Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene

. 2017 Mar 28 ; 11 (3) : 2982-2991. [epub] 20170220

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28208019

Efficient and selective methods for covalent derivatization of graphene are needed because they enable tuning of graphene's surface and electronic properties, thus expanding its application potential. However, existing approaches based mainly on chemistry of graphene and graphene oxide achieve only limited level of functionalization due to chemical inertness of the surface and nonselective simultaneous attachment of different functional groups, respectively. Here we present a conceptually different route based on synthesis of cyanographene via the controllable substitution and defluorination of fluorographene. The highly conductive and hydrophilic cyanographene allows exploiting the complex chemistry of -CN groups toward a broad scale of graphene derivatives with very high functionalization degree. The consequent hydrolysis of cyanographene results in graphene acid, a 2D carboxylic acid with pKa of 5.2, showing excellent biocompatibility, conductivity and dispersibility in water and 3D supramolecular assemblies after drying. Further, the carboxyl groups enable simple, tailored and widely accessible 2D chemistry onto graphene, as demonstrated via the covalent conjugation with a diamine, an aminothiol and an aminoalcohol. The developed methodology represents the most controllable, universal and easy to use approach toward a broad set of 2D materials through consequent chemistries on cyanographene and on the prepared carboxy-, amino-, sulphydryl-, and hydroxy- graphenes.

Zobrazit více v PubMed

Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI

Georgakilas V.; Perman J. A.; Tucek J.; Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. 10.1021/cr500304f. PubMed DOI

Min S. K.; Kim W. Y.; Cho Y.; Kim K. S. Fast DNA Sequencing with a Graphene-Based Nanochannel Device. Nat. Nanotechnol. 2011, 6, 162–165. 10.1038/nnano.2010.283. PubMed DOI

Heerema S. J.; Dekker C. Graphene Nanodevices or DNA Sequencing. Nat. Nanotechnol. 2016, 11, 127–136. 10.1038/nnano.2015.307. PubMed DOI

Han W.; Kawakami R. K.; Gmitra M.; Fabian J. Graphene Spintronics. Nat. Nanotechnol. 2014, 9, 794–807. 10.1038/nnano.2014.214. PubMed DOI

Raccichini R.; Varzi A.; Passerini S.; Scrosati B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271–279. 10.1038/nmat4170. PubMed DOI

Urbanová V.; Holá K.; Bourlinos A. B.; Čépe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlický F.; Otyepka M.; Zbořil R. Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27, 2305–2310. 10.1002/adma.201500094. PubMed DOI

Rafiee J.; Mi X.; Gullapalli H.; Thomas A. V.; Yavari F.; Shi Y.; Ajayan P. M.; Koratkar N. A. Wetting Transparency of Graphene. Nat. Mater. 2012, 11, 217–222. 10.1038/nmat3228. PubMed DOI

Wang B.; Cunning B. V.; Park S.-Y.; Huang M.; Kim J.-Y.; Ruoff R. S. Graphene Coatings as Barrier Layers to Prevent the Water-Induced Corrosion of Silicate Glass. ACS Nano 2016, 10, 9794–9800. 10.1021/acsnano.6b04363. PubMed DOI

Stankovich S.; Dikin D. A.; Dommett G. H. B.; Kohlhaas K. M.; Zimney E. J.; Stach E. A.; Piner R. D.; Nguyen S. T.; Ruoff R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. 10.1038/nature04969. PubMed DOI

Ferrari A. C.; Bonaccorso F.; Fal’ko V.; Novoselov K. S.; Roche S.; Boggild P.; Borini S.; Koppens F. H. L.; Palermo V.; Pugno N.; Garrido J. A.; Sordan R.; Bianco A.; Ballerini L.; Prato M.; Lidorikis E.; Kivioja J.; Marinelli C.; Ryhanen T.; Morpurgo A.; et al. Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7, 4598–4810. 10.1039/C4NR01600A. PubMed DOI

Georgakilas V.; Otyepka M.; Bourlinos A. B.; Chandra V.; Kim N.; Kemp K. C.; Hobza P.; Zboril R.; Kim K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. 10.1021/cr3000412. PubMed DOI

Criado A.; Melchionna M.; Marchesan S.; Prato M. The Covalent Functionalization of Graphene on Substrates. Angew. Chem., Int. Ed. 2015, 54, 10734–10750. 10.1002/anie.201501473. PubMed DOI

Eigler S.; Hirsch A. Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angew. Chem., Int. Ed. 2014, 53, 7720–7738. 10.1002/anie.201402780. PubMed DOI

