Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28208019
PubMed Central
PMC5371925
DOI
10.1021/acsnano.6b08449
Knihovny.cz E-zdroje
- Klíčová slova
- 2D acid, fluorographene chemistry, graphene acid, graphene nitrile, nucleophilic substitution,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Efficient and selective methods for covalent derivatization of graphene are needed because they enable tuning of graphene's surface and electronic properties, thus expanding its application potential. However, existing approaches based mainly on chemistry of graphene and graphene oxide achieve only limited level of functionalization due to chemical inertness of the surface and nonselective simultaneous attachment of different functional groups, respectively. Here we present a conceptually different route based on synthesis of cyanographene via the controllable substitution and defluorination of fluorographene. The highly conductive and hydrophilic cyanographene allows exploiting the complex chemistry of -CN groups toward a broad scale of graphene derivatives with very high functionalization degree. The consequent hydrolysis of cyanographene results in graphene acid, a 2D carboxylic acid with pKa of 5.2, showing excellent biocompatibility, conductivity and dispersibility in water and 3D supramolecular assemblies after drying. Further, the carboxyl groups enable simple, tailored and widely accessible 2D chemistry onto graphene, as demonstrated via the covalent conjugation with a diamine, an aminothiol and an aminoalcohol. The developed methodology represents the most controllable, universal and easy to use approach toward a broad set of 2D materials through consequent chemistries on cyanographene and on the prepared carboxy-, amino-, sulphydryl-, and hydroxy- graphenes.
Department of Materials Science University of Patras Patras 265 04 Greece
Physics Department University of Ioannina Ioannina 455 00 Greece
Zobrazit více v PubMed
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI
Georgakilas V.; Perman J. A.; Tucek J.; Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. 10.1021/cr500304f. PubMed DOI
Min S. K.; Kim W. Y.; Cho Y.; Kim K. S. Fast DNA Sequencing with a Graphene-Based Nanochannel Device. Nat. Nanotechnol. 2011, 6, 162–165. 10.1038/nnano.2010.283. PubMed DOI
Heerema S. J.; Dekker C. Graphene Nanodevices or DNA Sequencing. Nat. Nanotechnol. 2016, 11, 127–136. 10.1038/nnano.2015.307. PubMed DOI
Han W.; Kawakami R. K.; Gmitra M.; Fabian J. Graphene Spintronics. Nat. Nanotechnol. 2014, 9, 794–807. 10.1038/nnano.2014.214. PubMed DOI
Raccichini R.; Varzi A.; Passerini S.; Scrosati B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271–279. 10.1038/nmat4170. PubMed DOI
Urbanová V.; Holá K.; Bourlinos A. B.; Čépe K.; Ambrosi A.; Loo A. H.; Pumera M.; Karlický F.; Otyepka M.; Zbořil R. Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015, 27, 2305–2310. 10.1002/adma.201500094. PubMed DOI
Rafiee J.; Mi X.; Gullapalli H.; Thomas A. V.; Yavari F.; Shi Y.; Ajayan P. M.; Koratkar N. A. Wetting Transparency of Graphene. Nat. Mater. 2012, 11, 217–222. 10.1038/nmat3228. PubMed DOI
Wang B.; Cunning B. V.; Park S.-Y.; Huang M.; Kim J.-Y.; Ruoff R. S. Graphene Coatings as Barrier Layers to Prevent the Water-Induced Corrosion of Silicate Glass. ACS Nano 2016, 10, 9794–9800. 10.1021/acsnano.6b04363. PubMed DOI
Stankovich S.; Dikin D. A.; Dommett G. H. B.; Kohlhaas K. M.; Zimney E. J.; Stach E. A.; Piner R. D.; Nguyen S. T.; Ruoff R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. 10.1038/nature04969. PubMed DOI
