci. 2014;7(5):1564–1596. doi:10.1039/c3ee43385d DOI

Depan D, Misra RDK. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes. Nanoscale. 2012;4(20):6325–6335. doi:10.1039/c2nr31345f PubMed DOI

Cui X, Cheng W, Xu W, Mu W, Han X. Functional Graphene Derivatives for Chemotherapy-Based Synergistic Tumor Therapy. Nano. 2019;14(11):68. doi:10.1142/S1793292019300068 DOI

Akhavan O, Bijanzad K, Mirsepah A. Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv. 2014;4(39):20441–20448. doi:10.1039/c4ra01550a DOI

Korkmaz S, Kariper A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J Energy Storage. 2020;27. doi:10.1016/j.est.2019.101038 DOI

Servant A, Leon V, Jasim D, et al. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv Healthc Mater. 2014;3(8):1334–1343. doi:10.1002/adhm.201400016 PubMed DOI

Colmiais I, Silva V, Borme J, Alpuim P, Mendes PM. Towards RF graphene devices: a review. FlatChem. 2022;35. doi:10.1016/j.flatc.2022.100409 DOI

Al NA, Lee JE, Jeong JH, Park SY. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery. Biomacromolecules. 2013;14(11):4082–4090. doi:10.1021/bm4012166 PubMed DOI

Dembereldorj U, Kim M, Kim S, Ganbold E-O, Lee SY, Joo S-W. A spatiotemporal anticancer drug release platform of PEGylated graphene oxide triggered by glutathione in vitro and in vivo. J Mater Chem. 2012;22(45):23845–23851. doi:10.1039/c2jm34853e DOI

Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132–145. doi:10.1021/cr900070d PubMed DOI

Geim AK Graphene: status and Prospects. Available from: www.sciencemag.org. Accessed June 1, 2024. PubMed

Talukdar Y, Rashkow JT, Lalwani G, Kanakia S, Sitharaman B. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials. 2014;35(18):4863–4877. doi:10.1016/j.biomaterials.2014.02.054 PubMed DOI PMC

Chen YW, Su YL, Hu SH, Chen SY. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev. 2016;105:190–204. doi:10.1016/j.addr.2016.05.022 PubMed DOI

Li R, Tian Y, Zhu B, et al. Graphene-containing metal-organic framework nanocomposites for enhanced microwave ablation of salivary adenoid cystic carcinoma. Nanoscale Adv. 2022;4(5):1308–1317. doi:10.1039/d1na00729g PubMed DOI PMC

Son IH, Park JH, Park S, et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat Commun. 2017;8(1):1561. doi:10.1038/s41467-017-01823-7 PubMed DOI PMC

Saba N, Jawaid M. Energy and environmental applications of graphene and its derivatives. In: Polymer-Based Nanocomposites for Energy and Environmental Applications: A Volume in Woodhead Publishing Series in Composites Science and Engineering. University of Ottawa Press; 2018:106–129. doi:10.1016/B978-0-08-102262-7.00004-0 DOI

Novoselov KS, Geim AK, Morozov SV, et al. Electric field in atomically thin carbon films. Science (1979). 2004;306(5696):666–669. doi:10.1126/science.1102896 PubMed DOI

Bai L, Li Z, Zhang Y, et al. Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem Eng J. 2015;279:757–766. doi:10.1016/j.cej.2015.05.068 DOI

Ren S, Rong P, Yu Q. Preparations, properties and applications of graphene in functional devices: a concise review. Ceram Int. 2018;44(11):11940–11955. doi:10.1016/j.ceramint.2018.04.089 DOI

Xiong X, Huang B, Wei X, Wang L, Zhang L. Research of graphene preparation methods. In: Lecture Notes in Electrical Engineering. Vol. 477. Springer Verlag;2018:963–971. doi:10.1007/978-981-10-7629-9_120 DOI

Novoselov KS, Fal’Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192–200. doi:10.1038/nature11458 PubMed DOI

Uhl FM, Wilkie CA. Preparation of nanocomposites from styrene and modified graphite oxides. Polym Degrad Stab. 2004;84(2):215–226. doi:10.1016/j.polymdegradstab.2003.10.014 DOI

Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci Rep. 2016;6. doi:10.1038/srep36143 PubMed DOI PMC

Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y. 2013;53:38–49. doi:10.1016/j.carbon.2012.10.013 DOI

Ding R, Li W, Wang X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J Alloys Compd. 2018;764:1039–1055. doi:10.1016/j.jallcom.2018.06.133 DOI

Donarelli M, Ottaviano L. 2d materials for gas sensing applications: a review on graphene oxide, mos2, ws2 and phosphorene. Sensors (Switzerland). 2018;18(11):3638. doi:10.3390/s18113638 PubMed DOI PMC

Wei Y, Zhang Y, Gao X, Ma Z, Wang X, Gao C. Multilayered graphene oxide membrane for water treatment: a review. Carbon N Y. 2018;139:964–981. doi:10.1016/j.carbon.2018.07.040 DOI

Farjadian F, Abbaspour S, Sadatlu MAA, et al. Recent Developments in Graphene and Graphene Oxide: properties, Synthesis, and Modifications: a Review. ChemistrySelect. 2020;5(33):10200–10219. doi:10.1002/slct.202002501 DOI

Moosa AA, Abed MS. Graphene preparation and graphite exfoliation. Turk J Chem. 2021;45(3):493–519. doi:10.3906/kim-2101-19 PubMed DOI PMC

Hummers WS, Offeman RE Preparation of Graphitic Oxide; 1958. Available from: https://pubs.acs.org/sharingguidelines. Accessed June 1, 2024.

Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–4814. doi:10.1021/nn1006368 PubMed DOI

Zhang W, Liu Z, Xia J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries. Front Environ Sci Eng. 2017;11(5):993. doi:10.1007/s11783-017-0993-8 DOI

Ruan G, Sun Z, Peng Z, Tour JM. Growth of graphene from food, insects, and waste. ACS Nano. 2011;5(9):7601–7607. doi:10.1021/nn202625c PubMed DOI

Wang R, Shou D, Lv O, Kong Y, Deng L, Shen J. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol. 2017;103:248–253. doi:10.1016/j.ijbiomac.2017.05.064 PubMed DOI

Weaver CL, Larosa JM, Luo X, Cui XT. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 2014;8(2):1834–1843. doi:10.1021/nn406223e PubMed DOI PMC

Karimzadeh Z, Namazi H. Nontoxic double-network polymeric hybrid aerogel functionalized with reduced graphene oxide: preparation, characterization, and evaluation as drug delivery agent. J Polym Res. 2022;29(2):2902. doi:10.1007/s10965-022-02902-0 DOI

Zhao H, Qu W, Hu L, et al. Coupling Facet Cu(111)/(100)-Functionalized Graphene Aerogels for a Remarkable Air Disinfection Filter: extracellular Electron Transfer and the Sharp-Edge Membrane Penetration Effect. ACS ES and T Engineering. 2022;2(12):2220–2233. doi:10.1021/acsestengg.2c00199 DOI

Nanda SS, Yi DK, Kim K. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep. 2016;6. doi:10.1038/srep28443 PubMed DOI PMC

Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol. 2013;8(8):594–601. doi:10.1038/nnano.2013.125 PubMed DOI

Mann R, Mitsidis D, Xie Z, et al. Antibacterial Activity of Reduced Graphene Oxide. J Nanomater. 2021;2021:577. doi:10.1155/2021/9941577 DOI

Prasad K, Lekshmi GS, Ostrikov K, et al. Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci Rep. 2017;7(1):669. doi:10.1038/s41598-017-01669-5 PubMed DOI PMC

Asgari S, Mohammadi Ziarani G, Badiei A, Setayeshmehr M, Kiani M, Pourjavadi A. Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance. Chemosphere. 2022;299. doi:10.1016/j.chemosphere.2022.134436 PubMed DOI

Blanco M, Agnoli S, Granozzi G. Graphene Acid: a Versatile 2D Platform for Catalysis. Isr J Chem. 2022;62(3–4):118. doi:10.1002/ijch.202100118 DOI

Jankovský O, Nováček M, Luxa J, et al. A New Member of the Graphene Family: graphene Acid. Chem a Eur J. 2016;22(48):17416–17424. doi:10.1002/chem.201603766 PubMed DOI

Bakandritsos A, Pykal M, Boński P, et al. Cyanographene and Graphene Acid: emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11(3):2982–2991. doi:10.1021/acsnano.6b08449 PubMed DOI PMC

Bakandritsos A, Hobza P, Zbořil R, et al. Carboxylated graphene for radical-assisted ultra-trace-level water treatment and noble metal recovery. ACS Nano. 2021;15(2):3349–3358. doi:10.1021/acsnano.0c10093 PubMed DOI

Mosconi D, Blanco M, Gatti T, et al. Arene C–H insertion catalyzed by ferrocene covalently heterogenized on graphene acid. Carbon N Y. 2019;143:318–328. doi:10.1016/j.carbon.2018.11.010 DOI

Reuillard B, Blanco M, Calvillo L, et al. Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS Appl Mater Interfaces. 2020;12(5):5805–5811. doi:10.1021/acsami.9b18922 PubMed DOI PMC

