Electrochemical Detection of Heavy Metals Using Graphene-Based Sensors: Advances, Meta-Analysis, Toxicity, and Sustainable Development Challenges

. 2025 Aug 04 ; 15 (8) : . [epub] 20250804

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid40862966

Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of heavy metal residues have their limitations in terms of cost, analysis time, and complexity. In the last decade, voltammetric analysis has emerged as the most prominent electrochemical determination method for heavy metals. Voltammetry is a reliable, cost-effective, and rapid determination method. This review provides a detailed primer on recent advances in the development and application of graphene-based electrochemical sensors for heavy metal monitoring over the last decade. We critically examine aspects of graphene modification (fabrication process, stability, cost, reproducibility) and analytical properties (sensitivity, selectivity, rapid detection, lower detection, and matrix effects) of these sensors. Furthermore, to our knowledge, meta-analyses were performed for the first time for all investigated parameters, categorized based on graphene materials and heavy metal types. We also examined the pass-fail criteria according to the WHO drinking water guidelines. In addition, the effects of heavy metal toxicity on human health and the environment are discussed. Finally, the contribution of heavy metal contamination to the seventeen Sustainable Development Goals (SDGs) stated by the United Nations in 2015 is discussed in detail. The results confirm the significant impact of heavy metal contamination across twelve SDGs. This review critically examines the existing knowledge in this field and highlights significant research gaps and future opportunities. It is intended as a resource for researchers working on graphene-based electrochemical sensors for the detection of heavy metals in food safety, with the ultimate goal of improving consumer health protection.

Zobrazit více v PubMed

Kapahi M., Sachdeva S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut. 2019;9:191203. doi: 10.5696/2156-9614-9.24.191203. PubMed DOI PMC

Houri T., Khairallah Y., Al Zahab A., Osta B., Romanos D., Haddad G. Heavy Metals Accumulation Effects on The Photosynthetic Performance of Geophytes in Mediterranean Reserve. J. King Saud. Univ. Sci. 2020;32:874–880. doi: 10.1016/j.jksus.2019.04.005. DOI

Zaynab M., Al-Yahyai R., Ameen A., Sharif Y., Ali L., Fatima M., Khan K.A., Li S. Health and Environmental Effects of Heavy Metals. J. King Saud. Univ. Sci. 2022;34:101653. doi: 10.1016/j.jksus.2021.101653. DOI

Briffa J., Sinagra E., Blundell R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon. 2020;6:e04691. doi: 10.1016/j.heliyon.2020.e04691. PubMed DOI PMC

Charkiewicz A.E., Omeljaniuk W.J., Nowak K., Garley M., Nikliński J. Cadmium Toxicity and Health Effects-A Brief Summary. Molecules. 2023;28:6620. doi: 10.3390/molecules28186620. PubMed DOI PMC

Balali-Mood M., Naseri K., Tahergorabi Z., Khazdair M.R., Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972. PubMed DOI PMC

Sharma U., Sharma J.G. Nanotechnology for the Bioremediation of Heavy Metals and Metalloids. J. Appl. Biol. Biotechnol. 2022;10:34–44. doi: 10.7324/JABB.2022.100504. DOI

Title 21 of the CFR. [(accessed on 26 July 2025)]; Available online: https://www.ecfr.gov/current/title-21.

Protocol on Heavy Metals. [(accessed on 26 July 2025)]. Available online: https://unece.org/environmental-policy/air/protocol-heavy-metals.

Hu T., Lai Q., Fan W., Zhang Y., Liu Z. Advances in Portable Heavy Metal Ion Sensors. Sensors. 2023;23:4125. doi: 10.3390/s23084125. PubMed DOI PMC

Saqib M., Dorozhko E.V., Barek J., Korotkova E.I., Semin V.O., Kolobova E., Erkovich A. V Sensitive Electrochemical Sensing of Carbosulfan in Food Products on Laser Reduced Graphene Oxide Sensor Decorated with Silver Nanoparticles. Microchem. J. 2024;207:112253. doi: 10.1016/j.microc.2024.112253. DOI

Dorozhko E.V., Gashevskay A.S., Korotkova E.I., Barek J., Vyskocil V., Eremin S.A., Galunin E.V., Saqib M. A Copper Nanoparticle-Based Electrochemical Immunosensor for Carbaryl Detection. Talanta. 2021;228:122174. doi: 10.1016/j.talanta.2021.122174. PubMed DOI

Lipskikh O.I., Korotkova E.I., Barek J., Vyskocil V., Saqib M., Khristunova E.P. Simultaneous Voltammetric Determination of Brilliant Blue FCF and Tartrazine for Food Quality Control. Talanta. 2020;218:121136. doi: 10.1016/j.talanta.2020.121136. PubMed DOI

Saqib M., Solomonenko A.N., Barek J., Dorozhko E.V., Korotkova E.I., Aljasar S.A. Graphene Derivatives-Based Electrodes for the Electrochemical Determination of Carbamate Pesticides in Food Products: A Review. Anal. Chim. Acta. 2023;1272:341449. doi: 10.1016/j.aca.2023.341449. PubMed DOI

Saqib M., Dorozhko E.V., Barek J., Vyskocil V., Korotkova E.I., Shabalina A. V A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules. 2021;26:5050. doi: 10.3390/molecules26165050. PubMed DOI PMC

Dorozhko E.V., Solomonenko A.N., Saqib M., Semin V.O. Electrochemical Immunosensors Based on Gold Nanoparticles for the Determination of Ovalbumin in Immunobiological Preparations. J. Anal. Chem. 2024;79:860–867. doi: 10.1134/S1061934824700230. DOI

Dorozhko E., Kazachinskaia E., Kononova Y., Zaikovskaya A., Barek J., Korotkova E., Kolobova E., Sheveleva P., Saqib M. Electrochemical Immunoassay of Antibodies Using Freshly Prepared and Aged Conjugates of Silver Nanoparticles. Talanta. 2023;253:124028. doi: 10.1016/j.talanta.2022.124028. DOI

Vashisth M., Hui A.L. Cost Effective and Sensitive Electrochemical Detection of Dopamine on Laser Driven Sensor; Proceedings of the 2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE); Moscow, Russia. 8–10 April 2025; pp. 1–6.

Dorozhko E.V., Solomonenko A.N., Erkovich A.V., Koltsova A.V., Korotkova E.I., Kolobova E.N., Semin V.O., Nikulin L.G., Mikhailova T.V., Kazachinskaya E.I., et al. Copper-Enhanced Electrochemical Immunosensor Based on Gold Nanoparticles for the Quality Control of Hepatitis A Virus Vaccines. Talanta. 2025;297:128579. doi: 10.1016/j.talanta.2025.128579. PubMed DOI

Haddaway N.R., Macura B., Whaley P., Pullin A.S. ROSES RepOrting Standards for Systematic Evidence Syntheses: Pro Forma, Flow-Diagram and Descriptive Summary of the Plan and Conduct of Environmental Systematic Reviews and Systematic Maps. Environ. Evid. 2018;7:7. doi: 10.1186/s13750-018-0121-7. DOI

Zhou W., Li C., Sun C., Yang X. Simultaneously Determination of Trace Cd2+ and Pb2+ Based on L-Cysteine/Graphene Modified Glassy Carbon Electrode. Food Chem. 2016;192:351–357. doi: 10.1016/j.foodchem.2015.07.042. PubMed DOI

Xing H., Xu J., Zhu X., Duan X., Lu L., Wang W., Zhang Y., Yang T. Highly Sensitive Simultaneous Determination of Cadmium (II), Lead (II), Copper (II), and Mercury (II) Ions on N-Doped Graphene Modified Electrode. J. Electroanal. Chem. 2016;760:52–58. doi: 10.1016/j.jelechem.2015.11.043. DOI

Xie Y.-L., Zhao S.-Q., Ye H.-L., Yuan J., Song P., Hu S.-Q. Graphene/CeO2 Hybrid Materials for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II) J. Electroanal. Chem. 2015;757:235–242. doi: 10.1016/j.jelechem.2015.09.043. DOI