Ferrari A. C.; Bonaccorso F.; Fal’ko V.; Novoselov K. S.; Roche S.; Boggild P.; Borini S.; Koppens F. H. L.; Palermo V.; Pugno N.; Garrido J. A.; Sordan R.; Bianco A.; Ballerini L.; Prato M.; Lidorikis E.; Kivioja J.; Marinelli C.; Ryhanen T.; Morpurgo A.; et al. Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7, 4598–4810. 10.1039/C4NR01600A. PubMed DOI
Georgakilas V.; Otyepka M.; Bourlinos A. B.; Chandra V.; Kim N.; Kemp K. C.; Hobza P.; Zboril R.; Kim K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. 10.1021/cr3000412. PubMed DOI
Criado A.; Melchionna M.; Marchesan S.; Prato M. The Covalent Functionalization of Graphene on Substrates. Angew. Chem., Int. Ed. 2015, 54, 10734–10750. 10.1002/anie.201501473. PubMed DOI
Eigler S.; Hirsch A. Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angew. Chem., Int. Ed. 2014, 53, 7720–7738. 10.1002/anie.201402780. PubMed DOI
Wang X. W.; Sun G. Z.; Routh P.; Kim D.-H.; Huang W.; Chen P. Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014, 43, 7067–7098. 10.1039/C4CS00141A. PubMed DOI
Paulus G. L. C.; Wang Q. H.; Strano M. S. Covalent Electron Transfer Chemistry of Graphene with Diazonium Salts. Acc. Chem. Res. 2013, 46, 160–170. 10.1021/ar300119z. PubMed DOI
Liao L.; Peng H.; Liu Z. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. 10.1021/ja5048297. PubMed DOI
Robinson J. T.; Burgess J. S.; Junkermeier C. E.; Badescu S. C.; Reinecke T. L.; Perkins F. K.; Zalalutdniov M. K.; Baldwin J. W.; Culbertson J. C.; Sheehan P. E.; Snow E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. 10.1021/nl101437p. PubMed DOI
Nair R. R.; Sepioni M.; Tsai I.-L.; Lehtinen O.; Keinonen J.; Krasheninnikov A. V.; Thomson T.; Geim A. K.; Grigorieva I. V. Spin-Half Paramagnetism in Graphene Induced by Point Defects. Nat. Phys. 2012, 8, 199–202. 10.1038/nphys2183. DOI
Tuček J.; Błoński P.; Sofer Z.; Šimek P.; Petr M.; Pumera M.; Otyepka M.; Zbořil R. Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Adv. Mater. 2016, 28, 5045–5053. 10.1002/adma.201600939. PubMed DOI
Wang A.; Yu W.; Huang Z.; Zhou F.; Song J.; Song Y.; Long L.; Cifuentes M. P.; Humphrey M. G.; Zhang L.; Shao J.; Zhang C. Covalent Functionalization of Reduced Graphene Oxide with Porphyrin by Means of Diazonium Chemistry for Nonlinear Optical Performance. Sci. Rep. 2016, 6, 23325.10.1038/srep23325. PubMed DOI PMC
Kostarelos K.; Novoselov K. S. Exploring the Interface of Graphene and Biology. Science 2014, 344, 261–263. 10.1126/science.1246736. PubMed DOI
Park J.; Yan M. Covalent Functionalization of Graphene with Reactive Intermediates. Acc. Chem. Res. 2013, 46, 181–189. 10.1021/ar300172h. PubMed DOI
Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the Structure of Graphite Oxide: Absolute Quantification of Functional Groups via Selective Labelling. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI
Nair R. R.; Ren W. C.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S. J.; Katsnelson M. I.; Cheng H. M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI
Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC
Karlický F.; Kumara R. D.; Otyepka M.; Zbořil R. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano 2013, 7, 6434–6464. 10.1021/nn4024027. PubMed DOI
Lee W. H.; Suk J. W.; Lee J.; Hao Y.; Park J.; Yang J. W.; Ha H.-W.; Murali S.; Chou H.; Akinwande D.; Kim K. S.; Ruoff R. S. Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent Conductive Films on Plastic. ACS Nano 2012, 6, 1284–1290. 10.1021/nn203998j. PubMed DOI
