Synthesis and Applications of Graphene Oxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-01866S
Czech Science Foundation
20-SVV/2021
Ministry of Education Youth and Sports
PubMed
35160865
PubMed Central
PMC8839209
DOI
10.3390/ma15030920
PII: ma15030920
Knihovny.cz E-zdroje
- Klíčová slova
- applications, characterization, graphene oxide, synthesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.
Zobrazit více v PubMed
Rümmeli M.H., Rocha C.G., Ortmann F., Ibrahim I., Sevincli H., Börrnert F., Kunstmann J., Bachmatiuk A., Pötschke M., Shiraishi M. Graphene: Piecing it together. Adv. Mater. 2011;23:4471–4490. doi: 10.1002/adma.201101855. PubMed DOI
Yang G., Li L., Lee W.B., Ng M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018;19:613–648. doi: 10.1080/14686996.2018.1494493. PubMed DOI PMC
Meric I., Han M.Y., Young A.F., Ozyilmaz B., Kim P., Shepard K.L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008;3:654–659. doi: 10.1038/nnano.2008.268. PubMed DOI
Robinson J.T., Perkins F.K., Snow E.S., Wei Z., Sheehan P.E. Reduced graphene oxide molecular sensors. Nano Lett. 2008;8:3137–3140. doi: 10.1021/nl8013007. PubMed DOI
Mohanty N., Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8:4469–4476. doi: 10.1021/nl802412n. PubMed DOI
Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2:463–470. doi: 10.1021/nn700375n. PubMed DOI
Wang H., Yang Y., Liang Y., Robinson J.T., Li Y., Jackson A., Cui Y., Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11:2644–2647. doi: 10.1021/nl200658a. PubMed DOI
Shin D.S., Kim H.G., Ahn H.S., Jeong H.Y., Kim Y.-J., Odkhuu D., Tsogbadrakh N., Kim B.H. Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Adv. 2017;7:13979–13984. doi: 10.1039/C7RA00114B. DOI
Kumar V., Kumar A., Lee D.-J., Park S.-S. Estimation of Number of Graphene Layers Using Different Methods: A Focused Review. Materials. 2021;14:4590. doi: 10.3390/ma14164590. PubMed DOI PMC
Mkhoyan K.A., Contryman A.W., Silcox J., Stewart D.A., Eda G., Mattevi C., Miller S., Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009;9:1058–1063. doi: 10.1021/nl8034256. PubMed DOI
Lerf A., He H., Forster M., Klinowski J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B. 1998;102:4477–4482. doi: 10.1021/jp9731821. DOI
Erickson K., Erni R., Lee Z., Alem N., Gannett W., Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010;22:4467–4472. doi: 10.1002/adma.201000732. PubMed DOI
Sofer Z., Šimek P., Jankovský O., Sedmidubský D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI
Wilson N.R., Pandey P.A., Beanland R., Young R.J., Kinloch I.A., Gong L., Liu Z., Suenaga K., Rourke J.P., York S.J. Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano. 2009;3:2547–2556. doi: 10.1021/nn900694t. PubMed DOI
Nováček M., Jankovský O., Luxa J., Sedmidubský D., Pumera M., Fila V., Lhotka M., Klímová K., Matějková S., Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A. 2017;5:2739–2748. doi: 10.1039/C6TA03631G. DOI
Hofmann U., Holst R. Über die Säurenatur und die Methylierung von Graphitoxyd. Ber. Dtsch. Chemischen Ges. 1939;72:754–771. doi: 10.1002/cber.19390720417. DOI
Ruess G. Über das graphitoxyhydroxyd (graphitoxyd) Mon. Chem. Verwandte Teile And. Wiss. 1947;76:381–417. doi: 10.1007/BF00898987. DOI
Scholz W., Boehm H. Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids. Z. Anorg. Allg. Chem. 1969;369:327–340. doi: 10.1002/zaac.19693690322. DOI
Nakajima T., Matsuo Y. Formation process and structure of graphite oxide. Carbon. 1994;32:469–475. doi: 10.1016/0008-6223(94)90168-6. DOI
Dimiev A.M., Alemany L.B., Tour J.M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano. 2013;7:576–588. doi: 10.1021/nn3047378. PubMed DOI
Liu Z., Nørgaard K., Overgaard M.H., Ceccato M., Mackenzie D.M., Stenger N., Stipp S.L., Hassenkam T. Direct observation of oxygen configuration on individual graphene oxide sheets. Carbon. 2018;127:141–148. doi: 10.1016/j.carbon.2017.10.100. DOI