Wang Z., Wang H., Zhang Z., Yang X., Liu G. Sensitive Electrochemical Determination of Trace Cadmium on a Stannum Film/Poly(p-Aminobenzene Sulfonic Acid)/Electrochemically Reduced Graphene Composite Modified Electrode. Electrochim. Acta. 2014;120:140–146. doi: 10.1016/j.electacta.2013.12.068. DOI

Hu M., He H., Xiao F., Liu C. Bi-MOF-Derived Carbon Wrapped Bi Nanoparticles Assembly on Flexible Graphene Paper Electrode for Electrochemical Sensing of Multiple Heavy Metal Ions. Nanomaterials. 2023;13:2069. doi: 10.3390/nano13142069. PubMed DOI PMC

Gong J., Zhou T., Song D., Zhang L. Monodispersed Au Nanoparticles Decorated Graphene as an Enhanced Sensing Platform for Ultrasensitive Stripping Voltammetric Detection of Mercury(II) Sens. Actuators B Chem. 2010;150:491–497. doi: 10.1016/j.snb.2010.09.014. DOI

Zhu L., Xu L., Huang B., Jia N., Tan L., Yao S. Simultaneous Determination of Cd(II) and Pb(II) Using Square Wave Anodic Stripping Voltammetry at a Gold Nanoparticle-Graphene-Cysteine Composite Modified Bismuth Film Electrode. Electrochim. Acta. 2014;115:471–477. doi: 10.1016/j.electacta.2013.10.209. DOI

Kosuvun M., Danvirutai P., Hormdee D., Chaosakul A., Tanboonchuy V., Siritaratiwat A., Anutrakulchai S., Sharma A., Tuantranont A., Srichan C. Nanoflowers on Microporous Graphene Electrodes as a Highly Sensitive and Low-Cost As(III) Electrochemical Sensor for Water Quality Monitoring. Sensors. 2023;23:3099. doi: 10.3390/s23063099. PubMed DOI PMC

Peng G., Guo M., Liu Y., Yang H., Wen Z., Chen X. Development of a Novel H-Shaped Electrochemical Aptasensor for Detection of Hg2+ Based on Graphene Aerogels–Au Nanoparticles Composite. Biosensors. 2023;13:932. doi: 10.3390/bios13100932. PubMed DOI PMC

Cui L., Wu J., Ju H. Synthesis of Bismuth-Nanoparticle-Enriched Nanoporous Carbon on Graphene for Efficient Electrochemical Analysis of Heavy-Metal Ions. Chem. Eur. J. 2015;21:11525–11530. doi: 10.1002/chem.201500512. PubMed DOI

Lee S., Oh J., Kim D., Piao Y. A Sensitive Electrochemical Sensor Using an Iron Oxide/Graphene Composite for the Simultaneous Detection of Heavy Metal Ions. Talanta. 2016;160:528–536. doi: 10.1016/j.talanta.2016.07.034. PubMed DOI

Chaiyo S., Mehmeti E., Žagar K., Siangproh W., Chailapakul O., Kalcher K. Electrochemical Sensors for the Simultaneous Determination of Zinc, Cadmium and Lead Using a Nafion/Ionic Liquid/Graphene Composite Modified Screen-Printed Carbon Electrode. Anal. Chim. Acta. 2016;918:26–34. doi: 10.1016/j.aca.2016.03.026. PubMed DOI

Kang Z., Chen T., Wang S., Ma H. Ultrasensitive and Simultaneous Detection of Heavy Metal Ions Based on Three-Dimensional Graphene-Carbon Nanotubes Hybrid Electrode Materials. Anal. Chim. Acta. 2014;852:45–54. doi: 10.1016/j.aca.2014.09.010. PubMed DOI

Lee S., Bong S., Ha J., Kwak M., Park S.-K., Piao Y. Electrochemical Deposition of Bismuth on Activated Graphene-Nafion Composite for Anodic Stripping Voltammetric Determination of Trace Heavy Metals. Sens. Actuators B Chem. 2015;215:62–69. doi: 10.1016/j.snb.2015.03.032. DOI

Zuo Y., Xu J., Zhu X., Duan X., Lu L., Yu Y. Graphene-Derived Nanomaterials as Recognition Elements for Electrochemical Determination of Heavy Metal Ions: A Review. Microchim. Acta. 2019;186: 171. doi: 10.1007/s00604-019-3248-5. PubMed DOI

Ye W., Liu N., Li S., Zhao G., Liu G. Methodological Guidance to the Batch Preparation of Graphene-Based Sensor for Low-Cost and High-Performance Cd2+ and Pb2+ Detection. J. Hazard. Mater. 2025;493:138331. doi: 10.1016/j.jhazmat.2025.138331. PubMed DOI

Ma Y., Wang Y., Xie D., Gu Y., Zhu X., Zhang H., Wang G., Zhang Y., Zhao H. Hierarchical MgFe-Layered Double Hydroxide Microsphere/Graphene Composite for Simultaneous Electrochemical Determination of Trace Pb(II) and Cd(II) Chem. Eng. J. 2018;347:953–962. doi: 10.1016/j.cej.2018.04.172. DOI

Yukird J., Kongsittikul P., Qin J., Chailapakul O., Rodthongkum N. ZnO@graphene Nanocomposite Modified Electrode for Sensitive and Simultaneous Detection of Cd (II) and Pb (II) Synth. Met. 2018;245:251–259. doi: 10.1016/j.synthmet.2018.09.012. DOI

Hao Y., Zhao Y., Chen S., Wang S., Meng J., Xu H. Nanoarchitectonics of Nest-like Co3O4 Nanowires Embedded Nitrogen-Doped Graphene Aerogel as Electrochemical Sensing Platform for Pb2+ and Cd2+ Trace Detection. Diam. Relat. Mater. 2023;137:110132. doi: 10.1016/j.diamond.2023.110132. DOI

Lei P., Zhou Y., Zhao S., Dong C., Shuang S. Carbon-Supported X-Manganate (X[Dbnd]Ni, Zn, and Cu) Nanocomposites for Sensitive Electrochemical Detection of Trace Heavy Metal Ions. J. Hazard. Mater. 2022;435:129036. doi: 10.1016/j.jhazmat.2022.129036. PubMed DOI

Kumunda C., Adekunle A.S., Mamba B.B., Hlongwa N.W., Nkambule T.T.I. Electrochemical Detection of Environmental Pollutants Based on Graphene Derivatives: A Review. Front. Mater. 2021;7:616787. doi: 10.3389/fmats.2020.616787. DOI

Ruecha N., Rodthongkum N., Cate D.M., Volckens J., Chailapakul O., Henry C.S. Sensitive Electrochemical Sensor Using a Graphene–Polyaniline Nanocomposite for Simultaneous Detection of Zn(II), Cd(II), and Pb(II) Anal. Chim. Acta. 2015;874:40–48. doi: 10.1016/j.aca.2015.02.064. PubMed DOI

Promphet N., Rattanarat P., Rangkupan R., Chailapakul O., Rodthongkum N. An Electrochemical Sensor Based on Graphene/Polyaniline/Polystyrene Nanoporous Fibers Modified Electrode for Simultaneous Determination of Lead and Cadmium. Sens. Actuators B Chem. 2015;207:526–534. doi: 10.1016/j.snb.2014.10.126. DOI

Kulkarni B.B., Suvina V., Balakrishna R.G., Nagaraju D.H., Jagadish K. 1D GNR-PPy Composite for Remarkably Sensitive Detection of Heavy Metal Ions in Environmental Water**. ChemElectroChem. 2022:1–9. doi: 10.1002/celc.202101269. DOI

Lu M., Deng Y., Luo Y., Lv J., Li T., Xu J., Chen S.-W., Wang J. Graphene Aerogel–Metal–Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal. Chem. 2018;91:888–895. doi: 10.1021/acs.analchem.8b03764. PubMed DOI

Senthil T., Parkavi R., Senthil Kumar P., Chandramohan A., Rangasamy G., Srinivasan K., Dinakaran K. PbS/Graphene Hybrid Nanostructures Coated Glassy Carbon Electrode for the Electrochemical Sensing of Copper Ions in Aqueous Solution. Food Chem. Toxicol. 2022;168:113375. doi: 10.1016/j.fct.2022.113375. PubMed DOI