Wang X. W.; Sun G. Z.; Routh P.; Kim D.-H.; Huang W.; Chen P. Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014, 43, 7067–7098. 10.1039/C4CS00141A. PubMed DOI

Paulus G. L. C.; Wang Q. H.; Strano M. S. Covalent Electron Transfer Chemistry of Graphene with Diazonium Salts. Acc. Chem. Res. 2013, 46, 160–170. 10.1021/ar300119z. PubMed DOI

Liao L.; Peng H.; Liu Z. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. 10.1021/ja5048297. PubMed DOI

Robinson J. T.; Burgess J. S.; Junkermeier C. E.; Badescu S. C.; Reinecke T. L.; Perkins F. K.; Zalalutdniov M. K.; Baldwin J. W.; Culbertson J. C.; Sheehan P. E.; Snow E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. 10.1021/nl101437p. PubMed DOI

Nair R. R.; Sepioni M.; Tsai I.-L.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Thomson T.; Geim A. K.; Grigorieva I. V. Spin-Half Paramagnetism in Graphene Induced by Point Defects. Nat. Phys. 2012, 8, 199–202. 10.1038/nphys2183. DOI

Tuček J.; Błoński P.; Sofer Z.; Šimek P.; Petr M.; Pumera M.; Otyepka M.; Zbořil R. Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Adv. Mater. 2016, 28, 5045–5053. 10.1002/adma.201600939. PubMed DOI

Wang A.; Yu W.; Huang Z.; Zhou F.; Song J.; Song Y.; Long L.; Cifuentes M. P.; Humphrey M. G.; Zhang L.; Shao J.; Zhang C. Covalent Functionalization of Reduced Graphene Oxide with Porphyrin by Means of Diazonium Chemistry for Nonlinear Optical Performance. Sci. Rep. 2016, 6, 23325.10.1038/srep23325. PubMed DOI PMC

Kostarelos K.; Novoselov K. S. Exploring the Interface of Graphene and Biology. Science 2014, 344, 261–263. 10.1126/science.1246736. PubMed DOI

Park J.; Yan M. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46, 181–189. 10.1021/ar300172h. PubMed DOI

Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the Structure of Graphite Oxide: Absolute Quantification of Functional Groups via Selective Labelling. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI

Nair R. R.; Ren W. C.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S. J.; Katsnelson M. I.; Cheng H. M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI

Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC

Karlický F.; Kumara R. D.; Otyepka M.; Zbořil R. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano 2013, 7, 6434–6464. 10.1021/nn4024027. PubMed DOI

Lee W. H.; Suk J. W.; Lee J.; Hao Y.; Park J.; Yang J. W.; Ha H.-W.; Murali S.; Chou H.; Akinwande D.; Kim K. S.; Ruoff R. S. Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent Conductive Films on Plastic. ACS Nano 2012, 6, 1284–1290. 10.1021/nn203998j. PubMed DOI

Lee W. H.; Suk J. W.; Chou H.; Lee J.; Hao Y.; Wu Y.; Piner R.; Akinwande D.; Kim K. S.; Ruoff R. S. Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation. Nano Lett. 2012, 12, 2374–2378. 10.1021/nl300346j. PubMed DOI

Dubecký M.; Otyepková E.; Lazar P.; Karlický F.; Petr M.; Čépe K.; Banáš P.; Zbořil R.; Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015, 6, 1430–1434. 10.1021/acs.jpclett.5b00565. PubMed DOI

Whitener K. E. Jr.; Stine R.; Robinson J. T.; Sheehan P. E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C 2015, 119, 10507–10512. 10.1021/acs.jpcc.5b02730. DOI

Lazar P.; Chua C. K.; Holá K.; Zbořil R.; Otyepka M. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small 2015, 11, 3790–3796. 10.1002/smll.201500364. PubMed DOI

Worsley K. A.; Ramesh P.; Mandal S. K.; Niyogi S.; Itkis M. E.; Haddon R. C. Soluble Graphene Derived from Graphite Fluoride. Chem. Phys. Lett. 2007, 445, 51–56. 10.1016/j.cplett.2007.07.059. DOI

Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Čépe K.; Zbořil R.; Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29, 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC

Kastler M.; Pisula W.; Laquai F.; Kumar A.; Davies R. J.; Baluschev S.; Garcia-Gutiérrez M.-C.; Wasserfallen D.; Butt H.-J.; Riekel C.; Wegner G.; Müllen K. Organization of Charge-Carrier Pathways for Organic Electronics. Adv. Mater. 2006, 18, 2255–2259. 10.1002/adma.200601177. DOI