Zaoralová D, Mach R, Lazar P, Medveď M, Otyepka M. Anchoring of Transition Metals to Graphene Derivatives as an Efficient Approach for Designing Single-Atom Catalysts. Adv Mater Interfaces. 2021;8(8):1392. doi:10.1002/admi.202001392 DOI

Sanad MF, Chava VSN, Shalan AE, et al. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. ACS Appl Mater Interfaces. 2021;13(34):40731–40741. doi:10.1021/acsami.1c12423 PubMed DOI

Dong Z, Qi J, Yue L, et al. Biomass-based carbon quantum dots and their agricultural applications. Plant Stress. 2024:11. doi:10.1016/j.stress.2024.100411 DOI

Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–12737. doi:10.1021/ja040082h PubMed DOI

Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7757. doi:10.1021/ja062677d PubMed DOI

Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C Mater. 2014;2(34):6921–6939. doi:10.1039/c4tc00988f DOI

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie - Int Ed. 2010;49(38):6726–6744. doi:10.1002/anie.200906623 PubMed DOI

Sousa HBA, Martins CSM, Prior JAV. You don’t learn that in school: an updated practical guide to carbon quantum dots. Nanomaterials. 2021;11(3):1–88. doi:10.3390/nano11030611 PubMed DOI PMC

Wu YF, Wu HC, Kuan CH, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep. 2016:6. doi:10.1038/srep21170 PubMed DOI PMC

Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Mikrochim Acta. 2019;186(8):3688. doi:10.1007/s00604-019-3688-y PubMed DOI

Xu J, Sahu S, Cao L, et al. Efficient fluorescence quenching in carbon dots by surface-doped metals - Disruption of excited state redox processes and mechanistic implications. Langmuir. 2012;28(46):16141–16147. doi:10.1021/la302506e PubMed DOI

Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131(13):4564–4565. doi:10.1021/ja809073f PubMed DOI

Wang X, Qu K, Xu B, Ren J, Qu X. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem. 2011;21(8):2445–2450. doi:10.1039/c0jm02963g DOI

Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu CY. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010;22(16):4528–4530. doi:10.1021/cm101350u DOI

Desmond LJ, Phan AN, Gentile P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environ Sci Nano. 2021;8(4):848–862. doi:10.1039/d1en00017a DOI

Sakdaronnarong C, Sangjan A, Boonsith S, Kim DC, Shin HS. Recent developments in synthesis and photocatalytic applications of carbon dots. Catalysts. 2020;10(3):320. doi:10.3390/catal10030320 DOI

Magesh V, Sundramoorthy AK, Ganapathy D. Recent Advances on Synthesis and Potential Applications of Carbon Quantum Dots. Front Mater. 2022;9. doi:10.3389/fmats.2022.906838 DOI

Zhao X, Gao W, Zhang H, Qiu X, Luo Y. Graphene quantum dots in biomedical applications: recent advances and future challenges. In: Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis. Elsevier; 2019:493–505. doi:10.1016/B978-0-12-816699-4.00020-7 DOI

Kang S, Kim KM, Jung K, et al. Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: facile and Green Approach. Sci Rep. 2019;9(1):3747. doi:10.1038/s41598-018-37479-6 PubMed DOI PMC

Iannazzo D, Pistone A, Salamò M, et al. Graphene quantum dots for cancer targeted drug delivery. Int J Pharm. 2017;518(1–2):185–192. doi:10.1016/j.ijpharm.2016.12.060 PubMed DOI

Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010;22(6):734–738. doi:10.1002/adma.200902825 PubMed DOI

Gong P, Wang J, Hou K, et al. Small but strong: the influence of fluorine atoms on formation and performance of graphene quantum dots using a gradient F-sacrifice strategy. Carbon N Y. 2017;112:63–71. doi:10.1016/j.carbon.2016.10.091 DOI

Dong Y, Lin J, Chen Y, Fu F, Chi Y, Chen G. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale. 2014;6(13):7410–7415. doi:10.1039/c4nr01482k PubMed DOI

Yang X, Zhao Q, Chen Y, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Artif Cells Nanomed Biotechnol. 2019;47(1):822–832. doi:10.1080/21691401.2019.1576706 PubMed DOI

Kortel M, Mansuriya BD, Santana NV, Altintas Z. Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines (Basel). 2020;11(9):866. doi:10.3390/MI11090866 PubMed DOI PMC

Tashkhourian J, Nami-Ana SF, Shamsipur M. Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine. J Mol Liq. 2018;266:548–556. doi:10.1016/j.molliq.2018.06.093 DOI

Wang T, Zhu S, Jiang X. Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res (Camb). 2015;4(4):885–894. doi:10.1039/c4tx00138a DOI

Tajik S, Dourandish Z, Zhang K, et al. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10(26):15406–15429. doi:10.1039/d0ra00799d PubMed DOI PMC

Huang H, Yang S, Li Q, et al. Electrochemical Cutting in Weak Aqueous Electrolytes: the Strategy for Efficient and Controllable Preparation of Graphene Quantum Dots. Langmuir. 2018;34(1):250–258. doi:10.1021/acs.langmuir.7b03425 PubMed DOI

Lu J, Yeo PSE, Gan CK, Wu P, Loh KP. Transforming C 60 molecules into graphene quantum dots. Nat Nanotechnol. 2011;6(4):247–252. doi:10.1038/nnano.2011.30 PubMed DOI

Lu Q, Wu C, Liu D, et al. A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 2017;19(4):900–904. doi:10.1039/c6gc03092k DOI

Zhao Q, Zhou Y, Li Y, Gu W, Zhang Q, Liu J. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors. Anal Chem. 2016;88(3):1892–1899. doi:10.1021/acs.analchem.5b04324 PubMed DOI

Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2(12):1015–1024. doi:10.1038/nchem.907 PubMed DOI

Jang MH, Yang H, Chang YH, et al. Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale. 2017;9(47):18635–18643. doi:10.1039/c7nr04150k PubMed DOI

Shi Y, Pramanik A, Tchounwou C, et al. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Appl Mater Interfaces. 2015;7(20):10935–10943. doi:10.1021/acsami.5b02199 PubMed DOI PMC

Tshangana CS, Muleja AA, Kuvarega AT, Malefetse TJ, Mamba BB. The applications of graphene oxide quantum dots in the removal of emerging pollutants in water: an overview. J Water Process Eng. 2021;43. doi:10.1016/j.jwpe.2021.102249 DOI

Wang C, Wu C, Zhou X, et al. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots. Sci Rep. 2013:3. doi:10.1038/srep02852 PubMed DOI PMC

Fang J, Liu Y, Chen Y, Ouyang D, Yang G, Yu T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int J Nanomed. 2018;13:5991–6007. doi:10.2147/IJN.S175934 PubMed DOI PMC

Xu Y, Wang X, Zhang WL, Lv F, Guo S. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev. 2018;47(2):586–625. doi:10.1039/c7cs00500h PubMed DOI

Ke PC, Pilkington EH, Sun Y, et al. Mitigation of Amyloidosis with Nanomaterials. Adv. Mater. 2020;32(18):1690. doi:10.1002/adma.201901690 PubMed DOI PMC

Mahmoudi M, Akhavan O, Ghavami M, Rezaee F, Ghiasi SMA. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale. 2012;4(23):7322–7325. doi:10.1039/c2nr31657a PubMed DOI

Fan Z, Nie Y, Wei Y, Zhao J, Liao X, Zhang J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Mater Sci Eng C. 2019;103. doi:10.1016/j.msec.2019.109824 PubMed DOI

Liu ML, Yang L, Li RS, Chen B, Huang CZ. Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 2017;19(15):3611–3617. doi:10.1039/c7gc01236e DOI

Cao H, Qi W, Gao X, Wu Q, Tian L, Wu W. Graphene Quantum Dots prepared by Electron Beam Irradiation for Safe Fluorescence Imaging of Tumor. Nanotheranostics. 2022;6(2):205–214. doi:10.7150/ntno.67070 PubMed DOI PMC

Pramanik A, Chavva SR, Fan Z, Sinha SS, Nellore BPV, Ray PC. Extremely high two-photon absorbing graphene oxide for imaging of tumor cells in the second biological window. J Phys Chem Lett. 2014;5(12):2150–2154. doi:10.1021/jz5009856 PubMed DOI

Pramanik A, Fan Z, Chavva SR, Sinha SS, Ray PC. Highly efficient and excitation tunable two-photon luminescence platform for targeted multi-color MDRB imaging using graphene oxide. Sci Rep. 2014;4. doi:10.1038/srep06090 PubMed DOI PMC

Anzar N, Hasan R, Tyagi M, Yadav N, Narang J. Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors International. 2020;1. doi:10.1016/j.sintl.2020.100003 DOI

Kharche G, Lokavarapu BR. Static buckling analysis of single walled carbon nanotube. Mater Today Proc. 2023. doi:10.1016/j.matpr.2023.02.047 DOI

Boncel S, Zajac P, Koziol KKK. Liberation of drugs from multi-wall carbon nanotube carriers. J Control Release. 2013;169(1–2):126–140. doi:10.1016/j.jconrel.2013.04.009 PubMed DOI

Thostenson ET, Ren Z, Chou TW Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review. Available from: www.elsevier.com/locate/compscitech. Accessed June 1, 2024.