Yu L., Chen X., Sun L., Zhang Q., Yang B., Huang M., Xu B., Xu Q. A Covalent Organic Frameworks@gold Nanoparticles@graphene Nanocomposite Based Electrochemical Sensor for Simultaneous Determination of Trace Cd2+, Pb2+ and Cu2+ React. Funct. Polym. 2024;194:105770. doi: 10.1016/j.reactfunctpolym.2023.105770. DOI

Gorgolis G., Galiotis C. Graphene Aerogels: A Review. 2D Mater. 2017;4:32001. doi: 10.1088/2053-1583/aa7883. DOI

Huo D., Zhang Y., Li N., Ma W., Liu H., Xu G., Li Z., Yang M., Hou C. Three-Dimensional Graphene/Amino-Functionalized Metal–Organic Framework for Simultaneous Electrochemical Detection of Cd(II), Pb(II), Cu(II), and Hg(II) Anal. Bioanal. Chem. 2022;414:1575–1586. doi: 10.1007/s00216-021-03779-6. PubMed DOI

Li M., Liao S., Wang S., Gao X., Liu Z. Synthesis and Application of EDTA Grafed Metal-Organic Frameworks (MOFs) and Graphene Composite for the Electrochemical Detection of Lead(II) Int. J. Environ. Anal. Chem. 2023;105:1373–1391. doi: 10.1080/03067319.2023.2289636. DOI

Pan F., Tong C., Wang Z., Han H., Liu P., Pan D., Zhu R. Nanocomposite Based on Graphene and Intercalated Covalent Organic Frameworks with Hydrosulphonyl Groups for Electrochemical Determination of Heavy Metal Ions. Mikrochim. Acta. 2021;188:295. doi: 10.1007/s00604-021-04956-1. PubMed DOI

Yu L., Zhang J., Li J., Sun L., Zhang Q., Yang B., Huang M., Xu B. Rapid, Simple, and Simultaneous Electrochemical Determination of Cadmium, Copper, and Lead in Baijiu Using a Novel Covalent Organic Framework Based Nanocomposite. Front. Chem. 2024;12:1374898. doi: 10.3389/fchem.2024.1374898. PubMed DOI PMC

Molina J., Cases F., Moretto L.M. Graphene-Based Materials for the Electrochemical Determination of Hazardous Ions. Anal. Chim. Acta. 2016;946:9–39. doi: 10.1016/j.aca.2016.10.019. PubMed DOI

Xu J., Liu Y., Luo X., Li Y., Xing Y., Huang K.J. Visual Self-Powered Platform for Ultrasensitive Heavy Metal Detection Designed on Graphdiyne/Graphene Heterojunction and DNAzyme-Triggered DNA Circuit Strategy. Chem. Eng. J. 2024;485:150151. doi: 10.1016/j.cej.2024.150151. DOI

Sarà M., Abid K., Gucciardi P.G., Scolaro L.M., Neri G. Electrochemical Determination of Heavy Metals by a Graphene Quantum Dots/Porphyrin-Based Supramolecular System. Synth. Met. 2025;311:117824. doi: 10.1016/j.synthmet.2024.117824. DOI

Chaudhary Y., Suman S., Rakesh B., Ojha G.P., Deshpande U., Pant B., Sankaran K.J. Boron and Nitrogen Co-Doped Porous Graphene Nanostructures for the Electrochemical Detection of Poisonous Heavy Metal Ions. Nanomaterials. 2024;14:806. doi: 10.3390/nano14090806. PubMed DOI PMC

Wang J., Yu P., Kan K., Lv H., Liu Z., Sun B., Bai X., Chen J., Zhang Y., Shi K. Efficient Ultra-Trace Electrochemical Detection of Cd2+, Pb2+ and Hg2+ Based on Hierarchical Porous S-Doped C3N4 Tube Bundles/Graphene Nanosheets Composite. Chem. Eng. J. 2021;420:130317. doi: 10.1016/j.cej.2021.130317. DOI

Bagheri H., Afkhami A., Khoshsafar H., Rezaei M., Sabounchei S.J., Sarlakifar M. Simultaneous Electrochemical Sensing of Thallium, Lead and Mercury Using a Novel Ionic Liquid/Graphene Modified Electrode. Anal. Chim. Acta. 2015;870:56–66. doi: 10.1016/j.aca.2015.03.004. PubMed DOI

Feng Z.Y., Jiang J.C., Meng L.Y. Carbons Confined Silver Nanoclusters Decorated Carbon Fiber Electrodes toward Electrochemical Sensor of Dihydroxyphenol and Heavy Metal Ions. Diam. Relat. Mater. 2024;145:111074. doi: 10.1016/j.diamond.2024.111074. DOI

Chen Y., Xu S., Liu G., Li W., Liu L., Wang Z., Dai X., Jiang X. An Electrochemical Sensor Based on PEI/CS/GN Composite–Modified Glassy Carbon Electrode for Determination of Pb(II) Ionics. 2023;29:2031–2041. doi: 10.1007/s11581-023-04954-8. DOI

Pham H.N.K., Tran L.T., Vu T.A., Tran H.V. A Sensitive Electrochemical Sensor Based on Fe3O4 Magnetic Nanoparticles/Chitosan/Graphene Composite for Detection of Pb2+ in Aqueous Solutions. J. Appl. Electrochem. 2024;54:2595–2605. doi: 10.1007/s10800-024-02119-7. DOI

Nourbakhsh A., Rahimnejad M., Asghary M., Younesi H. Simultaneous Electro-Determination of Trace Copper, Lead, and Cadmium in Tap Water by Using Silver Nanoparticles and Graphene Nanoplates as Nanocomposite Modified Graphite Electrode. Microchem. J. 2022;175:107137. doi: 10.1016/j.microc.2021.107137. DOI

Yuan X., Wu X., Ling Y., Li S., Chen J., Zhang Z. In Situ Bismuth Ion Exchange Plating Micro-Electrochemical Sensor Based on Laser-Induced Graphene for Trace Cd2+ and Pb2+ Detection. J. Environ. Chem. Eng. 2024;12:112161. doi: 10.1016/j.jece.2024.112161. DOI

Chu G., Zhang Y., Zhou Z., Zeng W., Chen D., Yu S., Wang J., Guo Y., Sun X., Li M. Rapid CO2-Laser Scribing Fabrication of an Electrochemical Sensor for the Direct Detection of Pb2+ and Cd2+ Nano Res. 2023;16:7671–7681. doi: 10.1007/s12274-023-5471-y. DOI

Jiříčková A., Jankovský O., Sofer Z., Sedmidubský D. Synthesis and Applications of Graphene Oxide. Materials. 2022;15:920. doi: 10.3390/ma15030920. PubMed DOI PMC

Zhou S.-F., Han X.-J., Fan H.-L., Huang J., Liu Y.-Q. Enhanced Electrochemical Performance for Sensing Pb(II) Based on Graphene Oxide Incorporated Mesoporous MnFe2O4 Nanocomposites. J. Alloys Compd. 2018;747:447–454. doi: 10.1016/j.jallcom.2018.03.037. DOI

Erkal A., Üstündağ İ., Yavuz S., Üstündağ Z. An Electrochemical Application of MnO2 Decorated Graphene Supported Glassy Carbon Ultrasensitive Electrode: Pb2+ and Cd2+ Analysis of Seawater Samples. J. Electrochem. Soc. 2015;162:H213. doi: 10.1149/2.0571504jes. DOI

Das T.R., Sharma P.K. Sensitive and Selective Electrochemical Detection of Cd2+ by Using Bimetal Oxide Decorated Graphene Oxide (Bi2O3/Fe2O3@GO) Electrode. Microchem. J. 2019;147:1203–1214. doi: 10.1016/j.microc.2019.04.001. DOI

Sharma B., Singh A., Sharma A., Dubey A., Gupta V., Abaszade R.G.O., Sundramoorthy A.K., Sharma N., Arya S. Synthesis and Characterization of Zinc Selenide/Graphene Oxide (ZnSe/GO) Nanocomposites for Electrochemical Detection of Cadmium Ions. Appl. Phys. A. 2024;130:297. doi: 10.1007/s00339-024-07472-0. DOI