Sun L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 2019;27:2251–2260. doi: 10.1016/j.cjche.2019.05.003. DOI
López-Dıíaz D., Merchán M.D., Velázquez M.M., Maestro A. Understanding the Role of Oxidative Debris on the Structure of Graphene Oxide Films at the Air–Water Interface: A Neutron Reflectivity Study. ACS Appl. Mater. Interfaces. 2020;12:25453–25463. doi: 10.1021/acsami.0c05649. PubMed DOI
Sofer Z., Jankovský O., Šimek P., Soferová L., Sedmidubský D., Pumera M. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature. Nanoscale. 2014;6:2153–2160. doi: 10.1039/C3NR05407A. PubMed DOI
Faria A.F., Martinez D.S.T., Moraes A.C., Maia da Costa M.E., Barros E.B., Souza Filho A.G., Paula A.J., Alves O.L. Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem. Mater. 2012;24:4080–4087. doi: 10.1021/cm301939s. DOI
Wu Z., Pittman C.U., Jr., Gardner S.D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon. 1995;33:597–605. doi: 10.1016/0008-6223(95)00145-4. DOI
Bonanni A., Ambrosi A., Chua C.K., Pumera M. Oxidation debris in graphene oxide is responsible for its inherent electroactivity. ACS Nano. 2014;8:4197–4204. doi: 10.1021/nn404255q. PubMed DOI
Claramunt S., Varea A., Lopez-Diaz D., Velázquez M.M., Cornet A., Cirera A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. C. 2015;119:10123–10129. doi: 10.1021/acs.jpcc.5b01590. DOI
Thirupathi R., Reddy Y.J., Prabhakaran E.N., Atreya H.S. Organic fragments from graphene oxide: Isolation, characterization and solvent effects. J. Chem. Sci. 2014;126:541–545. doi: 10.1007/s12039-014-0606-z. DOI
Rourke J.P., Pandey P.A., Moore J.J., Bates M., Kinloch I.A., Young R.J., Wilson N.R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 2011;50:3173–3177. doi: 10.1002/anie.201007520. PubMed DOI
Brodie B. Note sur un nouveau procédé pour la purification et la désagrégation du graphite. Ann. Chim. Phys. 1855;45:351–353.
Brodie B.C., XIII. On the atomic weight of graphite. Philos. Trans. R. Soc. 1859;149:249–259.
Staudenmaier L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898;31:1481–1487. doi: 10.1002/cber.18980310237. DOI
Jankovský O., Nováček M., Luxa J., Sedmidubský D., Boháčová M., Pumera M., Sofer Z. Concentration of nitric acid strongly influences chemical composition of graphite oxide. Chem. Eur. J. 2017;23:6432–6440. doi: 10.1002/chem.201700809. PubMed DOI
Hummers W.S., Jr., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Kovtyukhova N.I., Ollivier P.J., Martin B.R., Mallouk T.E., Chizhik S.A., Buzaneva E.V., Gorchinskiy A.D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater. 1999;11:771–778. doi: 10.1021/cm981085u. DOI
Eigler S. Graphite sulphate—A precursor to graphene. Chem. Commun. 2015;51:3162–3165. doi: 10.1039/C4CC09381J. PubMed DOI
Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016;6:36143. doi: 10.1038/srep36143. PubMed DOI PMC
Eigler S., Enzelberger-Heim M., Grimm S., Hofmann P., Kroener W., Geworski A., Dotzer C., Röckert M., Xiao J., Papp C. Wet chemical synthesis of graphene. Adv. Mater. 2013;25:3583–3587. doi: 10.1002/adma.201300155. PubMed DOI
Chen H., Du W., Liu J., Qu L., Li C. Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem. Sci. 2019;10:1244–1253. doi: 10.1039/C8SC03695K. PubMed DOI PMC
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Wojtoniszak M., Mijowska E. Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J. Nanoparticle Res. 2012;14:1248. doi: 10.1007/s11051-012-1248-z. PubMed DOI PMC
Ishikawa T., Kanemaru T., Teranishi H., Onishi K. Composites of Oxidized Graphite Material and Expanded Graphite Material. 4094951. U.S. Patent. 1978 June 13;
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Peng L., Xu Z., Liu Z., Wei Y., Sun H., Li Z., Zhao X., Gao C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015;6:5716. doi: 10.1038/ncomms6716. PubMed DOI PMC