Aliev AE, Lima MH, Silverman EM, Baughman RH. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology. 2010;21(3):5709. doi:10.1088/0957-4484/21/3/035709 PubMed DOI

Ates M, Eker AA, Eker B. Carbon nanotube-based nanocomposites and their applications. J Adhes Sci Technol. 2017;31(18):1977–1997. doi:10.1080/01694243.2017.1295625 DOI

Soltani A, Moradi AV, Lemeski ET. The interaction of 2,6-dichlorobenzylidene-2,4-dichloroaniline (2,6-DBDA) and 2,4-dichlorobenzylidene-2,4-dichloroaniline (2,4-DBDA) with single-walled carbon nanotube: a DFT study. J Mol Struct. 2016;1105:128–134. doi:10.1016/j.molstruc.2015.10.018 DOI

Vashist SK, Zheng D, Pastorin G, Al-Rubeaan K, Luong JHT, Sheu FS. Delivery of drugs and biomolecules using carbon nanotubes. Carbon N Y. 2011;49(13):4077–4097. doi:10.1016/j.carbon.2011.05.049 DOI

Monavari SM, Marsusi F, Memarian N, Qasemnazhand M. Carbon nanotubes and nanobelts as potential materials for biosensor. Sci Rep. 2023;13(1):862. doi:10.1038/s41598-023-29862-9 PubMed DOI PMC

Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water- Soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007;1(1):50–56. doi:10.1021/nn700040t PubMed DOI

Ajima K, Yudasaka M, Murakami T, Maigné A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005;2(6):475–480. doi:10.1021/mp0500566 PubMed DOI

Georgakilas V, Perman JA, Tucek J, Zboril R. Broad Family of Carbon Nanoallotropes: classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem Rev. 2015;115(11):4744–4822. doi:10.1021/cr500304f PubMed DOI

Iijima S, Yudasaka M, Yamada R, et al. Nano-Aggregates of Single-Walled Graphitic Carbon Nano-Horns. 1999. Available from: www.elsevier.nlrlocatercplett. Accessed June 1, 2024.

Berber S, Kwon YK, Tomá D. Electronic and Structural Properties of Carbon Nanohorns. Physical Review B. 2000;62(4):R2291.

Moreno-Lanceta A, Medrano-Bosch M, Melgar-Lesmes P. Single-walled carbon nanohorns as promising nanotube-derived delivery systems to treat cancer. Pharmaceutics. 2020;12(9):1–21. doi:10.3390/pharmaceutics12090850 PubMed DOI PMC

Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev. 2016;116(8):4850–4883. doi:10.1021/acs.chemrev.5b00611 PubMed DOI

Zhu S, Xu G. Single-walled carbon nanohorns and their applications. Nanoscale. 2010;2(12):2538–2549. doi:10.1039/c0nr00387e PubMed DOI

Yuge R, Yudasaka M, Toyama K, Yamaguchi T, Iijima S, Manako T. Buffer gas optimization in CO 2 laser ablation for structure control of single-wall carbon nanohorn aggregates. Carbon N Y. 2012;50(5):1925–1933. doi:10.1016/j.carbon.2011.12.043 DOI

He B, Shi Y, Liang Y, et al. Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat Commun. 2018;9(1):470. doi:10.1038/s41467-018-04700-z PubMed DOI PMC

Zhang M, Murakami T, Ajima K, et al. Fabrication of ZnPc/Protein Nanohorns for Double Photodynamic and Hyperthermic Cancer Phototherapy; 2008. Available from: www.pnas.orgcgidoi10.1073pnas.0801349105. Accessed June 1, 2024. PubMed PMC

Heredia DA, Durantini AM, Durantini JE, Durantini EN. Fullerene C60 derivatives as antimicrobial photodynamic agents. J Photochem Photobiol C Photochem Rev. 2022;51. doi:10.1016/j.jphotochemrev.2021.100471 DOI

Kroto H, Heath J, O’Brien S. C60: buckminsterfullerene. Nature. 1985;318:162–163.

Shetti NP, Mishra A, Basu S, Aminabhavi TM. Versatile fullerenes as sensor materials. Mater Today Chem. 2021;20. doi:10.1016/j.mtchem.2021.100454 DOI

Haddon RC Chemistry of the Fullerenes: the Manifestation of Strain in a Class of Continuous Aromatic Molecules. Available from: www.sciencemag.org. Accessed June 1, 2024. PubMed

Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M. Fullerene: biomedical engineers get to revisit an old friend. Mater Today. 2017;20(8):460–480. doi:10.1016/j.mattod.2017.03.017 DOI

Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today. 2019;24(3):898–905. doi:10.1016/j.drudis.2019.01.013 PubMed DOI

Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci. 2020;284. doi:10.1016/j.cis.2020.102250 PubMed DOI

Thomas KG, Biju V, George MV, Guldi DM, Kamat PV Excited-State Interactions in Pyrrolidinofullerenes; 1998. Available from: http://www.nd.edu/. Accessed June 1, 2024.

Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ. Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett. 2008;8(5):1539–1543. doi:10.1021/nl0726398 PubMed DOI

Mojica M, Alonso JA, Méndez F. Synthesis of fullerenes. J Phys Org Chem. 2013;26(7):526–539. doi:10.1002/poc.3121 DOI

Chae SR, Hotze EM, Wiesner MR. Possible Applications of Fullerene Nanomaterials in Water Treatment and Reuse. In: Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality: Second Edition. Elsevier Inc.; 2014:329–338. doi:10.1016/B978-1-4557-3116-9.00021-4 DOI

Mao D, Wang X, Zhou G, Chen L, Chen J, Zeng S. Fullerene-intercalated graphene nanocontainers for gas storage and sustained release. J Mol Modeling. 2020:26. doi:10.1007/s00894-020-04417-1/Published PubMed DOI

Agrawal PS, Belkhode PN, Brijpuriya DS, Gouda SP, Rokhum SL. Stimulation in fullerene for adsorbing pollutant gases: a review. Chemical Physics Impact. 2023;6. doi:10.1016/j.chphi.2022.100156 DOI

Nakamura E, Isobe H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc Chem Res. 2003;36(11):807–815. doi:10.1021/ar030027y PubMed DOI

Gopakumar DA, Abdul AK, Pai AR, Thomas S, Pasquini D, Shao-Yuan Ben L. Nanomaterials—State of Art, New Challenges, and Opportunities. In: Nanoscale Materials in Water Purification. Elsevier; 2019:1–24. doi:10.1016/B978-0-12-813926-4.00001-X DOI

Montellano A, Da Ros T, Bianco A, Prato M. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale. 2011;3(10):4035–4041. doi:10.1039/c1nr10783f PubMed DOI

Raza K, Thotakura N, Kumar P, et al. C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. Int J Pharm. 2015;495(1):551–559. doi:10.1016/j.ijpharm.2015.09.016 PubMed DOI

Soldà A, Cantelli A, Di Giosia M, et al. C60@lysozyme: a new photosensitizing agent for photodynamic therapy. J Mater Chem B. 2017;5(32):6608–6615. doi:10.1039/c7tb00800g PubMed DOI

Du Z, Gao N, Wang X, Ren J, Qu X. Near-Infrared Switchable Fullerene-Based Synergy Therapy for Alzheimer’s Disease. Small. 2018;14(33):852. doi:10.1002/smll.201801852 PubMed DOI

Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL Inhibition of the HIV-1 Protease by Fullerene Derivatives: model Building Studies and Experimental Verification; 1993. Available from: https://pubs.acs.org/sharingguidelines. Accessed June 1, 2024.

Yasuno T, Ohe T, Takahashi K, Nakamura S, Mashino T. The human immunodeficiency virus-reverse transcriptase inhibition activity of novel pyridine/pyridinium-type fullerene derivatives. Bioorg Med Chem Lett. 2015;25(16):3226–3229. doi:10.1016/j.bmcl.2015.05.086 PubMed DOI

Castro E, Martinez ZS, Seong CS, et al. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors. J Med Chem. 2016;59(24):10963–10973. doi:10.1021/acs.jmedchem.6b00994 PubMed DOI

Zakharova OV, Mastalygina EE, Golokhvast KS, Gusev AA. Graphene nanoribbons: prospects of application in biomedicine and toxicity. Nanomaterials. 2021;11(9):2425. doi:10.3390/nano11092425 PubMed DOI PMC

Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS. Edge State in Graphene Ribbons: nanometer Size Effect and Edge Shape Dependence. J Mol Modeling. 1996. PubMed

Terrones M, Botello-Méndez AR, Campos-Delgado J, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today. 2010;5(4):351–372. doi:10.1016/j.nantod.2010.06.010 DOI

Imani R, Mohabatpour F, Mostafavi F. Graphene-based Nano-Carrier modifications for gene delivery applications. Carbon N Y. 2018;140:569–591. doi:10.1016/j.carbon.2018.09.019 DOI

Johnson AP, Gangadharappa HV, Pramod K. Graphene nanoribbons: a promising nanomaterial for biomedical applications. J Control Release. 2020;325:141–162. doi:10.1016/j.jconrel.2020.06.034 PubMed DOI

Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173(1):75–88. doi:10.1016/j.jconrel.2013.10.017 PubMed DOI

Johnson AP, Sabu C, Swamy NK, Anto A, Gangadharappa HV, Pramod K. Graphene nanoribbon: an emerging and efficient flat molecular platform for advanced biosensing. Biosens Bioelectron. 2021;184. doi:10.1016/j.bios.2021.113245 PubMed DOI

Jampilek J, Kralova K. Advances in drug delivery nanosystems using graphene‐based materials and carbon nanotubes. Materials. 2021;14(5):1–39. doi:10.3390/ma14051059 PubMed DOI PMC

Mousavi SM, Soroshnia S, Hashemi SA, et al. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab Rev. 2019;51(1):91–104. doi:10.1080/03602532.2019.1582661 PubMed DOI

Shang L, Zhao F, Zeng B. Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine. Electrochim Acta. 2015;168:330–336. doi:10.1016/j.electacta.2015.04.024 DOI

Govindasamy M, Mani V, Chen SM, et al. Highly sensitive determination of non-steroidal anti-inflammatory drug nimesulide using electrochemically reduced graphene oxide nanoribbons. RSC Adv. 2017;7(52):33043–33051. doi:10.1039/c7ra02844j DOI

Asadian E, Shahrokhian S, Zad AI, Jokar E. In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: application to sensitive electrochemical detection of dobutamine. Sens Actuators B Chem. 2014;196:582–588. doi:10.1016/j.snb.2014.02.049 DOI

Wang H, Wang HS, Ma C, et al. Graphene nanoribbons for quantum electronics. Nat Rev Phys. 2021;3(12):791–802. doi:10.1038/s42254-021-00370-x DOI

Liu M, Liu M, She L, et al. Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat Commun. 2017:8. doi:10.1038/ncomms14924 PubMed DOI PMC

Zhang B, Cui T. Suspended graphene nanoribbon ion-sensitive field-effect transistors formed by shrink lithography for pH/cancer biomarker sensing. J Microelectromech Syst. 2013;22(5):1140–1146. doi:10.1109/JMEMS.2013.2254701 DOI

Han MY, Özyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett. 2007;98(20):6805. doi:10.1103/PhysRevLett.98.206805 PubMed DOI

Chen L, Hernandez Y, Feng X, Müllen K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angewandte Chemie - Int Ed. 2012;51(31):7640–7654. doi:10.1002/anie.201201084 PubMed DOI

Kosynkin DV, Lu W, Sinitskii A, Pera G, Sun Z, Tour JM. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor. ACS Nano. 2011;5(2):968–974. doi:10.1021/nn102326c PubMed DOI

Luo H, Preparation YG. Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Chem. Mater. 2022;34(8):3588–3615. doi:10.1021/acs.chemmater.1c04215 DOI

Mullick Chowdhury S, Zafar S, Tellez V, Sitharaman B. Graphene Nanoribbon-Based Platform for Highly Efficacious Nuclear Gene Delivery. ACS Biomater Sci Eng. 2016;2(5):798–808. doi:10.1021/acsbiomaterials.5b00562 PubMed DOI

Foreman HCC, Lalwani G, Kalra J, Krug LT, Sitharaman B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J Mater Chem B. 2017;5(12):2347–2354. doi:10.1039/c6tb03010f PubMed DOI

Liu Y, Wang X, Wan W, et al. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale. 2016;8(4):2159–2167. doi:10.1039/c5nr05909g PubMed DOI

Chowdhury SM, Surhland C, Sanchez Z, et al. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine. 2015;11(1):109–118. doi:10.1016/j.nano.2014.08.001 PubMed DOI PMC

Chowdhury SM, Fang J, Sitharaman B. Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci OA. 2015;1(3):17. doi:10.4155/fso.15.17 PubMed DOI PMC

Mbeh DA, Akhavan O, Javanbakht T, Mahmoudi M, Yahia L. Cytotoxicity of protein Corona-graphene oxide nanoribbons on human epithelial cells. Appl Surf Sci. 2014;320:596–601. doi:10.1016/j.apsusc.2014.09.155 DOI

Mullick Chowdhury S, Dasgupta S, Mcelroy AE, Sitharaman B. Structural disruption increases toxicity of graphene nanoribbons. J Appl Toxicol. 2014;34(11):1235–1246. doi:10.1002/jat.3066 PubMed DOI

Tang L, Li J, Pan T, et al. Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives. Theranostics. 2022;12(5):2290–2321. doi:10.7150/thno.69628 PubMed DOI PMC

Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci. 2017;5(5):901–952. doi:10.1039/c7bm00008a PubMed DOI

Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater. 2018;7(20):525. doi:10.1002/adhm.201800525 PubMed DOI

Su Y, Hu Y, Wang Y, et al. A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy. Biomaterials. 2017;139:75–90. doi:10.1016/j.biomaterials.2017.05.046 PubMed DOI

Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015. doi:10.1016/j.addr.2013.08.005 PubMed DOI

Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K. Carbon nanostructures: the drug and the delivery system for brain disorders. Int J Pharm. 2020;587. doi:10.1016/j.ijpharm.2020.119701 PubMed DOI

Xiao Y, Pang YX, Yan Y, et al. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: recent Advances, Challenges, and Perspectives. Adv. Sci. 2023;10(9):292. doi:10.1002/advs.202205292 PubMed DOI PMC

Gosika M, Velachi V, Cordeiro MNDS, Maiti PK. Covalent Functionalization of Graphene with PAMAM Dendrimer and Its Implications on Graphene’s Dispersion and Cytotoxicity. ACS Appl Polym Mater. 2020;2(8):3587–3600. doi:10.1021/acsapm.0c00596 DOI

Zhang YH, Zhou KG, Xie KF, Zeng J, Zhang HL, Peng Y. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology. 2010;21(6):5201. doi:10.1088/0957-4484/21/6/065201 PubMed DOI

Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 2010;46(14):2376. doi:10.1039/c000051e PubMed DOI

Chen J, Liu H, Zhao C, et al. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials. 2014;35(18):4986–4995. doi:10.1016/j.biomaterials.2014.02.032 PubMed DOI

Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale. 2011;3(3):1252. doi:10.1039/c0nr00680g PubMed DOI

Sarkar SD, Uddin MM, Roy CK, Hossen MJ, Sujan MI, Azam MS. Mechanically tough and highly stretchable poly(acrylic acid) hydrogel cross-linked by 2D graphene oxide. RSC Adv. 2020;10(18):10949–10958. doi:10.1039/d0ra00678e PubMed DOI PMC

Mendonça MCP, Soares ES, De Jesus MB, et al. PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier: an in vitro and in vivo study. Mol Pharm. 2016;13(11):3913–3924. doi:10.1021/acs.molpharmaceut.6b00696 PubMed DOI

Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules. 2011;12(10):3381–3393. doi:10.1021/bm201020h PubMed DOI

Du FP, Cao NN, Zhang YF, et al. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci Rep. 2018;8(1):258. doi:10.1038/s41598-018-24632-4 PubMed DOI PMC

Hong M, Wang Y, Wang R, et al. Poly(sodium styrene sulfonate) functionalized graphene as a highly efficient adsorbent for cationic dye removal with a green regeneration strategy. J Phys Chem Solids. 2021:152. doi:10.1016/j.jpcs.2021.109973 DOI

Jin R, Ji X, Yang Y, Wang H, Cao A. Self-assembled graphene-dextran nanohybrid for killing drug-resistant cancer cells. ACS Appl Mater Interfaces. 2013;5(15):7181–7189. doi:10.1021/am401523y PubMed DOI

Ma R, Wang Y, Qi H, et al. Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos B Eng. 2019;167:396–405. doi:10.1016/j.compositesb.2019.03.006 DOI

Morimune S, Nishino T, Goto T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J. 2012;44(10):1056–1063. doi:10.1038/pj.2012.58 DOI

Mehmood A, Mubarak NM, Khalid M, Jagadish P, Walvekar R, Abdullah EC. Graphene/PVA buckypaper for strain sensing application. Sci Rep. 2020;10(1):7713. doi:10.1038/s41598-020-77139-2 PubMed DOI PMC

Kim H, Kim WJ. Photothermally Controlled Gene Delivery by Reduced Graphene Oxide–Polyethylenimine Nanocomposite. Small. 2014;10(1):117–126. doi:10.1002/smll.201202636 PubMed DOI

Teimouri M, Nia AH, Abnous K, Eshghi H, Ramezani M. Graphene oxide-cationic polymer conjugates: synthesis and application as gene delivery vectors. Plasmid. 2016;84-85:51–60. doi:10.1016/j.plasmid.2016.03.002 PubMed DOI

Kemp KC, Cho Y, Chandra V, Kim KS. Noncovalent Functionalization of Graphene. In: Georgakilas V, editor. Functionalization of Graphene. First. Wiley-VCH Verlag GmbH & Co. KGaA.; 2014.