Muralikrishna S., Nagaraju D.H., Balakrishna R.G., Surareungchai W., Ramakrishnappa T., Shivanandareddy A.B. Hydrogels of Polyaniline with Graphene Oxide for Highly Sensitive Electrochemical Determination of Lead Ions. Anal. Chim. Acta. 2017;990:67–77. doi: 10.1016/j.aca.2017.09.008. PubMed DOI

Duan X., Xu J., Zhu X., Duan X., Lu L., Gao Y., Xing H., Yang T., Ye G., Yu Y. Poly(3,4-Ethylenedioxythiophene) Nanorods/Graphene Oxide Nanocomposite as a New Electrode Material for the Selective Electrochemical Detection of Mercury (II) Synth. Met. 2016;220:14–19. doi: 10.1016/j.synthmet.2016.05.022. DOI

Priya T., Dhanalakshmi N., Thennarasu S., Thinakaran N. A Novel Voltammetric Sensor for the Simultaneous Detection of Cd2+ and Pb2+ Using Graphene Oxide/κ-Carrageenan/l-Cysteine Nanocomposite. Carbohydr. Polym. 2018;182:199–206. doi: 10.1016/j.carbpol.2017.11.017. PubMed DOI

Dai H., Wang N., Wang D., Ma H., Lin M.C. An Electrochemical Sensor Based on Phytic Acid Functionalized Polypyrrole/Graphene Oxide Nanocomposites for Simultaneous Determination of Cd(II) and Pb(II) Chem. Eng. J. 2016;299:150–155. doi: 10.1016/j.cej.2016.04.083. DOI

Yi W., He Z., Fei J., He X. Sensitive Electrochemical Sensor Based on Poly(l-Glutamic Acid)/Graphene Oxide Composite Material for Simultaneous Detection of Heavy Metal Ions. RSC Adv. 2019;9:17325–17334. doi: 10.1039/C9RA01891C. PubMed DOI PMC

Xu Y., Guo H., Wei Y., Feng H., Yang Y., Lu Y., Wei Y., Su J., Ben Y., Yuan J., et al. Detection of Heavy Metal Pb2+ by Electrochemical Sensor Based on ZIF-8@GO Composite. J. Appl. Electrochem. 2024;54:1397–1407. doi: 10.1007/s10800-023-02042-3. DOI

Baghayeri M., Alinezhad H., Fayazi M., Tarahomi M., Ghanei-Motlagh R., Maleki B. A Novel Electrochemical Sensor Based on a Glassy Carbon Electrode Modified with Dendrimer Functionalized Magnetic Graphene Oxide for Simultaneous Determination of Trace Pb(II) and Cd(II) Electrochim. Acta. 2019;312:80–88. doi: 10.1016/j.electacta.2019.04.180. DOI

Gumpu M.B., Veerapandian M., Krishnan U.M., Rayappan J.B.B. Simultaneous Electrochemical Detection of Cd(II), Pb(II), As(III) and Hg(II) Ions Using Ruthenium(II)-Textured Graphene Oxide Nanocomposite. Talanta. 2017;162:574–582. doi: 10.1016/j.talanta.2016.10.076. PubMed DOI

Albalawi I., Hogan A., Alatawi H., Alsefri S., Moore E. A Novel Comparative Study for Simultaneous Determination of Cd (II) and Pb (II) Based on Ruthenium Complex-Nanoparticles-Nafion Modified Screen-Printed Gold Electrode. Sens. Actuators B Chem. 2023;380:133273. doi: 10.1016/j.snb.2022.133273. DOI

Dahaghin Z., Kilmartin P.A., Mousavi H.Z. Simultaneous Determination of Lead(II) and Cadmium(II) at a Glassy Carbon Electrode Modified with GO@Fe3O4@benzothiazole-2-Carboxaldehyde Using Square Wave Anodic Stripping Voltammetry. J. Mol. Liq. 2018;249:1125–1132. doi: 10.1016/j.molliq.2017.11.114. DOI

Nodehi M., Baghayeri M., Veisi H. Preparation of GO/Fe3O4@PMDA/AuNPs Nanocomposite for Simultaneous Determination of As3+ and Cu2+ by Stripping Voltammetry. Talanta. 2021;230:122288. doi: 10.1016/j.talanta.2021.122288. PubMed DOI

Ghafoor M., Khan Z.U., Nawaz M.H., Akhtar N., Rahim A., Riaz S. In-Situ Synthesized ZIF-67 Graphene Oxide (ZIF-67/GO) Nanocomposite for Efficient Individual and Simultaneous Detection of Heavy Metal Ions. Environ. Monit. Assess. 2023;195:423. doi: 10.1007/s10661-023-10966-8. PubMed DOI

Jyoti, Kaur R., Komal, Renu, Singh P., Kaur N., Rana S., Singhal S. 2-(Anthracen-9-Yl)Benzothiazole–Modified Graphene Oxide–Nickel Ferrite Nanocomposite for Anodic Stripping Voltammetric Detection of Heavy Metal Ions. Microchim. Acta. 2022;189:186. doi: 10.1007/s00604-022-05255-z. PubMed DOI

Haq Z.U., Nazir I., Qureashi A., Ganaie F.A., Bashir A., Fatima K., Shah W.A., Rizvi M.A. Design and Development of a Sb2WO6/Graphene Oxide (2D) Nanocomposite as Novel Electrochemical Metal-Ion Sensor and Improved Photocatalyst for the Degradation of Tetracycline. New J. Chem. 2023;47:21067–21080. doi: 10.1039/D3NJ04093C. DOI

Zhang H., Zhai D., He Y. Graphene Oxide/Polyacrylamide/Carboxymethyl Cellulose Sodium Nanocomposite Hydrogel with Enhanced Mechanical Strength: Preparation, Characterization and the Swelling Behavior. RSC Adv. 2014;4:44600–44609. doi: 10.1039/C4RA07576E. DOI

Pourbeyram S., Fathalipour S., Rashidzadeh B., Firuzmand H., Rahimi B. Simultaneous Determination of Cd and Pb in the Environment Using a Pencil Graphite Electrode Modified with Polyaniline/Graphene Oxide Nanocomposite. Environ. Sci. 2023;9:3355–3365. doi: 10.1039/D3EW00571B. DOI

Seenivasan R., Chang W.-J., Gunasekaran S. Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode. ACS Appl. Mater. Interfaces. 2015;7:15935–15943. doi: 10.1021/acsami.5b03904. PubMed DOI

Wang B., Chen J., Tong H., Huang Y., Liu B., Yang X., Su Z., Tu X., Qin X. Simultaneous Electrochemical Detection of Cd (II) and Pb (II) Based on L-Cysteine Functionalized Gold Nanoparticles/Metal-Organic Frameworks-Graphene Oxide Nanocomposites. J. Electroanal. Chem. 2023;943:117573. doi: 10.1016/j.jelechem.2023.117573. DOI

Aravind S.P., Anandhu T.P., Jayakumar K., Appukuttan A., Rahul Krishna B., Amala J., Bhuvaneshwari S. Activated Carbon Based Paste Electrodes for the Simultaneous and Effective Detection of Divalent Cadmium and Lead Ions in Wastewater. Environ. Technol. 2024;45:3062–3075. doi: 10.1080/09593330.2023.2206528. PubMed DOI

Martinez Jimenez M.J., Avila A., de Barros A., Lopez E.O., Alvarez F., Riul A.J., Perez-Taborda J.A. Polyethyleneimine-Functionalized Carbon Nanotube/Graphene Oxide Composite: A Novel Sensing Platform for Pb(II) Acetate in Aqueous Solution. ACS Omega. 2021;6:18190–18199. doi: 10.1021/acsomega.1c02085. PubMed DOI PMC

Jayaraman N., Palani Y., Jonnalagadda R.R., Shanmugam E. Covalently Dual Functionalized Graphene Oxide-Based Multiplex Electrochemical Sensor for Hg(II) and Cr(VI) Detection. Sens. Actuators B Chem. 2022;367:132165. doi: 10.1016/j.snb.2022.132165. DOI

Guo X., Cui R., Huang H., Li Y., Liu B., Wang J., Zhao D., Dong J., Sun B. Insights into the Role of Pyrrole Doped in Three-Dimensional Graphene Aerogels for Electrochemical Sensing Cd(II) J. Electroanal. Chem. 2020;871:114323. doi: 10.1016/j.jelechem.2020.114323. DOI