Sofer Z., Luxa J., Jankovský O., Sedmidubský D., Bystroň T., Pumera M. Synthesis of graphene oxide by oxidation of graphite with ferrate (VI) compounds: Myth or reality? Angew. Chem. 2016;128:12144–12148. doi: 10.1002/ange.201603496. PubMed DOI
Yu C., Wang C.-F., Chen S. Facile Access to Graphene Oxide from Ferro-Induced Oxidation. Sci. Rep. 2016;6:17071. doi: 10.1038/srep17071. PubMed DOI PMC
Shen J., Hu Y., Shi M., Lu X., Qin C., Li C., Ye M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009;21:3514–3520. doi: 10.1021/cm901247t. DOI
Jankovský O., Jiříčková A., Luxa J., Sedmidubský D., Pumera M., Sofer Z. Fast synthesis of highly oxidized graphene oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI
Ranjan P., Agrawal S., Sinha A., Rao T.R., Balakrishnan J., Thakur A.D. A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications. Sci. Rep. 2018;8:12007. doi: 10.1038/s41598-018-30613-4. PubMed DOI PMC
Yu P., Tian Z., Lowe S.E., Song J., Ma Z., Wang X., Han Z.J., Bao Q., Simon G.P., Li D., et al. Mechanically-Assisted Electrochemical Production of Graphene Oxide. Chem. Mater. 2016;28:8429–8438. doi: 10.1021/acs.chemmater.6b04415. DOI
Pei S., Wei Q., Huang K., Cheng H.-M., Ren W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 2018;9:145. doi: 10.1038/s41467-017-02479-z. PubMed DOI PMC
Zhu C., Liu L., Fan M., Liu L., Dai B., Yang J., Sun D. Microbial oxidation of graphite by Acidithiobacillus ferrooxidans CFMI-1. RSC Adv. 2014;4:55044–55047. doi: 10.1039/C4RA09827G. DOI
Jankovský O., Nováček M., Luxa J., Sedmidubský D., Fila V., Pumera M., Sofer Z. A new member of the graphene family: Graphene acid. Chem. Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D.D., Poláková K., Georgakilas V., Cepe K., Tomanec O., Ranc V. Cyanographene and graphene acid: Emerging derivatives enabling high-yield and selective functionalization of graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Mao S., Yu K., Lu G., Chen J. Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 2011;4:921–930. doi: 10.1007/s12274-011-0148-3. DOI
Trung T.Q., Tien N.T., Kim D., Jang M., Yoon O.J., Lee N.E. A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv. Funct. Mater. 2014;24:117–124. doi: 10.1002/adfm.201301845. DOI
Aspermair P., Mishyn V., Bintinger J., Happy H., Bagga K., Subramanian P., Knoll W., Boukherroub R., Szunerits S. Reduced graphene oxide–based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Anal. Bioanal. Chem. 2021;413:779–787. doi: 10.1007/s00216-020-02879-z. PubMed DOI PMC
Kim D.-J., Sohn I.Y., Jung J.-H., Yoon O.J., Lee N.-E., Park J.-S. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 2013;41:621–626. doi: 10.1016/j.bios.2012.09.040. PubMed DOI
Cai B., Wang S., Huang L., Ning Y., Zhang Z., Zhang G.-J. Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano. 2014;8:2632–2638. doi: 10.1021/nn4063424. PubMed DOI
Matyba P., Yamaguchi H., Eda G., Chhowalla M., Edman L., Robinson N.D. Graphene and mobile ions: The key to all-plastic, solution-processed light-emitting devices. ACS Nano. 2010;4:637–642. doi: 10.1021/nn9018569. PubMed DOI
Zhu Y., Murali S., Stoller M.D., Velamakanni A., Piner R.D., Ruoff R.S. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon. 2010;48:2118–2122. doi: 10.1016/j.carbon.2010.02.001. DOI
Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068. PubMed DOI
Zhou G., Wang D.-W., Li F., Zhang L., Li N., Wu Z.-S., Wen L., Lu G.Q., Cheng H.-M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010;22:5306–5313. doi: 10.1021/cm101532x. DOI
Aneja K.S., Böhm H.M., Khanna A., Böhm S. Functionalised graphene as a barrier against corrosion. FlatChem. 2017;1:11–19. doi: 10.1016/j.flatc.2016.08.003. DOI
Ghauri F.A., Raza M.A., Baig M.S., Ibrahim S. Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. Mater. Res. Express. 2017;4:125601. doi: 10.1088/2053-1591/aa9aac. DOI
Ray S.C. Applications of Graphene and Graphene-Oxide Based Nanomaterials. Elsevier; Amsterdam, The Netherlands: 2015. Application and uses of graphene oxide and reduced graphene oxide.