Liu J, Li Y, Li Y, Li J, Deng Z. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J Mater Chem. 2010;20(5):900–906. doi:10.1039/B917752C DOI

Xu Y, Wu Q, Sun Y, Bai H, Shi G. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano. 2010;4(12):7358–7362. doi:10.1021/nn1027104 PubMed DOI

Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology. 2018;16(1):400. doi:10.1186/s12951-018-0400-z PubMed DOI PMC

Lu F, Zhang S, Gao H, Jia H, Zheng L. Protein-decorated reduced oxide graphene composite and its application to SERS. ACS Appl Mater Interfaces. 2012;4(6):3278–3284. doi:10.1021/am300634n PubMed DOI

Assali M, Kittana N, Badran I, Omari S. Covalent functionalization of graphene sheets for plasmid DNA delivery: experimental and theoretical study. RSC Adv. 2023;13(10):7000–7008. doi:10.1039/D3RA00727H PubMed DOI PMC

Sturala J, Luxa J, Pumera M, Sofer Z. Chemistry of Graphene Derivatives: synthesis, Applications, and Perspectives. Chem Eur J. 2018;24(23):5992–6006. doi:10.1002/chem.201704192 PubMed DOI

Liu J, Tang J, Gooding JJ. Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem. 2012;22(25):12435. doi:10.1039/c2jm31218b DOI

Czerw R, Terrones M, Charlier JC, et al. Identification of Electron Donor States in N-Doped Carbon Nanotubes. Nano Lett. 2001;1(9):457–460. doi:10.1021/nl015549q DOI

Yalcin M, Al-Sehemi AG, Erol I, et al. Fabrication of photodiodes based on graphene oxide (GO) doped lanthanum hexaboride (LaB6) nanocomposites. Diam Relat Mater. 2024:141. doi:10.1016/j.diamond.2023.110585 DOI

Zhai Z, Xu J, Gong T, et al. Sustainable fabrication of N-doped carbon quantum dots and their applications in fluorescent inks, Fe (III) detection and fluorescent films. Inorg Chem Commun. 2022:140. doi:10.1016/j.inoche.2022.109387 DOI

Rishabh RM, Shanker U, Singh Kaith B, Sillanpää M. Green fabrication of fluorescent N-doped carbon quantum dots from Aegle marmelos leaves for highly selective detection of Fe3+ metal ions. Inorg Chem Commun. 2024;159. doi:10.1016/j.inoche.2023.111878 DOI

Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–10877. doi:10.1021/ja803688x PubMed DOI PMC

Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano. 2010;4(4):1949–1954. doi:10.1021/nn901899j PubMed DOI

Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM. Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: a Bucky Paper Electrode. J Am Chem Soc. 2001;123(27):6536–6542. doi:10.1021/ja010462s PubMed DOI

Xu Y, Sun L, Sun Y, et al. Effect of heat treatment on sensing performance of ZIF-67@GO for the detection of copper ions. Colloids Surf a Physicochem Eng Asp. 2022:649. doi:10.1016/j.colsurfa.2022.129500 DOI

Adenier A, Cabet-Deliry E, Chaussé A, et al. Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction. Chem. Mater. 2005;17(3):491–501. doi:10.1021/cm0490625 DOI

Kooi SE, Schlecht U, Burghard M, Kern K. Electrochemical Modification of Single Carbon Nanotubes. Angew. Chem. Int. Ed. 2002;41(8):1353–1355. doi:10.1002/1521-3773(20020415)41:8<1353::AID-ANIE1353>3.0.CO;2-I PubMed DOI

Ganji Arjenaki R, Samieepour G, Sadat Ebrahimi SE, et al. Development of novel radiolabeled antibody-conjugated graphene quantum dots for targeted in vivo breast cancer imaging and biodistribution studies. Arabian J. Chem. 2024;17(2):5518. doi:10.1016/j.arabjc.2023.105518 DOI

Kaushal S, Pinnaka AK, Soni S, Singhal NK. Antibody assisted graphene oxide coated gold nanoparticles for rapid bacterial detection and near infrared light enhanced antibacterial activity. Sens Actuators B Chem. 2021;329. doi:10.1016/j.snb.2020.129141 DOI

Royvaran M, Taheri-Kafrani A, Landarani Isfahani A, Mohammadi S. Functionalized superparamagnetic graphene oxide nanosheet in enzyme engineering: a highly dispersive, stable and robust biocatalyst. Chem Eng J. 2016;288:414–422. doi:10.1016/j.cej.2015.12.034 DOI

Tsakmakidis K. Coherent absorption in graphene. Nat Mater. 2013;12(8):688. doi:10.1038/nmat3732 DOI

Kamińska I, Bohlen J, Yaadav R, et al. Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy. Adv. Mater. 2021;33(24):99. doi:10.1002/adma.202101099 PubMed DOI

Mackowski S, Kaminska I. Energy Transfer in Graphene-Based Hybrid Photosynthetic Nanostructures. Recent Advances in Graphene Research InTech. 2016. doi:10.5772/64300 DOI

Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther. 2021;36:102597. doi:10.1016/j.pdpdt.2021.102597 PubMed DOI

Li Y, Dong H, Li Y, Shi D. Graphene-based nanovehicles for photodynamic medical therapy. Int J Nanomed. 2015;10:2451–2459. doi:10.2147/IJN.S68600 PubMed DOI PMC

Zhu J, Li C, Ou JY, Liu QH. Perfect light absorption in graphene by two unpatterned dielectric layers and potential applications. Carbon N Y. 2019;142:430–437. doi:10.1016/j.carbon.2018.10.073 DOI

Ghosh A, Chizhik AI, Karedla N, Enderlein J. Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution. Nat Protoc. 2021;16(7):3695–3715. doi:10.1038/s41596-021-00558-6 PubMed DOI

Samal A, Das DP, Madras G. Repercussion of Solid state vs. Liquid state synthesized p-n heterojunction RGO-copper phosphate on proton reduction potential in water. Sci Rep. 2018;8(1):7. doi:10.1038/s41598-018-21239-7 PubMed DOI PMC

Li Q, Hong L, Li H, Liu C. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron. 2017;89:477–482. doi:10.1016/j.bios.2016.03.072 PubMed DOI

Pelin M, Fusco L, Martín C, et al. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale. 2018;10(25):11820–11830. doi:10.1039/C8NR02933D PubMed DOI

Pan M, Zhang Y, Shan C, Zhang X, Gao G, Pan B. Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions. Environ Sci Technol. 2017;51(15):8597–8605. doi:10.1021/acs.est.7b01762 PubMed DOI

Liu S, Yang MQ, Xu YJ. Surface charge promotes the synthesis of large, flat structured graphene-(CdS nanowire)-TiO2 nanocomposites as versatile visible light photocatalysts. J Mater Chem a Mater. 2014;2(2):430–440. doi:10.1039/c3ta13892e DOI

He Y, Del Valle A, Qian Y, Huang YF. Near infrared light-mediated enhancement of reactive oxygen species generation through electron transfer from graphene oxide to iron hydroxide/oxide. Nanoscale. 2017;9(4):1559–1566. doi:10.1039/c6nr08784a PubMed DOI

Choi CH, Lim HK, Chung MW, et al. Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, n-doping, and metallic impurities. J Am Chem Soc. 2014;136(25):9070–9077. doi:10.1021/ja5033474 PubMed DOI

Liu Y, Xu Y, Geng X, et al. Synergistic Targeting and Efficient Photodynamic Therapy Based on Graphene Oxide Quantum Dot-Upconversion Nanocrystal Hybrid Nanoparticles. Small. 2018;14(19):293. doi:10.1002/smll.201800293 PubMed DOI

Ahirwar S, Mallick S, Bahadur D. Photodynamic therapy using graphene quantum dot derivatives. J Solid State Chem. 2020;282. doi:10.1016/j.jssc.2019.121107 DOI

Alvarez N, Sevilla A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int J Mol Sci. 2024;25(2):1023. doi:10.3390/ijms25021023 PubMed DOI PMC

Ge J, Lan M, Zhou B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014:5. doi:10.1038/ncomms5596 PubMed DOI PMC

Rahimi R, Zargari S, Ghaffarinejad A, Morsali A. Investigation of the synergistic effect of porphyrin photosensitizer on graphene–TiO2nanocomposite for visible light photoactivity improvement. Environ Prog Sustain Energy. 2016;35(3):642–652. doi:10.1002/ep.12267 DOI

Ghulam AN, Dos Santos OAL, Hazeem L, Backx BP, Bououdina M, Bellucci S. Graphene Oxide (GO) Materials—Applications and Toxicity on Living Organisms and Environment. J Funct Biomater. 2022;13(2):77. doi:10.3390/jfb13020077 PubMed DOI PMC

Li F, Park SJ, Ling D, et al. Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy. J Mater Chem B. 2013;1(12):1678–1686. doi:10.1039/c3tb00506b PubMed DOI

Cho Y, Kim H, Choi Y. A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent. Chem. Commun. 2013;49(12):1202–1204. doi:10.1039/c2cc36297j PubMed DOI

Liu J, Yuan X, Deng L, et al. Graphene oxide activated by 980 nm laser for cascading two-photon photodynamic therapy and photothermal therapy against breast cancer. Appl Mater Today. 2020:20. doi:10.1016/j.apmt.2020.100665 DOI

Zaharie-Butucel D, Potara M, Suarasan S, Licarete E, Astilean S. Efficient combined near-infrared-triggered therapy: phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 dye-doxorubicin nanoplatforms. J Colloid Interface Sci. 2019;552:218–229. doi:10.1016/j.jcis.2019.05.050 PubMed DOI

Ma M, Cheng L, Zhao A, Zhang H, Zhang A. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis Photodyn Ther. 2020;29. doi:10.1016/j.pdpdt.2019.101640 PubMed DOI