Yavuz S., Erkal A., Kariper İ.A., Solak A.O., Jeon S., Mülazımoğlu İ.E., Üstündağ Z. Carbonaceous Materials-12: A Novel Highly Sensitive Graphene Oxide-Based Carbon Electrode: Preparation, Characterization, and Heavy Metal Analysis in Food Samples. Food Anal. Methods. 2016;9:322–331. doi: 10.1007/s12161-015-0198-3. DOI

Tu X., Li X., Liu B., Zhai C., Peng Y., Wang B., Hu Z., Su Z., Qin X. Facile One-Pot Synthesis of Triethanolamine-Functionalized AuNPs-GO-UiO-66-NH2 Nanocomposites for Simultaneous Electrochemical Detection of Cd(II), Pb(II), and Cu(II) J. Solid State Electrochem. 2024;28:433–444. doi: 10.1007/s10008-023-05697-2. DOI

Ru J., Wang X., Zhou Z., Zhao J., Yang J., Du X., Lu X. Fabrication of Octahedral GO/UiO-67@PtNPs Nanocomposites as an Electrochemical Sensor for Ultrasensitive Recognition of Arsenic (III) in Chinese Herbal Medicine. Anal. Chim. Acta. 2022;1195:339451. doi: 10.1016/j.aca.2022.339451. PubMed DOI

Hao Y., Zhang C., Wang W., Wang J., Chen S., Xu H., Zhuiykov S. Self-Assembled Co3O4/GO Composites for Excellent Electrochemical Detection of Heavy-Metal Ions. J. Electrochem. Soc. 2021;168:083503. doi: 10.1149/1945-7111/ac1eb5. DOI

Bao Q., Li G., Yang Z., Pan P., Liu J., Li R., Wei J., Hu W., Cheng W., Lin L. In Situ Detection of Heavy Metal Ions in Sewage with Screen-Printed Electrode-Based Portable Electrochemical Sensors. Analyst. 2021;146:5610–5618. doi: 10.1039/D1AN01012C. PubMed DOI

Zhang H., Wang J., Wu W., Han C., Li M. Graphene Oxide Supported MOFs-Nanofiber Carbon Aerogel/SPCE for Simultaneous Detection of Cd2+ and Pb2+ in Seafood. Food Chem. 2025;470:142643. doi: 10.1016/j.foodchem.2024.142643. PubMed DOI

Agarwal V., Zetterlund P.B. Strategies for Reduction of Graphene Oxide–A Comprehensive Review. Chem. Eng. J. 2021;405:127018. doi: 10.1016/j.cej.2020.127018. DOI

Yeasin Pabel M., Yasmin S., Shaikh M.A.A., Kabir M.H. Electronic Waste Derived Reduced Graphene Oxide Supported Silver Nanoparticles for the Electrochemical Sensing of Trace Level Arsenite in Aqueous Medium. Sens. Actuators A Phys. 2024;366:115028. doi: 10.1016/j.sna.2024.115028. DOI

Sang S., Li D., Zhang H., Sun Y., Jian A., Zhang Q., Zhang W. Facile Synthesis of AgNPs on Reduced Graphene Oxide for Highly Sensitive Simultaneous Detection of Heavy Metal Ions. RSC Adv. 2017;7:21618–21624. doi: 10.1039/C7RA02267K. DOI

Pifferi V., Testolin A., Ingrosso C., Curri M.L., Palchetti I., Falciola L. Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection. Chemosensors. 2022;10:67. doi: 10.3390/chemosensors10020067. DOI

S S., Gautam V., Verma K.L., Kumar A., Jain V.K., Nagpal S. Trace Level Electrochemical Analysis of Arsenite in Human Serum Utilising RGO/AuNPs Based Sensor Platform. Int. J. Environ. Anal. Chem. 2024;104:1881–1895. doi: 10.1080/03067319.2022.2053961. DOI

Zhao G., Wang X., Liu G., Thi Dieu Thuy N. A Disposable and Flexible Electrochemical Sensor for the Sensitive Detection of Heavy Metals Based on a One-Step Laser-Induced Surface Modification: A New Strategy for the Batch Fabrication of Sensors. Sens. Actuators B Chem. 2022;350:130834. doi: 10.1016/j.snb.2021.130834. DOI

Wang W.-J., Lu X.-Y., Kong F.-Y., Li H.-Y., Wang Z.-X., Wang W. A Reduced Graphene Oxide Supported Au-Bi Bimetallic Nanoparticles as an Enhanced Sensing Platform for Simultaneous Voltammetric Determination of Pb (II) and Cd (II) Microchem. J. 2022;175:107078. doi: 10.1016/j.microc.2021.107078. DOI

You J., Li J., Wang Z., Baghayeri M., Zhang H. Application of Co3O4 Nanocrystal/RGO for Simultaneous Electrochemical Detection of Cadmium and Lead in Environmental Waters. Chemosphere. 2023;335:139133. doi: 10.1016/j.chemosphere.2023.139133. PubMed DOI

Mnyipika S.H., Munonde T.S., Nomngongo P.N. Mno2 @reduced Graphene Oxide Nanocomposite-Based Electrochemical Sensor for the Simultaneous Determination of Trace Cd(Ii), Zn(Ii) and Cu(Ii) in Water Samples. Membranes. 2021;11:517. doi: 10.3390/membranes11070517. PubMed DOI PMC

Luyen N.D., Toan T.T.T., Thanh N.M. Voltammetry Determination of Cd(II) and Pb(II) at TiO2/Reduced Graphene Oxide Modified Electrodes. Vietnam. J. Chem. 2024;62:361–370. doi: 10.1002/vjch.202300303. DOI

Pang J., Fu H., Kong W., Jiang R., Ye J., Zhao Z., Hou J., Sun K., Zheng Y., Chen L. Design of NiCo2O4 Nanoparticles Decorated N, S Co-Doped Reduced Graphene Oxide Composites for Electrochemical Simultaneous Detection of Trace Multiple Heavy Metal Ions and Hydrogen Evolution Reaction. Chem. Eng. J. 2022;433:133854. doi: 10.1016/j.cej.2021.133854. DOI

Karthik R., Thambidurai S. Synthesis of Cobalt Doped ZnO/Reduced Graphene Oxide Nanorods as Active Material for Heavy Metal Ions Sensor and Antibacterial Activity. J. Alloys Compd. 2017;715:254–265. doi: 10.1016/j.jallcom.2017.04.298. DOI

Luyen N.D., Trang H.T., Khang P.Y., Thanh N.M., Vu H.X.A., Phong N.H., Khieu D.Q. Simultaneous Determination of Pb(II) and Cd(II) by Electrochemical Method Using ZnO/ErGO-Modified Electrode. J. Appl. Electrochem. 2024;54:917–933. doi: 10.1007/s10800-023-02005-8. DOI

Guo C., Wang C., Sun H., Dai D., Gao H. A Simple Electrochemical Sensor Based on RGO/MoS2/CS Modified GCE for Highly Sensitive Detection of Pb(Ii) in Tobacco Leaves. RSC Adv. 2021;11:29590–29597. doi: 10.1039/D1RA05350G. PubMed DOI PMC

Yang M., He D., Zheng S., Yang L. In Situ Biosynthesized Polyphosphate Nanoparticles/Reduced Graphene Oxide Composite Electrode for Highly Sensitive Detection of Heavy Metal Ions. Environ. Res. 2024;244:117966. doi: 10.1016/j.envres.2023.117966. PubMed DOI

Gong S., Liu X., Liao H., Lin X., Huang Q., Hasan M., Shu X., Zhou X., Gunasekaran S. Tailoring of L-Cysteine Conjugated Chitosan Carbon Electrode for Selective and Sensitive Monitor of Copper in the Water. Mater. Today Commun. 2023;35:106092. doi: 10.1016/j.mtcomm.2023.106092. DOI

Göde C., Yola M.L., Yılmaz A., Atar N., Wang S. A Novel Electrochemical Sensor Based on Calixarene Functionalized Reduced Graphene Oxide: Application to Simultaneous Determination of Fe(III), Cd(II) and Pb(II) Ions. J. Colloid. Interface Sci. 2017;508:525–531. doi: 10.1016/j.jcis.2017.08.086. PubMed DOI