Lee W. H.; Suk J. W.; Chou H.; Lee J.; Hao Y.; Wu Y.; Piner R.; Akinwande D.; Kim K. S.; Ruoff R. S. Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation. Nano Lett. 2012, 12, 2374–2378. 10.1021/nl300346j. PubMed DOI
Dubecký M.; Otyepková E.; Lazar P.; Karlický F.; Petr M.; Čépe K.; Banáš P.; Zbořil R.; Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015, 6, 1430–1434. 10.1021/acs.jpclett.5b00565. PubMed DOI
Whitener K. E. Jr.; Stine R.; Robinson J. T.; Sheehan P. E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C 2015, 119, 10507–10512. 10.1021/acs.jpcc.5b02730. DOI
Lazar P.; Chua C. K.; Holá K.; Zbořil R.; Otyepka M. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small 2015, 11, 3790–3796. 10.1002/smll.201500364. PubMed DOI
Worsley K. A.; Ramesh P.; Mandal S. K.; Niyogi S.; Itkis M. E.; Haddon R. C. Soluble Graphene Derived from Graphite Fluoride. Chem. Phys. Lett. 2007, 445, 51–56. 10.1016/j.cplett.2007.07.059. DOI
Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Čépe K.; Zbořil R.; Otyepka M. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29, 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC
Kastler M.; Pisula W.; Laquai F.; Kumar A.; Davies R. J.; Baluschev S.; Garcia-Gutiérrez M.-C.; Wasserfallen D.; Butt H.-J.; Riekel C.; Wegner G.; Müllen K. Organization of Charge-Carrier Pathways for Organic Electronics. Adv. Mater. 2006, 18, 2255–2259. 10.1002/adma.200601177. DOI
Bourlinos A. B.; Safarova K.; Siskova K.; Zbořil R. The Production of Chemically Converted Graphenes from Graphite Fluoride. Carbon 2012, 50, 1425–1428. 10.1016/j.carbon.2011.10.012. DOI
Si Y.; Samulski E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. 10.1021/nl080604h. PubMed DOI
Englert J. M.; Dotzer C.; Yang G.; Schmid M.; Papp C.; Gottfried J. M.; Steinrück H.-P.; Spiecker E.; Hauke F.; Hirsch A. Covalent Bulk Functionalization of Graphene. Nat. Chem. 2011, 3, 279–286. 10.1038/nchem.1010. PubMed DOI
Englert J. M.; Vecera P.; Knirsch K. C.; Schäfer R. A.; Hauke F.; Hirsch A. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano 2013, 7, 5472–5482. 10.1021/nn401481h. PubMed DOI
Szabó T.; Tombácz E.; Illés E.; Dékány I. Enhanced Acidity and ph-Dependent Surface Charge Characterization of Successively Oxidized Graphite Oxides. Carbon 2006, 44, 537–545. 10.1016/j.carbon.2005.08.005. DOI
Cocchi C.; Prezzi D.; Ruini A.; Caldas M. J.; Molinari E. Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. J. Phys. Chem. C 2012, 116, 17328–17335. 10.1021/jp300657k. DOI
Tuček J.; Holá K.; Bourlinos A. B.; Błoński P.; Bakandritsos A.; Dubecký M.; Karlický F.; Ranc V.; Čépe K.; Otyepka M.; Zbořil R. Room Temperature Organic Magnets Derived from sp3 Functionalized Graphene. Nat. Commun. 2017, 10.1038/ncomms14525. PubMed DOI PMC
Sheka E. F.; Popova N. A. Molecular Theory of Graphene Oxide. Phys. Chem. Chem. Phys. 2013, 15, 13304–13322. 10.1039/c3cp00032j. PubMed DOI
Yuan S.; Rösner M.; Schulz A.; Wehling T. O.; Katsnelson M. I. Electronic Structures and Optical Properties of Partially and Fully Fluorinated Graphene. Phys. Rev. Lett. 2015, 114, 047403.10.1103/PhysRevLett.114.047403. PubMed DOI
Pykal M.; Jurečka P.; Karlický F.; Otyepka M. Modelling of Graphene Functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. 10.1039/C5CP03599F. PubMed DOI