Schniepp H.C., Li J.-L., McAllister M.J., Sai H., Herrera-Alonso M., Adamson D.H., Prud’homme R.K., Car R., Saville D.A., Aksay I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 2006;110:8535–8539. doi: 10.1021/jp060936f. PubMed DOI
Wu Z.-S., Ren W., Gao L., Liu B., Jiang C., Cheng H.-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009;47:493–499. doi: 10.1016/j.carbon.2008.10.031. DOI
Jankovský O., Simek P., Luxa J., Sedmidubský D., Tomandl I., Macková A., Miksova R., Malinský P., Pumera M., Sofer Z. Definitive insight into the graphite oxide reduction mechanism by deuterium labeling. ChemPlusChem. 2015;80:1399. doi: 10.1002/cplu.201500168. PubMed DOI
McAllister M.J., Li J.-L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J., Herrera-Alonso M., Milius D.L., Car R., Prud’homme R.K. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007;19:4396–4404. doi: 10.1021/cm0630800. DOI
Sofer Z., Jankovsky O., Simek P., Sedmidubsky D., Sturala J., Kosina J., Miksova R., Macková A., Mikulics M., Pumera M. Insight into the mechanism of the thermal reduction of graphite oxide: Deuterium-labeled graphite oxide is the key. ACS Nano. 2015;9:5478–5485. doi: 10.1021/acsnano.5b01463. PubMed DOI
Kudin K.N., Ozbas B., Schniepp H.C., Prud’Homme R.K., Aksay I.A., Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI
Jankovský O., Kučková Š.H., Pumera M., Šimek P., Sedmidubský D., Sofer Z. Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New J. Chem. 2014;38:5700–5705. doi: 10.1039/C4NJ00871E. DOI
Jankovský O., Lojka M., Nováček M., Luxa J., Sedmidubský D., Pumera M., Kosina J., Sofer Z. Reducing emission of carcinogenic by-products in the production of thermally reduced graphene oxide. Green Chem. 2016;18:6618–6629. doi: 10.1039/C6GC02491B. DOI
Mattevi C., Eda G., Agnoli S., Miller S., Mkhoyan K.A., Celik O., Mastrogiovanni D., Granozzi G., Garfunkel E., Chhowalla M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009;19:2577–2583. doi: 10.1002/adfm.200900166. DOI
Wang X., Zhi L., Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8:323–327. doi: 10.1021/nl072838r. PubMed DOI
Wu Z.-S., Ren W., Gao L., Zhao J., Chen Z., Liu B., Tang D., Yu B., Jiang C., Cheng H.-M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano. 2009;3:411–417. doi: 10.1021/nn900020u. PubMed DOI
Li X., Wang H., Robinson J.T., Sanchez H., Diankov G., Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009;131:15939–15944. doi: 10.1021/ja907098f. PubMed DOI
Kotov N.A., Dékány I., Fendler J.H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Adv. Mater. 1996;8:637–641. doi: 10.1002/adma.19960080806. DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., Ruoff R.S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate) J. Mater. Chem. 2006;16:155–158. doi: 10.1039/B512799H. DOI
Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006;442:282–286. doi: 10.1038/nature04969. PubMed DOI
Fernández-Merino M.J., Guardia L., Paredes J., Villar-Rodil S., Solís-Fernández P., Martínez-Alonso A., Tascón J. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 2010;114:6426–6432. doi: 10.1021/jp100603h. DOI
Šimek P., Sofer Z., Jankovský O., Sedmidubský D., Pumera M. Oxygen-free highly conductive graphene papers. Adv. Funct. Mater. 2014;24:4878–4885. doi: 10.1002/adfm.201304284. DOI
Jankovský O., Šimek P., Sedmidubský D., Matějková S., Janoušek Z., Šembera F., Pumera M., Sofer Z. Water-soluble highly fluorinated graphite oxide. RSC Adv. 2014;4:1378–1387. doi: 10.1039/C3RA45183F. DOI
Mazánek V., Jankovský O., Luxa J., Sedmidubský D., Janoušek Z., Šembera F., Mikulics M., Sofer Z. Tuning of fluorine content in graphene: Towards large-scale production of stoichiometric fluorographene. Nanoscale. 2015;7:13646–13655. doi: 10.1039/C5NR03243A. PubMed DOI
Chronopoulos D.D., Bakandritsos A., Pykal M., Zbořil R., Otyepka M. Chemistry, properties, and applications of fluorographene. Appl. Mater. Today. 2017;9:60–70. doi: 10.1016/j.apmt.2017.05.004. PubMed DOI PMC
Lazar P., Otyepková E., Karlický F., Čépe K., Otyepka M. The surface and structural properties of graphite fluoride. Carbon. 2015;94:804–809. doi: 10.1016/j.carbon.2015.07.064. DOI