Elçin S., Yola M.L., Eren T., Girgin B., Atar N. Highly Selective and Sensitive Voltammetric Sensor Based on Ruthenium Nanoparticle Anchored Calix[4]Amidocrown-5 Functionalized Reduced Graphene Oxide: Simultaneous Determination of Quercetin, Morin and Rutin in Grape Wine. Electroanalysis. 2016;28:611–619. doi: 10.1002/elan.201500495. DOI

Ma Y., Li M., Pang K., Zhao M. Dual-Modulated Heterojunctions for Anti-Interference Sensing of Heavy Metals in Seawater. Anal. Chem. 2022;94:10183–10191. doi: 10.1021/acs.analchem.2c01644. PubMed DOI

Tajik S., Beitollahi H., Nejad F.G., Dourandish Z., Khalilzadeh M.A., Jang H.W., Venditti R.A., Varma R.S., Shokouhimehr M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind. Eng. Chem. Res. 2021;60:1112–1136. doi: 10.1021/acs.iecr.0c04952. PubMed DOI PMC

Akhtar M., Tahir A., Zulfiqar S., Hanif F., Warsi M.F., Agboola P.O., Shakir I. Ternary Hybrid of Polyaniline-Alanine-Reduced Graphene Oxide for Electrochemical Sensing of Heavy Metal Ions. Synth. Met. 2020;265:116410. doi: 10.1016/j.synthmet.2020.116410. DOI

Li W., Xu S., Chen Y., Wang Z., Cao M., Liu Y. Super-Efficient and Stable Detection of Toxic Heavy Metal by Polyethylenimine-Modified Graphene Electrode Sensor. J. Mater. Sci. Mater. Electron. 2024;35:1065. doi: 10.1007/s10854-024-12838-4. DOI

Guo Z., Li D., Luo X., Li Y., Zhao Q.-N., Li M., Zhao Y., Sun T., Ma C. Simultaneous Determination of Trace Cd(II), Pb(II) and Cu(II) by Differential Pulse Anodic Stripping Voltammetry Using a Reduced Graphene Oxide-Chitosan/Poly-l-Lysine Nanocomposite Modified Glassy Carbon Electrode. J. Colloid. Interface Sci. 2017;490:11–22. doi: 10.1016/j.jcis.2016.11.006. PubMed DOI

Krishnan S.K., Singh E., Singh P., Meyyappan M., Nalwa H.S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019;9:8778–8881. doi: 10.1039/C8RA09577A. PubMed DOI PMC

Xu J., Wang Y., Hu S. Nanocomposites of Graphene and Graphene Oxides: Synthesis, Molecular Functionalization and Application in Electrochemical Sensors and Biosensors. A Review. Microchim. Acta. 2017;184:1–44. doi: 10.1007/s00604-016-2007-0. DOI

Wang L., Peng X., Fu H. An Electrochemical Aptasensor for the Sensitive Detection of Pb2+ Based on a Chitosan/Reduced Graphene Oxide/Titanium Dioxide. Microchem. J. 2022;174:106977. doi: 10.1016/j.microc.2021.106977. DOI

Liu H., Wang S., He B., Xie L., Cao X., Wei M., Jin H., Ren W., Suo Z., Xu Y. Simultaneous Hg2+ and Pb2+ Detection in Water Samples Using an Electrochemical Aptasensor with Dual Signal Amplification by Exonuclease III and Metal-Organic Frameworks. Anal. Chim. Acta. 2024;1316:342800. doi: 10.1016/j.aca.2024.342800. PubMed DOI

Yang Y., Kang M., Fang S., Wang M., He L., Zhao J., Zhang H., Zhang Z. Electrochemical Biosensor Based on Three-Dimensional Reduced Graphene Oxide and Polyaniline Nanocomposite for Selective Detection of Mercury Ions. Sens. Actuators B Chem. 2015;214:63–69. doi: 10.1016/j.snb.2015.02.127. DOI

Zhang Y., Xu K., Van Tan L., Tan H., Zhang H. Electrochemical Sensing Platform for Detection of Heavy Metal Ions without Electrochemical Signal. Microchim. Acta. 2024;191:246. doi: 10.1007/s00604-024-06334-z. PubMed DOI

Kushwah M., Yadav R., Berlina A.N., Gaur K., Gaur M.S. Development of an Ultrasensitive RGO/AuNPs/SsDNA-Based Electrochemical Aptasensor for Detection of Pb2+ J. Solid State Electrochem. 2023;27:559–574. doi: 10.1007/s10008-022-05344-2. DOI

Xuan X., Park J.Y. A Miniaturized and Flexible Cadmium and Lead Ion Detection Sensor Based on Micro-Patterned Reduced Graphene Oxide/Carbon Nanotube/Bismuth Composite Electrodes. Sens. Actuators B Chem. 2018;255:1220–1227. doi: 10.1016/j.snb.2017.08.046. DOI

Wang N., Lin M., Dai H., Ma H. Functionalized Gold Nanoparticles/Reduced Graphene Oxide Nanocomposites for Ultrasensitive Electrochemical Sensing of Mercury Ions Based on Thymine–Mercury–Thymine Structure. Biosens. Bioelectron. 2016;79:320–326. doi: 10.1016/j.bios.2015.12.056. PubMed DOI

Patel M., Bisht N., Prabhakar P., Sen R.K., Kumar P., Dwivedi N., Ashiq M., Mondal D.P., Srivastava A.K., Dhand C. Ternary Nanocomposite-Based Smart Sensor: Reduced Graphene Oxide/Polydopamine/Alanine Nanocomposite for Simultaneous Electrochemical Detection of Cd2+, Pb2+, Fe2+, and Cu2+ Ions. Environ. Res. 2023;221:115317. doi: 10.1016/j.envres.2023.115317. PubMed DOI

Hashemi S.A., Bahrani S., Mousavi S.M., Omidifar N., Arjmand M., Lankarani K.B., Ramakrishna S. Simultaneous Electrochemical Detection of Cd and Pb in Aquatic Samples via Coupled Graphene with Brominated White Polyaniline Flakes. Eur. Polym. J. 2021;162:110926. doi: 10.1016/j.eurpolymj.2021.110926. DOI

Lee P.M., Wang Z., Liu X., Chen Z., Liu E. Glassy Carbon Electrode Modified by Graphene–Gold Nanocomposite Coating for Detection of Trace Lead Ions in Acetate Buffer Solution. Thin Solid Films. 2015;584:85–89. doi: 10.1016/j.tsf.2015.03.017. DOI

Baghayeri M., Ghanei-Motlagh M., Tayebee R., Fayazi M., Narenji F. Application of Graphene/Zinc-Based Metal-Organic Framework Nanocomposite for Electrochemical Sensing of As(III) in Water Resources. Anal. Chim. Acta. 2020;1099:60–67. doi: 10.1016/j.aca.2019.11.045. PubMed DOI

Ping J., Wang Y., Wu J., Ying Y. Development of an Electrochemically Reduced Graphene Oxide Modified Disposable Bismuth Film Electrode and Its Application for Stripping Analysis of Heavy Metals in Milk. Food Chem. 2014;151:65–71. doi: 10.1016/j.foodchem.2013.11.026. PubMed DOI

Sapari S., Razak N.H.A., Hasbullah S.A., Heng L.Y., Chong K.F., Tan L.L. A Regenerable Screen-Printed Voltammetric Hg(II) Ion Sensor Based on Tris-Thiourea Organic Chelating Ligand Grafted Graphene Nanomaterial. J. Electroanal. Chem. 2020;878:114670. doi: 10.1016/j.jelechem.2020.114670. DOI

Kim C., Park J., Kim W., Lee W., Na S., Park J. Detection of Cd2+ and Pb2+ Using Amyloid Oligomer–Reduced Graphene Oxide Composite. Bioelectrochemistry. 2022;147:108214. doi: 10.1016/j.bioelechem.2022.108214. PubMed DOI

Gunasekaran B.M., Rajendran G.K., Rayappan J.B.B., Sivanesan J.R., Nesakumar N., Paulraj A.W. Covalently Grafted 4-Aminopyridine-Reduced Graphene Oxide-Modified Screen-Printed Carbon Electrode for Electrochemical Sensing of Lead Ions. Arab. J. Sci. Eng. 2023;48:7721–7738. doi: 10.1007/s13369-023-07829-2. DOI

IARC . Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. International Agency for Research on Cancer; Lyon, France: 1977.