Lieb E. H. Two Theorems on the Hubbard Model. Phys. Rev. Lett. 1989, 62, 1201–1204. 10.1103/PhysRevLett.62.1201. PubMed DOI
Francis P.; Majumder C.; Ghaisas S. V. The Nonchalant Magnetic Ordering of Vacancies in Graphene. Carbon 2015, 91, 358–369. 10.1016/j.carbon.2015.05.010. DOI
Sainsbury T.; Passarelli M.; Naftaly M.; Gnaniah S.; Spencer S. J.; Pollard A. J. Covalent Carbene Functionalization of Graphene: Toward Chemical Band-Gap Manipulation. ACS Appl. Mater. Interfaces 2016, 8, 4870–4877. 10.1021/acsami.5b10525. PubMed DOI
Stine R.; Lee W.-K; Whitener K. E.; Robinson J. T.; Sheehan P. E. Chemical Stability of Graphene Fluoride Produced by Exposure to XeF2. Nano Lett. 2013, 13, 4311–4316. 10.1021/nl4021039. PubMed DOI
Jung I.; Dikin D. A.; Piner R. D.; Ruoff R. S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Lett. 2008, 8, 4283–4287. 10.1021/nl8019938. PubMed DOI
Garza K. M.; Soto K. F.; Murr L. E. Cytotoxicity and Reactive Oxygen Species Generation from Aggregated Carbon and Carbonaceous Nanoparticulate Materials. Int. J. Nanomed. 2008, 3, 83–94. 10.2147/IJN.S2464. PubMed DOI PMC
Kucki M.; Rupper P.; Sarrieu C.; Melucci M.; Treossi E.; Schwarz A.; Leon V.; Kraegeloh A.; Flahaut E.; Vazquez E.; Palermo V.; Wick P. Interaction of Graphene-Related Materials with Human Intestinal Cells: An in Vitro Approach. Nanoscale 2016, 8, 8749–8760. 10.1039/C6NR00319B. PubMed DOI
Chang Y.; Yang S.-T.; Liu J.-H.; Dong E.; Wang Y.; Cao A.; Liu Y.; Wang H. in Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201–210. 10.1016/j.toxlet.2010.11.016. PubMed DOI
Lin D.; Liu Y.; Liang Z.; Lee H.-W.; Sun J.; Wang H.; Yan K.; Xie J.; Cui Y. Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes. Nat. Nanotechnol. 2016, 11, 626–632. 10.1038/nnano.2016.32. PubMed DOI
Karim M. R.; Hatakeyama K.; Matsui T.; Takehira H.; Taniguchi T.; Koinuma M.; Matsumoto Y.; Akutagawa T.; Nakamura T.; Noro S.; Yamada T.; Kitagawa H.; Hayami S. Graphene Oxide Nanosheet with High Proton Conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100. 10.1021/ja401060q. PubMed DOI
Liaros N.; Aloukos P.; Kolokithas-Ntoukas A.; Bakandritsos A.; Szabo T.; Zboril R.; Couris S. Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. J. Phys. Chem. C 2013, 117, 6842–6850. 10.1021/jp400559q. DOI
Müllen K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano 2014, 8, 6531–6541. 10.1021/nn503283d. PubMed DOI
Wu J.; Pisula W.; Müllen K. Graphenes as Potential Material for Electronics. Chem. Rev. 2007, 107, 718–747. 10.1021/cr068010r. PubMed DOI
Schmidt-Mende L.; Fechtenkötter A.; Müllen K.; Moons E.; Friend R. H.; MacKenzie J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science 2001, 293, 1119–1122. 10.1126/science.293.5532.1119. PubMed DOI
Tan Y.-Z.; Yang B.; Parvez K.; Narita A.; Osella S.; Beljonne D.; Feng X.; Müllen K. Atomically Precise Edge Chlorination of Nanographenes and its Application in Graphene Nanoribbons. Nat. Commun. 2013, 4, 2646.10.1038/ncomms3646. PubMed DOI PMC
Mathews M.; Li Q. In Self-Organized Organic Semiconductors: from Materials to Device Applications; Li Q., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 83–129.
Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids
Coordination effects on the binding of late 3d single metal species to cyanographene
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid
Synthesis and Applications of Graphene Oxide
Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors
Human virus detection with graphene-based materials