Zbořil R., Karlický F., Bourlinos A.B., Steriotis T.A., Stubos A.K., Georgakilas V., Šafářová K., Jančík D., Trapalis C., Otyepka M. Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small. 2010;6:2885–2891. doi: 10.1002/smll.201001401. PubMed DOI PMC
Cheng S.-H., Zou K., Okino F., Gutierrez H.R., Gupta A., Shen N., Eklund P., Sofo J., Zhu J. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B. 2010;81:205435. doi: 10.1103/PhysRevB.81.205435. DOI
Zhang M., Ma Y., Zhu Y., Che J., Xiao Y. Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride. Carbon. 2013;63:149–156. doi: 10.1016/j.carbon.2013.06.066. DOI
Sun C., Feng Y., Li Y., Qin C., Zhang Q., Feng W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale. 2014;6:2634–2641. doi: 10.1039/C3NR04609E. PubMed DOI
Zhu M., Xie X., Guo Y., Chen P., Ou X., Yu G., Liu M. Fluorographene nanosheets with broad solvent dispersibility and their applications as a modified layer in organic field-effect transistors. Phys. Chem. Chem. Phys. 2013;15:20992–21000. doi: 10.1039/c3cp53383b. PubMed DOI
Robinson J.T., Burgess J.S., Junkermeier C.E., Badescu S.C., Reinecke T.L., Perkins F.K., Zalalutdniov M.K., Baldwin J.W., Culbertson J.C., Sheehan P.E. Properties of fluorinated graphene films. Nano Lett. 2010;10:3001–3005. doi: 10.1021/nl101437p. PubMed DOI
Bouša D., Mazánek V., Sedmidubský D., Jankovský O., Pumera M., Sofer Z. Hydrogenation of fluorographite and fluorographene: An easy way to produce highly hydrogenated graphene. Chem. A Eur. J. 2018;24:8350–8360. doi: 10.1002/chem.201800236. PubMed DOI
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI
Aliyev E., Khan M., Nabiyev A., Alosmanov R., Bunyad-zadeh I., Shishatskiy S., Filiz V. Covalently Modified Graphene Oxide and Polymer of Intrinsic Microporosity (PIM-1) in Mixed Matrix Thin-Film Composite Membranes. Nanoscale Res. Lett. 2018;13:359. doi: 10.1186/s11671-018-2771-3. PubMed DOI PMC
Cheng M., Yang R., Zhang L., Shi Z., Yang W., Wang D., Xie G., Shi D., Zhang G. Restoration of graphene from graphene oxide by defect repair. Carbon. 2012;50:2581–2587. doi: 10.1016/j.carbon.2012.02.016. DOI
Li J., Vaisman L., Marom G., Kim J.-K. Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon. 2007;45:744–750. doi: 10.1016/j.carbon.2006.11.031. DOI
Krishnamoorthy K., Mohan R., Kim S.-J. Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 2011;98:244101. doi: 10.1063/1.3599453. DOI
Krishnamoorthy K., Veerapandian M., Yun K., Kim S.-J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013;53:38–49. doi: 10.1016/j.carbon.2012.10.013. DOI
Venugopal G., Krishnamoorthy K., Mohan R., Kim S.-J. An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 2012;132:29–33. doi: 10.1016/j.matchemphys.2011.10.040. DOI
Stobinski L., Lesiak B., Malolepszy A., Mazurkiewicz M., Mierzwa B., Zemek J., Jiricek P., Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014;195:145–154. doi: 10.1016/j.elspec.2014.07.003. DOI
Gupta V., Sharma N., Singh U., Arif M., Singh A. Higher oxidation level in graphene oxide. Optik. 2017;143:115–124. doi: 10.1016/j.ijleo.2017.05.100. DOI
Guerrero-Contreras J., Caballero-Briones F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015;153:209–220. doi: 10.1016/j.matchemphys.2015.01.005. DOI
Al-Gaashani R., Najjar A., Zakaria Y., Mansour S., Atieh M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019;45:14439–14448. doi: 10.1016/j.ceramint.2019.04.165. DOI
Zhang C., Lv W., Xie X., Tang D., Liu C., Yang Q.-H. Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon. 2013;62:11–24. doi: 10.1016/j.carbon.2013.05.033. DOI
Zhao J., Pei S., Ren W., Gao L., Cheng H.-M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano. 2010;4:5245–5252. doi: 10.1021/nn1015506. PubMed DOI
Dikin D.A., Stankovich S., Zimney E.J., Piner R.D., Dommett G.H.B., Evmenenko G., Nguyen S.T., Ruoff R.S. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–460. doi: 10.1038/nature06016. PubMed DOI
Lv S., Zhang J., Zhu L., Jia C. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability. Materials. 2016;9:924. doi: 10.3390/ma9110924. PubMed DOI PMC
Li F., Jiang X., Zhao J., Zhang S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy. 2015;16:488–515. doi: 10.1016/j.nanoen.2015.07.014. DOI
Kim H.W., Yoon H.W., Yoon S.-M., Yoo B.M., Ahn B.K., Cho Y.H., Shin H.J., Yang H., Paik U., Kwon S. Selective gas transport through few-layered graphene and graphene oxide membranes. Science. 2013;342:91–95. doi: 10.1126/science.1236098. PubMed DOI