WHO . Guidelines for Drinking-Water Quality. 4th ed. World Health Organization; Geneva, Switzerland: 2017.

Rasin P., Ashwathi A.V., Basheer S.M., Haribabu J., Santibanez J.F., Garrote C.A., Arulraj A., Mangalaraja R.V. Exposure to Cadmium and Its Impacts on Human Health: A Short Review. J. Hazard. Mater. Adv. 2025;17:100608. doi: 10.1016/j.hazadv.2025.100608. DOI

Zoroddu M.A., Aaseth J., Crisponi G., Medici S., Peana M., Nurchi V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019;195:120–129. doi: 10.1016/j.jinorgbio.2019.03.013. PubMed DOI

Enrique Conti M. In: Mineral Components in Foods, Chapter 9, Heavy Metals in Food Packaging. 1st ed. Szefer P., Nriagu J.O., editors. CRC Press; Boca Raton, FL, USA: 2006.

Lawless L., Xie L., Zhang K. The Inter- and Multi- Generational Epigenetic Alterations Induced by Maternal Cadmium Exposure. Front. Cell Dev. Biol. 2023;11:1148906. doi: 10.3389/fcell.2023.1148906. PubMed DOI PMC

Shin D.Y., Lee S.M., Jang Y., Lee J., Lee C., Cho E.-M., Seo Y.R. Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int. J. Mol. Sci. 2023;24:3410. doi: 10.3390/ijms24043410. PubMed DOI PMC

Hossini H., Shafie B., Niri A.D., Nazari M., Esfahlan A.J., Ahmadpour M., Nazmara Z., Ahmadimanesh M., Makhdoumi P., Mirzaei N., et al. A Comprehensive Review on Human Health Effects of Chromium: Insights on Induced Toxicity. Environ. Sci. Pollut. Res. 2022;29:70686–70705. doi: 10.1007/s11356-022-22705-6. PubMed DOI

Sundseth K., Pacyna J., Pacyna E., Pirrone N., Thorne R. Global Sources and Pathways of Mercury in the Context of Human Health. Int. J. Environ. Res. Public Health. 2017;14:105. doi: 10.3390/ijerph14010105. PubMed DOI PMC

Andreoli V., Sprovieri F. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview. Int. J. Environ. Res. Public Health. 2017;14:93. doi: 10.3390/ijerph14010093. PubMed DOI PMC

Uddin S., Khanom S., Islam M.R. Mercury Toxicity: Challenges and Solutions. Springer Nature Singapore; Singapore: 2023. Mercury Contamination in Food—An Overview; pp. 33–70. DOI

Rolón-Cárdenas G.A., Hernández-Morales A. Lead Toxicity Mitigation: Sustainable Nexus Approaches. Springer Nature; Berlin, Germany: 2024. Phytoremediation of Lead Present in Environment: A Review; pp. 149–168. DOI

Heidari S., Mostafaei S., Razazian N., Rajati M., Saeedi A., Rajati F. The Effect of Lead Exposure on IQ Test Scores in Children under 12 Years: A Systematic Review and Meta-Analysis of Case-Control Studies. Syst. Rev. 2022;11:106. doi: 10.1186/s13643-022-01963-y. PubMed DOI PMC

Arora J., Singal A., Jacob J., Garg S., Aeri R. Lead Toxicity Mitigation: Sustainable Nexus Approaches. Springer Nature; Berlin, Germany: 2024. A Systematic Review of Lead Exposure on Mental Health; pp. 51–71. DOI

Chen B., Yu P., Chan W.N., Xie F., Zhang Y., Liang L., Leung K.T., Lo K.W., Yu J., Tse G.M.K., et al. Cellular Zinc Metabolism and Zinc Signaling: From Biological Functions to Diseases and Therapeutic Targets. Signal Transduct. Target. Ther. 2024;9:6. doi: 10.1038/s41392-023-01679-y. PubMed DOI PMC

Fan Y.-G., Wu T.-Y., Zhao L.-X., Jia R.-J., Ren H., Hou W.-J., Wang Z.-Y. From Zinc Homeostasis to Disease Progression: Unveiling the Neurodegenerative Puzzle. Pharmacol. Res. 2024;199:107039. doi: 10.1016/j.phrs.2023.107039. PubMed DOI

Agnew U.M., Slesinger T.L. Zinc Toxicity. [(accessed on 26 July 2025)]. Available online: https://europepmc.org/books/n/statpearls/article-31470.

Majumdar S., R R., Muruganantham L., Thimmappa P., Choudhary D., Priya G.B., Thakuria D., Prakash N.B. Deciphering the Role of Silicon in Mitigation of Arsenic Toxicity in Soil–Plant Interface–An Overview. Silicon. 2025;17:1891–1919. doi: 10.1007/s12633-025-03257-z. DOI

Hu Y., Li J., Lou B., Wu R., Wang G., Lu C., Wang H., Pi J., Xu Y. The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules. 2020;10:240. doi: 10.3390/biom10020240. PubMed DOI PMC

Speer R.M., Zhou X., Volk L.B., Liu K.J., Hudson L.G. Chapter Six–Arsenic and Cancer: Evidence and Mechanisms. In: Costa M., editor. Environmental Carcinogenesis. Volume 96. Academic Press; London, UK: 2023. pp. 151–202. Advances in Pharmacology. PubMed PMC

Ali B., Gill R.A. Editorial: Heavy Metal Toxicity in Plants: Recent Insights on Physiological and Molecular Aspects, Volume II. Front. Plant Sci. 2022;13:1016257. doi: 10.3389/fpls.2022.1016257. PubMed DOI PMC

Sol-Magdaleno M., Aguilar-Aguilar J.I., Beltrán-Naturi E., Valencia-Ordóñez L.D., Díaz-González A., Trejo-Flores P., Camas-Flores C.A., Palacios-Pola G., Ali-Sahito Z., González-Moscoso M. Carbon Nanomaterials as an Environmental Technology in the Remediation of Agricultural Soils Contaminated with Heavy Metals: A Review. Discov. Soil. 2025;2:26. doi: 10.1007/s44378-025-00054-3. DOI

Musah B.I. Effects of Heavy Metals and Metalloids on Plant-Animal Interaction and Biodiversity of Terrestrial Ecosystems-An Overview. Environ. Monit. Assess. 2024;197:12. doi: 10.1007/s10661-024-13490-5. PubMed DOI

Li C., Quan Q., Gan Y., Dong J., Fang J., Wang L., Liu J. Effects of Heavy Metals on Microbial Communities in Sediments and Establishment of Bioindicators Based on Microbial Taxa and Function for Environmental Monitoring and Management. Sci. Total Environ. 2020;749:141555. doi: 10.1016/j.scitotenv.2020.141555. PubMed DOI

Angon P.B., Islam M.S., KC S., Das A., Anjum N., Poudel A., Suchi S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon. 2024;10:e28357. doi: 10.1016/j.heliyon.2024.e28357. PubMed DOI PMC

Zeng J., Tabelin C.B., Gao W., Tang L., Luo X., Ke W., Jiang J., Xue S. Heterogeneous Distributions of Heavy Metals in the Soil-Groundwater System Empowers the Knowledge of the Pollution Migration at a Smelting Site. Chem. Eng. J. 2023;454:140307. doi: 10.1016/j.cej.2022.140307. DOI

Sharma M., Kant R., Sharma A.K., Sharma A.K. Exploring the Impact of Heavy Metals Toxicity in the Aquatic Ecosystem. Int. J. Energy Water Resour. 2025;9:267–280. doi: 10.1007/s42108-024-00284-1. DOI

Santhosh K., Kamala K., Ramasamy P., Musthafa M.S., Almujri S.S., Asdaq S.M.B., Sivaperumal P. Unveiling the Silent Threat: Heavy Metal Toxicity Devastating Impact on Aquatic Organisms and DNA Damage. Mar. Pollut. Bull. 2024;200:116139. doi: 10.1016/j.marpolbul.2024.116139. PubMed DOI