Hosseinzadeh R, Khorsandi K, Hosseinzadeh G. Graphene oxide-methylene blue nanocomposite in photodynamic therapy of human breast cancer. J Biomol Struct Dyn. 2018;36(9):2216–2223. doi:10.1080/07391102.2017.1345698 PubMed DOI

Dos Santos MSC, Gouvêa AL, de Moura LD, et al. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. J Nanobiotechnology. 2018;16(1):333. doi:10.1186/s12951-018-0333-6 PubMed DOI PMC

Sahu A, Choi W, Lee JH, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials. 2013;34(26):6239–6248. doi:10.1016/j.biomaterials.2013.04.066 PubMed DOI

Ocsoy I, Isiklan N, Cansiz S, Ozdemir N, Tan W. ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Adv. 2016;6(36):30285–30292. doi:10.1039/C6RA06798K PubMed DOI PMC

Zhang X, Luo L, Li L, et al. Trimodal synergistic antitumor drug delivery system based on graphene oxide. Nanomedicine. 2019;15(1):142–152. doi:10.1016/j.nano.2018.09.008 PubMed DOI

Dash BS, Lu YJ, Pejrprim P, Lan YH, Chen JP. Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy. Biomaterials Advances. 2022;136. doi:10.1016/j.bioadv.2022.212764 PubMed DOI

Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY. Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon N Y. 2018;140:616–623. doi:10.1016/j.carbon.2018.09.004 DOI

Soumya K, More N, Choppadandi M, Aishwarya DA, Singh G, Kapusetti G. A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. Biomedical Technology. 2023;4:11–20. doi:10.1016/j.bmt.2023.01.005 DOI

Thakur M, Kumawat MK, Srivastava R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv. 2017;7(9):5251–5261. doi:10.1039/c6ra25976f DOI

Li Y, Wang Y, Shang H, Wu J. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. Int J Mol Sci. 2022;23(20):12558. doi:10.3390/ijms232012558 PubMed DOI PMC

Yang FH, Hua YX, Wang K, et al. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem. 2019:182. doi:10.1016/j.ejmech.2019.111620 PubMed DOI

Sun J, Xin Q, Yang Y, et al. Nitrogen-doped graphene quantum dots coupled with photosensitizers for one-/two-photon activated photodynamic therapy based on a FRET mechanism. Chem. Commun. 2018;54(7):715–718. doi:10.1039/C7CC08820E PubMed DOI

Ju J, Regmi S, Fu A, Lim S, Liu Q. Graphene quantum dot based charge‐reversal nanomaterial for nucleus‐targeted drug delivery and efficiency controllable photodynamic therapy. J Biophotonics. 2019;12(6):367. doi:10.1002/jbio.201800367 PubMed DOI

Shi H, Yin Y, Xu H, Qu X, Wang H, An Z. Samarium doped carbon dots for near-infrared photo-therapy. Chem Eng J. 2024;488. doi:10.1016/j.cej.2024.150661 DOI

Zhang X, Li H, Yi C, et al. Host immune response triggered by graphene quantum-dot-mediated photodynamic therapy for oral squamous cell carcinoma. Int J Nanomed. 2020;15:9627–9638. doi:10.2147/IJN.S276153 PubMed DOI PMC

Li Y, Wu Z, Du D, Dong H, Shi D, Li Y. A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy. RSC Adv. 2016;6(8):6516–6522. doi:10.1039/c5ra23622c DOI

Juzenas P, Kleinauskas A, George Luo P, Sun YP. Photoactivatable carbon nanodots for cancer therapy. Appl Phys Lett. 2013;103(6):7787. doi:10.1063/1.4817787 DOI

Ramachandran P, Khor BK, Lee CY, et al. N-Doped Graphene Quantum Dots/Titanium Dioxide Nanocomposites: a Study of ROS-Forming Mechanisms, Cytotoxicity and Photodynamic Therapy. Biomedicines. 2022;10(2):421. doi:10.3390/biomedicines10020421 PubMed DOI PMC

Choi SY, Baek SH, Chang SJ, et al. Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens Bioelectron. 2017;93:267–273. doi:10.1016/j.bios.2016.08.094 PubMed DOI

Mangalath S, Saneesh Babu PS, Nair RR, et al. Graphene Quantum Dots Decorated with Boron Dipyrromethene Dye Derivatives for Photodynamic Therapy. ACS Appl Nano Mater. 2021;4(4):4162–4171. doi:10.1021/acsanm.1c00486 DOI

Du D, Wang K, Wen Y, Li Y, Li YY. Photodynamic Graphene Quantum Dot: reduction Condition Regulated Photoactivity and Size Dependent Efficacy. ACS Appl Mater Interfaces. 2016;8(5):3287–3294. doi:10.1021/acsami.5b11154 PubMed DOI

Kholikov K, Ilhom S, Sajjad M, et al. Improved singlet oxygen generation and antimicrobial activity of sulphur-doped graphene quantum dots coupled with methylene blue for photodynamic therapy applications. Photodiagnosis Photodyn Ther. 2018;24:7–14. doi:10.1016/j.pdpdt.2018.08.011 PubMed DOI

Kazantzis KT, Koutsonikoli K, Mavroidi B, et al. Curcumin derivatives as photosensitizers in photodynamic therapy: photophysical properties and: in vitro studies with prostate cancer cells. Photochem Photobiol Sci. 2020;19(2):193–206. doi:10.1039/c9pp00375d PubMed DOI

Arvapalli DM, Sheardy AT, Allado K, Chevva H, Yin Z, Wei J. Design of Curcumin Loaded Carbon Nanodots Delivery System: enhanced Bioavailability, Release Kinetics, and Anticancer Activity. ACS Appl Bio Mater. 2020;3(12):8776–8785. doi:10.1021/acsabm.0c01144 PubMed DOI

De D, Das CK, Mandal D, et al. Curcumin Complexed with Graphene Derivative for Breast Cancer Therapy. ACS Appl Bio Mater. 2020;3(9):6284–6296. doi:10.1021/acsabm.0c00771 PubMed DOI

Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA, Farzaneh F. Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. J Drug Deliv Sci Technol. 2021;61. doi:10.1016/j.jddst.2020.102137 DOI

Gazzi A, Fusco L, Khan A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics. Front Bioeng Biotechnol. 2019;7(OCT):295. doi:10.3389/fbioe.2019.00295 PubMed DOI PMC

Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281. doi:10.3322/caac.20114 PubMed DOI PMC

Jiang BP, Hu LF, Shen XC, et al. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces. 2014;6(20):18008–18017. doi:10.1021/am504860c PubMed DOI

Gao C, Dong P, Lin Z, et al. Near-Infrared Light Responsive Imaging-Guided Photothermal and Photodynamic Synergistic Therapy Nanoplatform Based on Carbon Nanohorns for Efficient Cancer Treatment. Chem a Eur J. 2018;24(49):12827–12837. doi:10.1002/chem.201802611 PubMed DOI

Yang J, Hou M, Sun W, et al. Sequential PDT and PTT Using Dual-Modal Single-Walled Carbon Nanohorns Synergistically Promote Systemic Immune Responses against Tumor Metastasis and Relapse. Adv. Sci. 2020;7(16):88. doi:10.1002/advs.202001088 PubMed DOI PMC

Curcio M, Cirillo G, Saletta F, et al. Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. C (Basel). 2020;7(1):3. doi:10.3390/c7010003 DOI

Gao C, Jian J, Luo L, et al. Single-walled carbon nanohorns-based smart nanotheranostic: from phototherapy to enzyme-activated fluorescence imaging-guided photodynamic therapy. J Colloid Interface Sci. 2022;628:273–286. doi:10.1016/j.jcis.2022.07.168 PubMed DOI

Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed. 2016;11:5163–5185. doi:10.2147/IJN.S112660 PubMed DOI PMC

Wang L, Shi J, Liu R, et al. Photodynamic effect of functionalized single-walled carbon nanotubes: a potential sensitizer for photodynamic therapy. Nanoscale. 2014;6(9):4642–4651. doi:10.1039/c3nr06835h PubMed DOI

Xiao H, Zhu B, Wang D, et al. Photodynamic effects of chlorin e6 attached to single wall carbon nanotubes through noncovalent interactions. Carbon N Y. 2012;50(4):1681–1689. doi:10.1016/j.carbon.2011.12.013 DOI

Marangon I, Ménard-Moyon C, Silva AKA, Bianco A, Luciani N, Gazeau F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon N Y. 2016;97:110–123. doi:10.1016/j.carbon.2015.08.023 DOI

Li H, Zhang N, Hao Y, Wang Y, Jia S, Zhang H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv. 2019;26(1):1017–1026. doi:10.1080/10717544.2019.1672829 PubMed DOI PMC

Arellano LM, Gobeze HB, Gómez-Escalonilla MJ, Fierro JLG, D’Souza F, Langa F. Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. Nanoscale. 2020;12(17):9890–9898. doi:10.1039/d0nr02136a PubMed DOI

Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc. 2008;130(33):10856–10857. doi:10.1021/ja802913f PubMed DOI

Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci. 2018;17(11):1515–1533. doi:10.1039/c8pp00195b PubMed DOI PMC

Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci. 2007;6(11):1139–1149. doi:10.1039/b711141j PubMed DOI PMC

Huang YY, Sharma SK, Yin R, Agrawal T, Chiang LY, Hamblin MR. Functionalized fullerenes in photodynamic therapy. J Biomed Nanotechnol. 2014;10(9):1918–1936. doi:10.1166/jbn.2014.1963 PubMed DOI PMC

Yano S, Hirohara S, Obata M, et al. Current states and future views in photodynamic therapy. J Photochem Photobiol C Photochem Rev. 2011;12(1):46–67. doi:10.1016/j.jphotochemrev.2011.06.001 DOI

Hamano T, Okuda K, Mashino T, et al. Singlet Oxygen Production from Fullerene Derivatives: effect of Sequential Functionalization of the Fullerene Core. J Mol Modeling. 1997;12.

Castro E, Cerón MR, Garcia AH, et al. A new family of fullerene derivatives: fullerene-curcumin conjugates for biological and photovoltaic applications. RSC Adv. 2018;8(73):41692–41698. doi:10.1039/c8ra08334g PubMed DOI PMC

Gündüz EÖ, Gedik ME, Günaydın G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem. 2022;17(6):693. doi:10.1002/cmdc.202100693 PubMed DOI

Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918–7919. doi:10.1021/ja00070a064 DOI

Burlaka AP, Sidorik YP, Prylutska SV, et al. Catalytic system of the reactive oxygen species on the C60 fullerene basis. Exp Oncol. 2004;26(4):326–327. PubMed

Rancan F, Rosan S, Boehm F, et al. Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J Photochem Photobiol B. 2002;67(3):157–162. doi:10.1016/s1011-1344(02)00320-2 PubMed DOI

Sugikawa K, Masuda K, Kozawa K, Kawasaki R, Ikeda A. Fullerene–porphyrin hybrid nanoparticles that generate activated oxygen by photoirradiation. RSC Adv. 2021;11(3):1564–1568. doi:10.1039/D0RA09387D PubMed DOI PMC

Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res. 1997;88(11):1108–1116. doi:10.1111/j.1349-7006.1997.tb00336.x PubMed DOI PMC

Kop TJ, Bjelaković MS, Živković L, Žekić A, Milić DR. Stable colloidal dispersions of fullerene C60, curcumin and C60-curcumin in water as potential antioxidants. Colloids Surf a Physicochem Eng Asp. 2022;648. doi:10.1016/j.colsurfa.2022.129379 DOI

Liu J, Ohta S, Sonoda A, et al. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Control Release. 2007;117(1):104–110. doi:10.1016/j.jconrel.2006.10.008 PubMed DOI

Milanesio ME, Alvarez MG, Rivarola V, Silber JJ, Durantini EN. Porphyrin‐fullerene C60 Dyads with High Ability to Form Photoinduced Charge‐separated State as Novel Sensitizers for Photodynamic Therapy. Photochem Photobiol. 2005;81(4):891–897. doi:10.1111/j.1751-1097.2005.tb01459.x PubMed DOI

Miki K, Dan Zhang Z, Kaneko K, et al. Amphiphilic γ-cyclodextrin-fullerene complexes with photodynamic activity. Mater Adv. 2022;3(1):312–317. doi:10.1039/d1ma00743b DOI

Sugikawa K, Kozawa K, Ueda M, Ikeda A. Size controlled fullerene nanoparticles prepared by guest exchange of γ-cyclodextrin complexes in water. RSC Adv. 2016;6(78):74696–74699. doi:10.1039/c6ra16513c DOI

Sugikawa K, Kozawa K, Ueda M, Ikeda A. Stepwise Growth of Fullerene Nanoparticles through Guest Exchange of γ-Cyclodextrin Complexes in Water. Chem a Eur J. 2017;23(55):13704–13710. doi:10.1002/chem.201701717 PubMed DOI

Sugikawa K, Inoue Y, Kozawa K, Ikeda A. Introduction of Fullerenes into Hydrogels via Formation of Fullerene Nanoparticles. ChemNanoMat. 2018;4(7):682–687. doi:10.1002/cnma.201800143 DOI

Li Q, Huang C, Liu L, Hu R, Qu J. Enhancing Type I Photochemistry in Photodynamic Therapy Under Near Infrared Light by Using Antennae–Fullerene Complexes. Cytometry Part A. 2018;93(10):997–1003. doi:10.1002/cyto.a.23596 PubMed DOI

Lu YJ, Lin CW, Yang HW, et al. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon N Y. 2014;74:83–95. doi:10.1016/j.carbon.2014.03.007 DOI

Sun CL, Chang CT, Lee HH, et al. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano. 2011;5(10):7788–7795. doi:10.1021/nn2015908 PubMed DOI

Warszyńska M, Repetowski P, Dąbrowski JM. Photodynamic therapy combined with immunotherapy: recent advances and future research directions. Coord Chem Rev. 2023;495. doi:10.1016/j.ccr.2023.215350 DOI

Shen L, Zhou T, Fan Y, et al. Recent progress in tumor photodynamic immunotherapy. Chin. Chem. Lett. 2020;31(7):1709–1716. doi:10.1016/j.cclet.2020.02.007 DOI

Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD‐1/PD‐L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol. 2019;234(2):1313–1325. doi:10.1002/jcp.27172 PubMed DOI

Nagaya T, Friedman J, Maruoka Y, et al. Host immunity following near-infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established antigenic tumors. Cancer Immunol Res. 2019;7(3):401–413. doi:10.1158/2326-6066.CIR-18-0546 PubMed DOI PMC

Wang L, Wang M, Zhou B, et al. PEGylated reduced-graphene oxide hybridized with Fe3O4 nanoparticles for cancer photothermal-immunotherapy. J Mater Chem B. 2019;7(46):7406–7414. doi:10.1039/C9TB00630C PubMed DOI PMC

Wu C, Guan X, Xu J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials. 2019;205:106–119. doi:10.1016/j.biomaterials.2019.03.020 PubMed DOI

Zhao M, Li Z, Yu C, Sun Q, Wang K, Xie Z. Clinically approved carbon nanoparticles for enhanced photothermal-immunotherapy toward cancer metastasis. Chem Eng J. 2024;482. doi:10.1016/j.cej.2024.149039 DOI

Zhou F, Wang M, Luo T, Qu J, Chen WR. Photo-activated chemo-immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials. 2021;265. doi:10.1016/j.biomaterials.2020.120421 PubMed DOI PMC

Sawy AM, Barhoum A, Abdel Gaber SA, et al. Insights of doxorubicin loaded graphene quantum dots: synthesis, DFT drug interactions, and cytotoxicity. Mater Sci Eng C. 2021:122. doi:10.1016/j.msec.2021.111921 PubMed DOI

Fiorillo M, Verre AF, Iliut M, et al. Graphene Oxide Selectively Targets Cancer Stem Cells, across Multiple Tumor Types: implications for Non-Toxic Cancer Treatment, via “Differentiation-Based Nano-Therapy”. Available from: www.impactjournals.com/oncotarget/. Accessed June 1, 2024. PubMed PMC

Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol. 2017;8(JAN):1. doi:10.3389/fphar.2017.00001 PubMed DOI PMC

Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano. 2011;5(9):7000–7009. doi:10.1021/nn201560b PubMed DOI

Gurunathan S, Han JW, Park JH, et al. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed. 2015;10:6257–6276. doi:10.2147/IJN.S92449 PubMed DOI PMC

Burke AR, Singh RN, Carroll DL, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012;33(10):2961–2970. doi:10.1016/j.biomaterials.2011.12.052 PubMed DOI PMC

Qi L, Pan T, Ou L, et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun Biol. 2021;4(1):1713. doi:10.1038/s42003-021-01713-1 PubMed DOI PMC

Luo C, Li Y, Guo L, et al. Graphene Quantum Dots Downregulate Multiple Multidrug-Resistant Genes via Interacting with Their C-Rich Promoters. Adv Healthc Mater. 2017;6(21):328. doi:10.1002/adhm.201700328 PubMed DOI

Tabish TA, Narayan RJ. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 2021;129:43–56. doi:10.1016/j.actbio.2021.04.054 PubMed DOI

Wang T, Zhang H, Han Y, et al. Light-Enhanced O 2 -Evolving Nanoparticles Boost Photodynamic Therapy to Elicit Antitumor Immunity. ACS Appl Mater Interfaces. 2019;11(18):16367–16379. doi:10.1021/acsami.9b03541 PubMed DOI

Liang R, Liu L, He H, et al. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials. 2018;177:149–160. doi:10.1016/j.biomaterials.2018.05.051 PubMed DOI

Turubanova VD, Mishchenko TA, Balalaeva IV, et al. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Sci Rep. 2021;11(1):354. doi:10.1038/s41598-021-86354-4 PubMed DOI PMC

Krysko O, Aaes TL, Kagan VE, et al. Necroptotic cell death in anti-cancer therapy. Immunol Rev. 2017;280(1):207–219. doi:10.1111/imr.12583 PubMed DOI

Wang Y, Hao F, Nan Y, et al. PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis. Int J Biol Sci. 2018;14(13):1883–1891. doi:10.7150/ijbs.27854 PubMed DOI PMC

Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004;23(16 REV. ISS. 2):2825–2837. doi:10.1038/sj.onc.1207528 PubMed DOI

Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 2022;13(5):455. doi:10.1038/s41419-022-04851-4 PubMed DOI PMC

Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. doi:10.1038/s41418-017-0012-4 PubMed DOI PMC

Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–545. doi:10.1038/nrc1894 PubMed DOI PMC

Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer. 2021;9(1):1926. doi:10.1136/jitc-2020-001926 PubMed DOI PMC

Kessel D, Reiners JJ. Effects of Combined Lysosomal and Mitochondrial Photodamage in a Non-small-Cell Lung Cancer Cell Line: the Role of Paraptosis. Photochem Photobiol. 2017;93(6):1502–1508. doi:10.1111/php.12805 PubMed DOI PMC

Kessel D. Exploring Modes of Photokilling by Hypericin. Photochem Photobiol. 2020;96(5):1101–1104. doi:10.1111/php.13275 PubMed DOI

Kessel D. Apoptosis, Paraptosis and Autophagy: death and Survival Pathways Associated with Photodynamic Therapy. Photochem Photobiol. 2019;95(1):119–125. doi:10.1111/php.12952 PubMed DOI PMC

Seo MJ, Lee DM, Kim IY, et al. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis. 2019;10(3):1360. doi:10.1038/s41419-019-1360-4 PubMed DOI PMC

Hu B, Elinav E, Huber S, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci. 2010;107(50):21635–21640. doi:10.1073/pnas.1016814108 PubMed DOI PMC

cheng ZC, Guang LC, feng WY, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 2019;24(3–4):312–325. doi:10.1007/s10495-019-01515-1 PubMed DOI

Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99–103. doi:10.1038/nature22393 PubMed DOI

Erkes DA, Cai W, Sanchez IM, et al. Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment via pyroptosis. Cancer Discov. 2020;10(2):255–269. doi:10.1158/2159-8290.CD-19-0672 PubMed DOI PMC

Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. Immunity. 2015;43(5):923–932. doi:10.1016/j.immuni.2015.10.009 PubMed DOI PMC

Wu M, Liu X, Chen H, et al. Activation of Pyroptosis by Membrane-Anchoring AIE Photosensitizer Design: new Prospect for Photodynamic Cancer Cell Ablation. Angewandte Chemie - Int Ed. 2021;60(16):9093–9098. doi:10.1002/anie.202016399 PubMed DOI

Zhu JX, Zhu WT, Hu JH, et al. Curcumin-Loaded Poly(L-lactide-co-glycolide) Microbubble-Mediated Sono-photodynamic Therapy in Liver Cancer Cells. Ultrasound Med Biol. 2020;46(8):2030–2043. doi:10.1016/j.ultrasmedbio.2020.03.030 PubMed DOI

Li L, Song D, Qi L, et al. Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis. Cancer Lett. 2021;520:143–159. doi:10.1016/j.canlet.2021.07.014 PubMed DOI

Zhou B, yuan ZJ, Shuo LX, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 2018;28(12):1171–1185. doi:10.1038/s41422-018-0090-y PubMed DOI PMC

Soriano J, Mora-Espí I, Alea-Reyes ME, et al. Cell death mechanisms in Tumoral and Non-Tumoral human cell lines triggered by photodynamic treatments: apoptosis, necrosis and parthanatos. Sci Rep. 2017;7. doi:10.1038/srep41340 PubMed DOI PMC

Nayak KB, Sajitha IS, Kumar TRS, Chakraborty S. Ecotropic viral integration site 1 promotes metastasis independent of epithelial mesenchymal transition in colon cancer cells article. Cell Death Dis. 2018;9(2):36. doi:10.1038/s41419-017-0036-1 PubMed DOI PMC

Chiu LY, Ho FM, Shiah SG, Chang Y, Lin WW. Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose) polymerase-1-dependent parthanatos cell death. Biochem Pharmacol. 2011;81(3):459–470. doi:10.1016/j.bcp.2010.10.016 PubMed DOI

Van der Meeren L, Verduijn J, Krysko DV, Skirtach AG. AFM Analysis Enables Differentiation between Apoptosis, Necroptosis, and Ferroptosis in Murine Cancer Cells. iScience. 2020;23(12):1816. doi:10.1016/j.isci.2020.101816 PubMed DOI PMC

Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: a novel cell death modality and its potential relevance for critical care medicine. Am J Respir Crit Care Med. 2016;194(4):415–428. doi:10.1164/rccm.201510-2106CI PubMed DOI

Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–414. doi:10.1038/s41568-019-0149-1 PubMed DOI

Efimova I, Catanzaro E, Van Der Meeren L, et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020;8(2):1369. doi:10.1136/jitc-2020-001369 PubMed DOI PMC

Tang D, Kang R, Berghe T, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–364. doi:10.1038/s41422-019-0164-5 PubMed DOI PMC

Wu T, Wang X, Cheng J, et al. Nitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia. Part Fibre Toxicol. 2022;19(1):464. doi:10.1186/s12989-022-00464-z PubMed DOI PMC

Wu T, Liang X, Liu X, et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 2020;17(1):363. doi:10.1186/s12989-020-00363-1 PubMed DOI PMC

Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21. doi:10.1039/b108586g PubMed DOI

Tan L, Shen X, He Z, Lu Y. The Role of Photodynamic Therapy in Triggering Cell Death and Facilitating Antitumor Immunology. Front Oncol. 2022;12. doi:10.3389/fonc.2022.863107 PubMed DOI PMC

Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–288. doi:10.1038/nrc776 PubMed DOI

Wu S, Xing D. Mechanism of mitochondrial membrane permeabilization during apoptosis under Photofrin-mediated photodynamic therapy. J Xray Sci Technol. 2012;20:363–372. doi:10.3233/XST-2012-344 PubMed DOI

Aguilar Cosme JR, Bryant HE, Claeyssens F. Carbon dot-protoporphyrin IX conjugates for improved drug delivery and bioimaging. PLoS One. 2019;14(7):210. doi:10.1371/journal.pone.0220210 PubMed DOI PMC

Klimenko IV, Trusova EA, Shchegolikhin AN, Lobanov AV, Jurina LV. Surface modification of graphene sheets with aluminum phthalocyanine complex. Fuller Nanotub Car Nanostruct. 2022;30(1):133–139. doi:10.1080/1536383X.2021.1976754 DOI

Wang Y, Staudinger JN, Mindt TL, Gasser G. Theranostics with photodynamic therapy for personalized medicine: to see and to treat. Theranostics. 2023;13(15):5501–5544. doi:10.7150/thno.87363 PubMed DOI PMC

Suvarnaphaet P, Pechprasarn S. Graphene-based materials for biosensors: a review. Sensors (Switzerland). 2017;17(10):2161. doi:10.3390/s17102161 PubMed DOI PMC

Xue M, Mackin C, Weng WH, et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat Commun. 2022;13(1):749. doi:10.1038/s41467-022-32749-4 PubMed DOI PMC

Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples. Acta Biomater. 2021;131:62–79. doi:10.1016/j.actbio.2021.06.047 PubMed DOI

Zhang W, Du Y, Wang ML. Noninvasive glucose monitoring using saliva nano-biosensor. Sens Biosensing Res. 2015;4:23–29. doi:10.1016/j.sbsr.2015.02.002 DOI

Li Q, Wang Q, Yang X, Wang K, Zhang H, Nie W. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Talanta. 2017;174:521–526. doi:10.1016/j.talanta.2017.06.048 PubMed DOI

Khalil I, Yehye WA, Julkapli NM, et al. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Biosens Bioelectron. 2019;131:214–223. doi:10.1016/j.bios.2019.02.028 PubMed DOI

Walther BK, Dinu CZ, Guldi DM, et al. Nanobiosensing with graphene and carbon quantum dots: recent advances. Mater Today. 2020;39:23–46. doi:10.1016/j.mattod.2020.04.008 PubMed DOI PMC

Kong W, Wu D, Xia L, et al. Carbon dots for fluorescent detection of α-glucosidase activity using enzyme activated inner filter effect and its application to anti-diabetic drug discovery. Anal Chim Acta. 2017;973:91–99. doi:10.1016/j.aca.2017.03.050 PubMed DOI

Gulati S, Mansi N, Vijayan S, et al. Magnetic nanocarriers adorned on graphene: promising contrast-enhancing agents with state-of-the-art performance in magnetic resonance imaging (MRI) and theranostics. Mater Adv. 2022;3(7):2971–2989. doi:10.1039/d1ma01071a DOI

Zhang M, Liu X, Huang J, et al. Ultrasmall graphene oxide based T1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. Nanomedicine. 2018;14(7):2475–2483. doi:10.1016/j.nano.2017.03.019 PubMed DOI

Antoine C, Sahylí Ortega Pijeira M, Ricci-Junior E, Magalhães Rebelo Alencar L, Santos-Oliveira R. Graphene quantum dots as bimodal imaging agent for X-ray and Computed Tomography. Eur. J. Pharm. Biopharm. 2022;179:74–78. doi:10.1016/j.ejpb.2022.08.020 PubMed DOI

Zhang H, He R, Niu Y, et al. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron. 2022:197. doi:10.1016/j.bios.2021.113777 PubMed DOI

Maity A, Pu H, Sui X, et al. Scalable graphene sensor array for real-time toxins monitoring in flowing water. Nat Commun. 2023;14(1):701. doi:10.1038/s41467-023-39701-0 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...