Bourlinos A. B.; Safarova K.; Siskova K.; Zbořil R. The Production of Chemically Converted Graphenes from Graphite Fluoride. Carbon 2012, 50, 1425–1428. 10.1016/j.carbon.2011.10.012. DOI

Si Y.; Samulski E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. 10.1021/nl080604h. PubMed DOI

Englert J. M.; Dotzer C.; Yang G.; Schmid M.; Papp C.; Gottfried J. M.; Steinrück H.-P.; Spiecker E.; Hauke F.; Hirsch A. Covalent Bulk Functionalization of Graphene. Nat. Chem. 2011, 3, 279–286. 10.1038/nchem.1010. PubMed DOI

Englert J. M.; Vecera P.; Knirsch K. C.; Schäfer R. A.; Hauke F.; Hirsch A. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano 2013, 7, 5472–5482. 10.1021/nn401481h. PubMed DOI

Szabó T.; Tombácz E.; Illés E.; Dékány I. Enhanced Acidity and ph-Dependent Surface Charge Characterization of Successively Oxidized Graphite Oxides. Carbon 2006, 44, 537–545. 10.1016/j.carbon.2005.08.005. DOI

Cocchi C.; Prezzi D.; Ruini A.; Caldas M. J.; Molinari E. Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. J. Phys. Chem. C 2012, 116, 17328–17335. 10.1021/jp300657k. DOI

Tuček J.; Holá K.; Bourlinos A. B.; Błoński P.; Bakandritsos A.; Dubecký M.; Karlický F.; Ranc V.; Čépe K.; Otyepka M.; Zbořil R. Room Temperature Organic Magnets Derived from sp3 Functionalized Graphene. Nat. Commun. 2017, 10.1038/ncomms14525. PubMed DOI PMC

Sheka E. F.; Popova N. A. Molecular Theory of Graphene Oxide. Phys. Chem. Chem. Phys. 2013, 15, 13304–13322. 10.1039/c3cp00032j. PubMed DOI

Yuan S.; Rösner M.; Schulz A.; Wehling T. O.; Katsnelson M. I. Electronic Structures and Optical Properties of Partially and Fully Fluorinated Graphene. Phys. Rev. Lett. 2015, 114, 047403.10.1103/PhysRevLett.114.047403. PubMed DOI

Pykal M.; Jurečka P.; Karlický F.; Otyepka M. Modelling of Graphene Functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. 10.1039/C5CP03599F. PubMed DOI

Lieb E. H. Two Theorems on the Hubbard Model. Phys. Rev. Lett. 1989, 62, 1201–1204. 10.1103/PhysRevLett.62.1201. PubMed DOI

Francis P.; Majumder C.; Ghaisas S. V. The Nonchalant Magnetic Ordering of Vacancies in Graphene. Carbon 2015, 91, 358–369. 10.1016/j.carbon.2015.05.010. DOI

Sainsbury T.; Passarelli M.; Naftaly M.; Gnaniah S.; Spencer S. J.; Pollard A. J. Covalent Carbene Functionalization of Graphene: Toward Chemical Band-Gap Manipulation. ACS Appl. Mater. Interfaces 2016, 8, 4870–4877. 10.1021/acsami.5b10525. PubMed DOI

Stine R.; Lee W.-K; Whitener K. E.; Robinson J. T.; Sheehan P. E. Chemical Stability of Graphene Fluoride Produced by Exposure to XeF2. Nano Lett. 2013, 13, 4311–4316. 10.1021/nl4021039. PubMed DOI

Jung I.; Dikin D. A.; Piner R. D.; Ruoff R. S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Lett. 2008, 8, 4283–4287. 10.1021/nl8019938. PubMed DOI

Garza K. M.; Soto K. F.; Murr L. E. Cytotoxicity and Reactive Oxygen Species Generation from Aggregated Carbon and Carbonaceous Nanoparticulate Materials. Int. J. Nanomed. 2008, 3, 83–94. 10.2147/IJN.S2464. PubMed DOI PMC

Kucki M.; Rupper P.; Sarrieu C.; Melucci M.; Treossi E.; Schwarz A.; Leon V.; Kraegeloh A.; Flahaut E.; Vazquez E.; Palermo V.; Wick P. Interaction of Graphene-Related Materials with Human Intestinal Cells: An in Vitro Approach. Nanoscale 2016, 8, 8749–8760. 10.1039/C6NR00319B. PubMed DOI

Chang Y.; Yang S.-T.; Liu J.-H.; Dong E.; Wang Y.; Cao A.; Liu Y.; Wang H. in Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201–210. 10.1016/j.toxlet.2010.11.016. PubMed DOI