Islam S.M.M., Rohani M.F., Zabed S.A., Islam M.T., Jannat R., Akter Y., Shahjahan M. Acute Effects of Chromium on Hemato-Biochemical Parameters and Morphology of Erythrocytes in Striped Catfish Pangasianodon Hypophthalmus. Toxicol. Rep. 2020;7:664–670. doi: 10.1016/j.toxrep.2020.04.016. PubMed DOI PMC

Stewart B.D., Jenkins S.R., Boig C., Sinfield C., Kennington K., Brand A.R., Lart W., Kröger R. Metal Pollution as a Potential Threat to Shell Strength and Survival in Marine Bivalves. Sci. Total Environ. 2021;755:143019. doi: 10.1016/j.scitotenv.2020.143019. PubMed DOI

Bai L., Liu X.-L., Hu J., Li J., Wang Z.-L., Han G., Li S.-L., Liu C.-Q. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Int. J. Environ. Res. Public Health. 2018;15:2857. doi: 10.3390/ijerph15122857. PubMed DOI PMC

The United Nations Department of Economic and Social Affairs . Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations; New York, NY, USA: 2015. p. 16301.

Bose-O’Reilly S., Landrigan P.J. Chapter 30–Metal Toxicology in Low-Income and Lower-Middle-Income Countries. In: Nordberg G.F., Costa M., editors. Handbook on the Toxicology of Metals. 5th ed. Academic Press; London, UK: 2022. pp. 705–729.

Panghal A., Thakur A., Deore M.S., Goyal M., Singh C., Kumar J. Multimetal Exposure: Challenges in Diagnostics, Prevention, and Treatment. J. Biochem. Mol. Toxicol. 2024;38:e23745. doi: 10.1002/jbt.23745. PubMed DOI

Ghafouri-Fard S., Shoorei H., Mohaqiq M., Tahmasebi M., Seify M., Taheri M. Counteracting Effects of Heavy Metals and Antioxidants on Male Fertility. BioMetals. 2021;34:439–491. doi: 10.1007/s10534-021-00297-x. PubMed DOI

Geron M., Cowell W., Amarasiriwardena C., Andra S.S., Carroll K., Kloog I., Wright R.O., Wright R.J. Racial/Ethnic and Neighborhood Disparities in Metals Exposure during Pregnancy in the Northeastern United States. Sci. Total Environ. 2022;820:153249. doi: 10.1016/j.scitotenv.2022.153249. PubMed DOI PMC

Uddin S., Afroz H., Hossain M., Briffa J., Blundell R., Islam M.R. Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2023. Heavy Metals/Metalloids in Food Crops and Their Implications for Human Health; pp. 59–86.

Biswas H.S., Poddar S. Biosorption Processes for Heavy Metal Remova. IGI Global; Hershey, PA, USA: 2024. Heavy Metals in Foodstuffs: Presence, Bioaccumulation, Origins, Health Risk, and Remediation; pp. 85–99.

Munir N., Jahangeer M., Bouyahya A., El Omari N., Ghchime R., Balahbib A., Aboulaghras S., Mahmood Z., Akram M., Ali Shah S.M., et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability. 2022;14:161. doi: 10.3390/su14010161. DOI

Zhu Y., Costa M. Metals and Molecular Carcinogenesis. Carcinogenesis. 2020;41:1161–1172. doi: 10.1093/carcin/bgaa076. PubMed DOI PMC

Teng J., Yu X. The Effect of Different Heavy Metals on Human Health. Highlights Sci. Eng. Technol. 2023;74:875–880. doi: 10.54097/hwshqz65. DOI

Kerna N.A., Holets H.M., Anderson II J., Flores J.V., Pruitt K.D., McKee D., Carsrud N.D.V., Ngwu D.C., Nnake I., Chawla S., et al. Heavy Metals and Human Health: From Neurological Disorders to Developmental Delays. Eur. J. Ecol. Biol. Agric. 2024;1:152–184. doi: 10.59324/ejeba.2024.1(3).12. DOI

Singh S., Paswan S.K., Kumar P., Singh R.K., Kumar L. Chapter 14–Heavy Metal Water Pollution: An Overview about Remediation, Removal and Recovery of Metals from Contaminated Water. In: Shukla S.K., Kumar S., Madhav S., Mishra P.K., editors. Metals in Water. Elsevier; Amsterdam, The Netherlands: 2023. pp. 263–284.

Dashtey A. Fate and Transport of Heavy Metals in Soil, Surface Water, and Groundwater: Implications for Environmental Management. Int. J. Sci. Res. Manag. 2024;12:202–215. doi: 10.18535/ijsrm/v12i12.c01. DOI

Matesun J., Petrik L., Musvoto E., Ayinde W., Ikumi D. Limitations of Wastewater Treatment Plants in Removing Trace Anthropogenic Biomarkers and Future Directions: A Review. Ecotoxicol. Environ. Saf. 2024;281:116610. doi: 10.1016/j.ecoenv.2024.116610. PubMed DOI

Hahn J., Opp C., Evgrafova A., Groll M., Zitzer N., Laufenberg G. Impacts of Dam Draining on the Mobility of Heavy Metals and Arsenic in Water and Basin Bottom Sediments of Three Studied Dams in Germany. Sci. Total Environ. 2018;640–641:1072–1081. doi: 10.1016/j.scitotenv.2018.05.295. PubMed DOI

Singh R., Mahandra H., Gupta B. Recovery of Zinc and Cadmium from Spent Batteries Using Cyphos IL 102 via Solvent Extraction Route and Synthesis of Zn and Cd Oxide Nanoparticles. Waste Manag. 2017;67:240–252. doi: 10.1016/j.wasman.2017.05.027. PubMed DOI

Firincă C., Zamfir L.-G., Constantin M., Răut I., Jecu M.-L., Doni M., Gurban A.-M., Șesan T.E. Innovative Approaches and Evolving Strategies in Heavy Metal Bioremediation: Current Limitations and Future Opportunities. J. Xenobiot. 2025;15:63. doi: 10.3390/jox15030063. PubMed DOI PMC

Cui Y., Fan C., Zhou X., Yu P. Impact of Urbanization on Heavy Metals in Outdoor Air and Risk Assessment: A Case Study in Severe Cold Regions. Sustain. Cities Soc. 2024;114:105713. doi: 10.1016/j.scs.2024.105713. DOI

Ma J., Ullah S., Niu A., Liao Z., Qin Q., Xu S., Lin C. Heavy Metal Pollution Increases CH4 and Decreases CO2 Emissions Due to Soil Microbial Changes in a Mangrove Wetland: Microcosm Experiment and Field Examination. Chemosphere. 2021;269:128735. doi: 10.1016/j.chemosphere.2020.128735. PubMed DOI

Mok W.J., Ghaffar M.A., Noor M.I.M., Lananan F., Azra M.N. Understanding Climate Change and Heavy Metals in Coastal Areas: A Macroanalysis Assessment. Water. 2023;15:891. doi: 10.3390/w15050891. DOI

Seleghim M., Horikawa A. Heavy Metals in Water and Their Cascading Effects on Ecosystems. Int. J. Soc. Sci. Educ. Res. 2020;2:66–69. doi: 10.33545/26649845.2020.v2.i2a.77. DOI

Adesina F.P. Impacts of Heavy Metals on Aquatic Dwellers: A Literature Review. In: Yoshida M., editor. Heavy Metals in the Environment–Contamination, Risk, and Remediation. IntechOpen; Rijeka, Croatia: 2024.

Sharma S., Sharma M., Ganjoo R., Thakur A., Kumar A. Heavy Metals in the Environment: Management Strategies for Global Pollution. Volume 1456. American Chemical Society; Washington, DC, USA: 2023. Effect of Heavy Metals on Environment and Flora and Fauna; pp. 103–115.

Jyoti S.Z. Sources and Pathways of Heavy Metals and Their Persistence in Ecosystems. In: Singh V., Kumar A., Mishra V., Rai S.N., editors. Heavy Metal Contamination in the Environment. CRC Press; Boca Raton, FL, USA: 2024. pp. 19–33.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...