Kim D., Kim D.W., Lim H.-K., Jeon J., Kim H., Jung H.-T., Lee H. Intercalation of gas molecules in graphene oxide interlayer: The role of water. J. Phys. Chem. C. 2014;118:11142–11148. doi: 10.1021/jp5026762. DOI
Eigler S., Dotzer C., Hirsch A., Enzelberger M., Müller P. Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 2012;24:1276–1282. doi: 10.1021/cm203223z. DOI
Yumura T., Yamasaki A. Roles of water molecules in trapping carbon dioxide molecules inside the interlayer space of graphene oxides. Phys. Chem. Chem. Phys. 2014;16:9656–9666. doi: 10.1039/C4CP00658E. PubMed DOI
Shen J., Liu G., Huang K., Jin W., Lee K.R., Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chem. 2015;127:588–592. doi: 10.1002/ange.201409563. PubMed DOI
Li X., Cheng Y., Zhang H., Wang S., Jiang Z., Guo R., Wu H. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl. Mater. Interfaces. 2015;7:5528–5537. doi: 10.1021/acsami.5b00106. PubMed DOI
Quan S., Li S.W., Xiao Y.C., Shao L. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. Int. J. Greenh. Gas Control. 2017;56:22–29. doi: 10.1016/j.ijggc.2016.11.010. DOI
He R., Cong S., Wang J., Liu J., Zhang Y. Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture. ACS Appl. Mater. Interfaces. 2019;11:4338–4344. doi: 10.1021/acsami.8b17599. PubMed DOI
Dai Y., Ruan X., Yan Z., Yang K., Yu M., Li H., Zhao W., He G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep. Purif. Technol. 2016;166:171–180. doi: 10.1016/j.seppur.2016.04.038. DOI
Shen Y., Wang H., Liu J., Zhang Y. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain. Chem. Eng. 2015;3:1819–1829. doi: 10.1021/acssuschemeng.5b00409. DOI
Petit C., Seredych M., Bandosz T.J. Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 2009;19:9176–9185. doi: 10.1039/b916672f. DOI
Seredych M., Bandosz T.J. Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure. J. Phys. Chem. C. 2007;111:15596–15604. doi: 10.1021/jp0735785. DOI
Seredych M., Bandosz T.J. Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides. Langmuir. 2010;26:5491–5498. doi: 10.1021/la9037217. PubMed DOI
Seredych M., Rossin J.A., Bandosz T.J. Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia. Carbon. 2011;49:4392–4402. doi: 10.1016/j.carbon.2011.06.032. DOI
Seredych M., Bandosz T.J. Adsorption of ammonia on graphite oxide/Al13 composites. Colloids Surf. A Physicochem. Eng. Asp. 2010;353:30–36. doi: 10.1016/j.colsurfa.2009.10.018. DOI
Zhou X., Huang W., Shi J., Zhao Z., Xia Q., Li Y., Wang H., Li Z. A novel MOF/graphene oxide composite GrO@ MIL-101 with high adsorption capacity for acetone. J. Mater. Chem. A. 2014;2:4722–4730. doi: 10.1039/C3TA15086K. DOI
He Y., Zhang N., Wu F., Xu F., Liu Y., Gao J. Graphene oxide foams and their excellent adsorption ability for acetone gas. Mater. Res. Bull. 2013;48:3553–3558. doi: 10.1016/j.materresbull.2013.05.056. DOI
Esrafili M.D., Dinparast L. The selective adsorption of formaldehyde and methanol over Al-or Si-decorated graphene oxide: A DFT study. J. Mol. Graph. Model. 2018;80:25–31. doi: 10.1016/j.jmgm.2017.12.025. PubMed DOI
Daraee M., Ghasemy E., Rashidi A. Synthesis of Novel and Engineered UiO-66/Graphene Oxide Nanocomposite with Enhanced H2S Adsorption Capacity. J. Environ. Chem. Eng. 2020;8:104351. doi: 10.1016/j.jece.2020.104351. DOI
Daraee M., Ghasemy E., Rashidi A. Effective adsorption of hydrogen sulfide by intercalation of TiO2 and N-doped TiO2 in graphene oxide. J. Environ. Chem. Eng. 2020;8:103836. doi: 10.1016/j.jece.2020.103836. DOI
Petit C., Mendoza B., Bandosz T.J. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem. 2010;11:3678–3684. doi: 10.1002/cphc.201000689. PubMed DOI
Babu D.J., Kühl F.G., Yadav S., Markert D., Bruns M., Hampe M.J., Schneider J.J. Adsorption of pure SO2 on nanoscaled graphene oxide. RSC Adv. 2016;6:36834–36839. doi: 10.1039/C6RA07518E. DOI
Zhang H., Cen W., Liu J., Guo J., Yin H., Ning P. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study. Appl. Surf. Sci. 2015;324:61–67. doi: 10.1016/j.apsusc.2014.10.087. DOI
Alptoğa Ö., Uçar N., Yavuz N.K., Önen A. Effects of the coagulation bath and reduction process on SO2 adsorption capacity of graphene oxide fiber. Int. J. Mater. Metall. Eng. 2017;11:430–433.
Trapalis A., Todorova N., Giannakopoulou T., Boukos N., Speliotis T., Dimotikali D., Yu J. TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl. Catal. B Environ. 2016;180:637–647. doi: 10.1016/j.apcatb.2015.07.009. DOI
Chen M., Huang Y., Yao J., Cao J.-J., Liu Y. Visible-light-driven N-(BiO) 2CO3/Graphene oxide composites with improved photocatalytic activity and selectivity for NOx removal. Appl. Surf. Sci. 2018;430:137–144. doi: 10.1016/j.apsusc.2017.06.056. DOI
Xu D., Cheng B., Wang W., Jiang C., Yu J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2018;231:368–380. doi: 10.1016/j.apcatb.2018.03.036. DOI
Xu Y.-F., Yang M.-Z., Chen B.-X., Wang X.-D., Chen H.-Y., Kuang D.-B., Su C.-Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017;139:5660–5663. doi: 10.1021/jacs.7b00489. PubMed DOI
Hsu H.-C., Shown I., Wei H.-Y., Chang Y.-C., Du H.-Y., Lin Y.-G., Tseng C.-A., Wang C.-H., Chen L.-C., Lin Y.-C. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale. 2013;5:262–268. doi: 10.1039/C2NR31718D. PubMed DOI
Zhao G., Li J., Ren X., Chen C., Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011;45:10454–10462. doi: 10.1021/es203439v. PubMed DOI
Liu L., Liu S., Zhang Q., Li C., Bao C., Liu X., Xiao P. Adsorption of Au (III), Pd (II), and Pt (IV) from aqueous solution onto graphene oxide. J. Chem. Eng. Data. 2013;58:209–216. doi: 10.1021/je300551c. DOI
Jankovský O., Šimek P., Klímová K., Sedmidubský D., Pumera M., Sofer Z. Highly selective removal of Ga3+ ions from Al3+/Ga3+ mixtures using graphite oxide. Carbon. 2015;89:121–129. doi: 10.1016/j.carbon.2015.03.025. DOI
Klímová K., Pumera M., Luxa J., Jankovský O., Sedmidubský D., Matějková S., Sofer Z. Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study. J. Phys. Chem. C. 2016;120:24203–24212. doi: 10.1021/acs.jpcc.6b08088. DOI
Zhao G., Ren X., Gao X., Tan X., Li J., Chen C., Huang Y., Wang X. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011;40:10945–10952. doi: 10.1039/c1dt11005e. PubMed DOI
Yang S.-T., Chang Y., Wang H., Liu G., Chen S., Wang Y., Liu Y., Cao A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid Interface Sci. 2010;351:122–127. doi: 10.1016/j.jcis.2010.07.042. PubMed DOI
Ma H.-L., Zhang Y., Hu Q.-H., Yan D., Yu Z.-Z., Zhai M. Chemical reduction and removal of Cr (VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J. Mater. Chem. 2012;22:5914–5916. doi: 10.1039/c2jm00145d. DOI
Dinda D., Gupta A., Saha S.K. Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification. J. Mater. Chem. A. 2013;1:11221–11228. doi: 10.1039/c3ta12504a. DOI
Li S., Lu X., Xue Y., Lei J., Zheng T., Wang C. Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr (VI) removal in aqueous solution. PLoS ONE. 2012;7:e43328. doi: 10.1371/journal.pone.0043328. PubMed DOI PMC
Zhang S., Zeng M., Xu W., Li J., Li J., Xu J., Wang X. Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr (VI) Dalton Trans. 2013;42:7854–7858. doi: 10.1039/c3dt50149c. PubMed DOI
Chandra V., Kim K.S. Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chem. Commun. 2011;47:3942–3944. doi: 10.1039/c1cc00005e. PubMed DOI
Fan L., Luo C., Sun M., Li X., Qiu H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B Biointerfaces. 2013;103:523–529. doi: 10.1016/j.colsurfb.2012.11.006. PubMed DOI
Zhang N., Qiu H., Si Y., Wang W., Gao J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon. 2011;49:827–837. doi: 10.1016/j.carbon.2010.10.024. DOI
Liu L., Li C., Bao C., Jia Q., Xiao P., Liu X., Zhang Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II) Talanta. 2012;93:350–357. doi: 10.1016/j.talanta.2012.02.051. PubMed DOI
Ramesha G., Kumara A.V., Muralidhara H., Sampath S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 2011;361:270–277. doi: 10.1016/j.jcis.2011.05.050. PubMed DOI
Liu F., Chung S., Oh G., Seo T.S. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl. Mater. Interfaces. 2012;4:922–927. doi: 10.1021/am201590z. PubMed DOI
Ren H., Kulkarni D.D., Kodiyath R., Xu W., Choi I., Tsukruk V.V. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. ACS Appl. Mater. Interfaces. 2014;6:2459–2470. doi: 10.1021/am404881p. PubMed DOI
Qi Y., Yang M., Xu W., He S., Men Y. Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interface Sci. 2017;486:84–96. doi: 10.1016/j.jcis.2016.09.058. PubMed DOI
Molla A., Li Y., Mandal B., Kang S.G., Hur S.H., Chung J.S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Appl. Surf. Sci. 2019;464:170–177. doi: 10.1016/j.apsusc.2018.09.056. DOI
Lu C.H., Yang H.H., Zhu C.L., Chen X., Chen G.N. A graphene platform for sensing biomolecules. Angew. Chem. 2009;121:4879–4881. doi: 10.1002/ange.200901479. PubMed DOI
He S., Song B., Li D., Zhu C., Qi W., Wen Y., Wang L., Song S., Fang H., Fan C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010;20:453–459. doi: 10.1002/adfm.200901639. DOI
JamesáYang C. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem. Commun. 2012;48:194–196. PubMed
Feng L., Zhang S., Liu Z. Graphene based gene transfection. Nanoscale. 2011;3:1252–1257. doi: 10.1039/c0nr00680g. PubMed DOI
Yang X., Zhang X., Liu Z., Ma Y., Huang Y., Chen Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C. 2008;112:17554–17558. doi: 10.1021/jp806751k. DOI
Zhang L., Xia J., Zhao Q., Liu L., Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6:537–544. doi: 10.1002/smll.200901680. PubMed DOI
Nair R., Wu H., Jayaram P., Grigorieva I., Geim A. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science. 2012;335:442–444. doi: 10.1126/science.1211694. PubMed DOI
Sun P., Zhu M., Wang K., Zhong M., Wei J., Wu D., Xu Z., Zhu H. Selective ion penetration of graphene oxide membranes. ACS Nano. 2013;7:428–437. doi: 10.1021/nn304471w. PubMed DOI
Gao W., Wu G., Janicke M.T., Cullen D.A., Mukundan R., Baldwin J.K., Brosha E.L., Galande C., Ajayan P.M., More K.L. Ozonated graphene oxide film as a proton-exchange membrane. Angew. Chem. Int. Ed. 2014;53:3588–3593. doi: 10.1002/anie.201310908. PubMed DOI
Tang L.A., Lee W.C., Shi H., Wong E.Y., Sadovoy A., Gorelik S., Hobley J., Lim C.T., Loh K.P. Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small. 2012;8:423–431. doi: 10.1002/smll.201101690. PubMed DOI
Kwon H., Mondal J., AlOgab K.A., Sammelselg V., Takamichi M., Kawaski A., Leparoux M. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J. Alloys Compd. 2017;698:807–813. doi: 10.1016/j.jallcom.2016.12.179. DOI
Balazsi K., Furkó M., Klimczyk P., Balázsi C. Influence of Graphene and Graphene Oxide on Properties of Spark Plasma Sintered Si3N4 Ceramic Matrix. Ceramics. 2020;3:5. doi: 10.3390/ceramics3010005. DOI
Chuah S., Pan Z., Sanjayan J.G., Wang C.M., Duan W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014;73:113–124. doi: 10.1016/j.conbuildmat.2014.09.040. DOI
Hanehara S., Yamada K. Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology. Cem. Concr. Res. 1999;29:1159–1165. doi: 10.1016/S0008-8846(99)00004-6. DOI
Zhang M.-H., Sisomphon K., Ng T.S., Sun D.J. Effect of superplasticizers on workability retention and initial setting time of cement pastes. Constr. Build. Mater. 2010;24:1700–1707. doi: 10.1016/j.conbuildmat.2010.02.021. DOI
Kim J.H., Beacraft M., Shah S.P. Effect of mineral admixtures on formwork pressure of self-consolidating concrete. Cem. Concr. Compos. 2010;32:665–671. doi: 10.1016/j.cemconcomp.2010.07.018. DOI
Juárez C., Valdez P., Durán A., Sobolev K. The diagonal tension behavior of fiber reinforced concrete beams. Cem. Concr. Compos. 2007;29:402–408. doi: 10.1016/j.cemconcomp.2006.12.009. DOI
Topcu I.B., Canbaz M. Effect of different fibers on the mechanical properties of concrete containing fly ash. Constr. Build. Mater. 2007;21:1486–1491. doi: 10.1016/j.conbuildmat.2006.06.026. DOI
Sobolev K. Mechano-chemical modification of cement with high volumes of blast furnace slag. Cem. Concr. Compos. 2005;27:848–853. doi: 10.1016/j.cemconcomp.2005.03.010. DOI
Lothenbach B., Scrivener K., Hooton R. Supplementary cementitious materials. Cem. Concr. Res. 2011;41:1244–1256. doi: 10.1016/j.cemconres.2010.12.001. DOI
Lv S., Ma Y., Qiu C., Sun T., Liu J., Zhou Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 2013;49:121–127. doi: 10.1016/j.conbuildmat.2013.08.022. DOI
Gong K., Pan Z., Korayem A.H., Qiu L., Li D., Collins F., Wang C.M., Duan W.H. Reinforcing effects of graphene oxide on portland cement paste. J. Mater. Civil Eng. 2015;27:A4014010. doi: 10.1061/(ASCE)MT.1943-5533.0001125. DOI
Taylor M., Tam C., Gielen D. Energy efficiency and CO2 emissions from the global cement industry; Proceedings of the Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry; IEA, Paris, France. 4–5 September 2006; p. 61.7.
Tang S., Hu Y., Ren W., Yu P., Huang Q., Qi X., Li Y., Chen E. Modeling on the hydration and leaching of eco-friendly magnesium oxychloride cement paste at the micro-scale. Constr. Build. Mater. 2019;204:684–690. doi: 10.1016/j.conbuildmat.2019.01.232. DOI
Lauermannová A.-M., Lojka M., Sklenka J., Záleská M., Pavlíková M., Pivák A., Pavlík Z., Jankovský O. Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem. 2021;29:100284. doi: 10.1016/j.flatc.2021.100284. DOI