Lin D.; Liu Y.; Liang Z.; Lee H.-W.; Sun J.; Wang H.; Yan K.; Xie J.; Cui Y. Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes. Nat. Nanotechnol. 2016, 11, 626–632. 10.1038/nnano.2016.32. PubMed DOI

Karim M. R.; Hatakeyama K.; Matsui T.; Takehira H.; Taniguchi T.; Koinuma M.; Matsumoto Y.; Akutagawa T.; Nakamura T.; Noro S.; Yamada T.; Kitagawa H.; Hayami S. Graphene Oxide Nanosheet with High Proton Conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100. 10.1021/ja401060q. PubMed DOI

Liaros N.; Aloukos P.; Kolokithas-Ntoukas A.; Bakandritsos A.; Szabo T.; Zboril R.; Couris S. Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. J. Phys. Chem. C 2013, 117, 6842–6850. 10.1021/jp400559q. DOI

Müllen K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano 2014, 8, 6531–6541. 10.1021/nn503283d. PubMed DOI

Wu J.; Pisula W.; Müllen K. Graphenes as Potential Material for Electronics. Chem. Rev. 2007, 107, 718–747. 10.1021/cr068010r. PubMed DOI

Schmidt-Mende L.; Fechtenkötter A.; Müllen K.; Moons E.; Friend R. H.; MacKenzie J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science 2001, 293, 1119–1122. 10.1126/science.293.5532.1119. PubMed DOI

Tan Y.-Z.; Yang B.; Parvez K.; Narita A.; Osella S.; Beljonne D.; Feng X.; Müllen K. Atomically Precise Edge Chlorination of Nanographenes and its Application in Graphene Nanoribbons. Nat. Commun. 2013, 4, 2646.10.1038/ncomms3646. PubMed DOI PMC

Mathews M.; Li Q. In Self-Organized Organic Semiconductors: from Materials to Device Applications; Li Q., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 83–129.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

E. coli and S. aureus resist silver nanoparticles via an identical mechanism, but through different pathways

. 2024 Nov 21 ; 7 (1) : 1552. [epub] 20241121

Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes

. 2024 Oct ; 11 (39) : e2307583. [epub] 20240806

Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review

. 2024 ; 19 () : 5637-5680. [epub] 20240611

Solvent Controlled Generation of Spin Active Polarons in Two-Dimensional Material under UV Light Irradiation

. 2024 Jun 05 ; 146 (22) : 15010-15018. [epub] 20240502

Linear-Structure Single-Atom Gold(I) Catalyst for Dehydrogenative Coupling of Organosilanes with Alcohols

. 2023 Dec 15 ; 13 (24) : 16067-16077. [epub] 20231130

Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids

. 2023 Aug 10 ; 127 (31) : 15454-15460. [epub] 20230629

Acidic graphene organocatalyst for the superior transformation of wastes into high-added-value chemicals

. 2023 Mar 13 ; 14 (1) : 1373. [epub] 20230313

Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection

. 2023 Feb 20 ; 25 (4) : 1647-1657. [epub] 20230207

Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies

. 2022 Dec 28 ; 122 (24) : 17241-17338. [epub] 20221101

Coordination effects on the binding of late 3d single metal species to cyanographene

. 2022 Dec 21 ; 25 (1) : 286-296. [epub] 20221221

Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts

. 2022 Sep 29 ; 14 (37) : 13490-13499. [epub] 20220929

Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid

. 2022 Jul 26 ; 58 (60) : 8396-8399. [epub] 20220726

Restoration of antibacterial activity of inactive antibiotics via combined treatment with a cyanographene/Ag nanohybrid

. 2022 Mar 25 ; 12 (1) : 5222. [epub] 20220325

Synthesis and Applications of Graphene Oxide

. 2022 Jan 25 ; 15 (3) : . [epub] 20220125

Graphene with Covalently Grafted Amino Acid as a Route Toward Eco-Friendly and Sustainable Supercapacitors

. 2021 Sep 20 ; 14 (18) : 3904-3914. [epub] 20210818

Toxicity of Carbon Nanomaterials-Towards Reliable Viability Assessment via New Approach in Flow Cytometry

. 2021 Jul 20 ; 22 (14) : . [epub] 20210720

Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics

. 2021 Jun ; 8 (12) : 2003090. [epub] 20210503

Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors

. 2021 Jan ; 33 (4) : e2004560. [epub] 20201204

Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes

. 2020 Nov 23 ; 10 (11) : . [epub] 20201123

Human virus detection with graphene-based materials

. 2020 Oct 15 ; 166 () : 112436. [epub] 20200722

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace