Personal Glucose Meter: Biosensing Platforms for Environmental Toxicants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, systematický přehled
PubMed
41440292
PubMed Central
PMC12730663
DOI
10.3390/bios15120811
PII: bios15120811
Knihovny.cz E-zdroje
- Klíčová slova
- biosensor, ecotoxicants, environmental monitoring, personal glucose meter, point-of-care diagnostics,
- MeSH
- biosenzitivní techniky * MeSH
- látky znečišťující životní prostředí * analýza MeSH
- lidé MeSH
- monitorování životního prostředí * MeSH
- pesticidy analýza MeSH
- vyšetření u lůžka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- látky znečišťující životní prostředí * MeSH
- pesticidy MeSH
The detection of environmental toxicants is transitioning from centralized laboratory methods to decentralized, point-of-care (POC) monitoring. A highly innovative approach in this field is the repurposing of commercially available, low-cost, and portable personal glucose meters (PGMs) as universal biosensing platforms. This strategy leverages the widespread availability and ease of use of PGMs to develop rapid, on-site detection methods for a wide array of non-glucose targets, significantly reducing both cost and development time. This systematic review comprehensively examines the various strategies employed to adapt PGMs for the detection of a wide array of ecotoxicants, including chemical targets (antibiotics, mycotoxins, pesticides, heavy metals, persistent organic pollutants) and biological ones (pathogenic bacteria, and viruses). The systematic review critically evaluates different sensor designs, highlighting that while aptamer-based and non-enzymatic biosensors offer advantages in stability and cost, antibody-based sensors provide high specificity. A significant finding is the persistent trade-off between analytical sensitivity and practical field deployment; many of the most sensitive assays require multi-step procedures, precise temperature control, magnetic separation, centrifugation, and the use of additional equipment, factors that undermine true POC utility. To address this gap, we propose four essential criteria for POC readiness: (i) ambient-temperature operation, (ii) no reliance on magnetic or centrifugal separation, (iii) total assay time, and (iv) robustness in complex environmental matrices. This systematic review confirms the feasibility of this approach across a broad spectrum of targets. However, the key challenge for future research lies in simplifying the assay protocols, eliminating cumbersome sample preparation steps, and enhancing robustness to make these biosensors truly practical for routine, on-site environmental monitoring.
Zobrazit více v PubMed
Campbell S., Anderson N., Babady E., Durant T.J.S., Fisher A., Moore N. Centralized vs Decentralized Molecular Infectious Disease Testing. Clin. Chem. 2021;67:713–719. doi: 10.1093/clinchem/hvaa318. PubMed DOI
Ding S., Dong J., Shi J., Ren K., Cui X., Shi Z., Li N., Xiang Y., Du F., Tang Z. Integrating Commercial Personal Glucose Meter with Peroxidase-Mimic DNAzyme to Develop a Versatile Point-of-Care Biosensing Platform. Biosens. Bioelectron. 2025;273:117171. doi: 10.1016/j.bios.2025.117171. PubMed DOI
Li H., Lu H., Tang Y., Wang H., Xiao Y., Li B. A Rebuilding-Free Nucleic Acid Detection Strategy Enables Ultrasensitive Genotyping, N-in-1 Logic Screening and Accurate Multiplex Assay of Dangerous Pathogens. Angew. Chem. Int. Ed. Engl. 2022;61:e202209496. doi: 10.1002/anie.202209496. PubMed DOI
Montagnana M., Caputo M., Giavarina D., Lippi G. Overview on Self-Monitoring of Blood Glucose. Clin. Chim. Acta. 2009;402:7–13. doi: 10.1016/j.cca.2009.01.002. PubMed DOI
Hassan M.H., Vyas C., Grieve B., Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors. 2021;21:4672. doi: 10.3390/s21144672. PubMed DOI PMC
Li W., Luo W., Li M., Chen L., Chen L., Guan H., Yu M. The Impact of Recent Developments in Electrochemical POC Sensor for Blood Sugar Care. Front. Chem. 2021;9:723186. doi: 10.3389/fchem.2021.723186. PubMed DOI PMC
Heller A., Feldman B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008;108:2482–2505. doi: 10.1021/cr068069y. PubMed DOI
Pfützner A., Schipper C., Ramljak S., Flacke F., Sieber J., Forst T., Musholt P.B. Evaluation of the Effects of Insufficient Blood Volume Samples on the Performance of Blood Glucose Self-Test Meters. J. Diabetes Sci. Technol. 2013;7:1522–1529. doi: 10.1177/193229681300700612. PubMed DOI PMC
Mandpe P., Prabhakar B., Gupta H., Shende P. Glucose Oxidase-Based Biosensor for Glucose Detection from Biological Fluids. Sens. Rev. 2020;40:497–511. doi: 10.1108/SR-01-2019-0017. DOI
Huang T.-Y., Chang H.-W., Tsao M.-F., Chuang S.-M., Ni C.-C., Sue J.-W., Lin H.-C., Hsu C.-T. Evaluation of Accuracy of FAD-GDH- and Mutant Q-GDH-Based Blood Glucose Monitors in Multi-Patient Populations. Clin. Chim. Acta. 2014;433:28–33. doi: 10.1016/j.cca.2014.02.023. PubMed DOI
Ahmed T., Kishore J., Onamika M., Goswami S., Momo I.R., Sumon H., Bowden R.G. Comparing Glucometer-Based and Laboratory-Based OGTT for Diabetes Diagnosis: A Narrative Review. Endocrines. 2025;6:48. doi: 10.3390/endocrines6030048. DOI
Sharma P., Rani L., Grewal A.S., Srivastav A.L. Chapter2—Impact of Pharmaceuticals and Antibiotics Waste on the River Ecosystem: A Growing Threat. In: Madhav S., Kanhaiya S., Srivastav A., Singh V., Singh P., editors. Ecological Significance of River Ecosystems. Elsevier; Amsterdam, The Netherlands: 2022. pp. 15–36.
Yang Q., Gao Y., Ke J., Show P.L., Ge Y., Liu Y., Guo R., Chen J. Antibiotics: An Overview on the Environmental Occurrence, Toxicity, Degradation, and Removal Methods. Bioengineered. 2021;12:7376–7416. doi: 10.1080/21655979.2021.1974657. PubMed DOI PMC
Low C.X., Tan L.T.-H., Ab Mutalib N.-S., Pusparajah P., Goh B.-H., Chan K.-G., Letchumanan V., Lee L.-H. Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics. 2021;10:578. doi: 10.3390/antibiotics10050578. PubMed DOI PMC
Polianciuc S.I., Gurzău A.E., Kiss B., Ștefan M.G., Loghin F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020;93:231–240. doi: 10.15386/mpr-1742. PubMed DOI PMC
Dawadi S., Thapa R., Modi B., Bhandari S., Timilsina A.P., Yadav R.P., Aryal B., Gautam S., Sharma P., Thapa B.B., et al. Technological Advancements for the Detection of Antibiotics in Food Products. Processes. 2021;9:1500. doi: 10.3390/pr9091500. DOI
Patangia D.V., Anthony Ryan C., Dempsey E., Paul Ross R., Stanton C. Impact of Antibiotics on the Human Microbiome and Consequences for Host Health. MicrobiologyOpen. 2022;11:e1260. doi: 10.1002/mbo3.1260. PubMed DOI PMC
Dorozhko E., Kazachinskaia E., Kononova Y., Zaikovskaya A., Barek J., Korotkova E., Kolobova E., Sheveleva P., Saqib M. Electrochemical Immunoassay of Antibodies Using Freshly Prepared and Aged Conjugates of Silver Nanoparticles. Talanta. 2023;253:124028. doi: 10.1016/j.talanta.2022.124028. DOI
Dorozhko E.V., Solomonenko A.N., Saqib M., Semin V.O. Electrochemical Immunosensors Based on Gold Nanoparticles for the Determination of Ovalbumin in Immunobiological Preparations. J. Anal. Chem. 2024;79:860–867. doi: 10.1134/S1061934824700230. DOI
Wang Q., He B., Liu Y., Wu L., Zhao W., Xie D., Ren W., Xu Y. A Portable and Efficient Strategy for Ofloxacin Detection Using Ce-Based MOF-Loaded Glucose Oxidase and a Personal Glucose Meter. Anal. Chim. Acta. 2025;1351:343880. doi: 10.1016/j.aca.2025.343880. PubMed DOI
Pollap A., Kochana J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors. 2019;9:61. doi: 10.3390/bios9020061. PubMed DOI PMC
Guliy O.I., Dykman L.A. Immunoassay Analysis Using Full-Length and Phage Antibodies for Detection of Antibiotics: A Review of the Literature. Appl. Biochem. Microbiol. 2024;60:541–553. doi: 10.1134/S0003683824604347. DOI
Gao S., Hao J., Su D., Wu T., Gao J., Hu G. Facile and Sensitive Detection of Norfloxacin in Animal-Derived Foods Using Immuno-Personal Glucose Meter. Eur. Food Res. Technol. 2021;247:2635–2644. doi: 10.1007/s00217-021-03825-8. DOI
Mehlhorn A., Rahimi P., Joseph Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors. 2018;8:54. doi: 10.3390/bios8020054. PubMed DOI PMC
Li F., Li X., Zhu N., Li R., Kang H., Zhang Q. An Aptasensor for the Detection of Ampicillin in Milk Using a Personal Glucose Meter. Anal. Methods. 2020;12:3376–3381. doi: 10.1039/D0AY00256A. PubMed DOI
Lei T., Yin C., Feng H., Lei X., Antwi-Baah R., Liu J., Zhang L., Yang W., Xu S. Functionalized Magnetic Nanoprobe-Based Aptasensor for on-Site Detection of Kanamycin in Water by a Personal Glucose Meter. Talanta. 2025;296:128515. doi: 10.1016/j.talanta.2025.128515. PubMed DOI
Lisi F., Peterson J.R., Gooding J.J. The Application of Personal Glucose Meters as Universal Point-of-Care Diagnostic Tools. Biosens. Bioelectron. 2020;148:111835. doi: 10.1016/j.bios.2019.111835. PubMed DOI
Kwon D., Lee H., Yoo H., Hwang J., Lee D., Jeon S. Facile Method for Enrofloxacin Detection in Milk Using a Personal Glucose Meter. Sens. Actuators B Chem. 2018;254:935–939. doi: 10.1016/j.snb.2017.07.118. DOI
Awuchi C.G., Ondari E.N., Nwozo S., Odongo G.A., Eseoghene I.J., Twinomuhwezi H., Ogbonna C.U., Upadhyay A.K., Adeleye A.O., Okpala C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins. 2022;14:167. doi: 10.3390/toxins14030167. PubMed DOI PMC
Goda A.A., Shi J., Xu J., Liu X., Zhou Y., Xiao L., Abdel-Galil M., Salem S.H., Ayad E.G., Deabes M., et al. Global Health and Economic Impacts of Mycotoxins: A Comprehensive Review. Environ. Sci. Eur. 2025;37:122. doi: 10.1186/s12302-025-01166-x. DOI
Fatoke B., Hui A.L., Saqib M., Vashisth M., Aremu S.O., Aremu D.O., Aremu D.B. Type 2 Diabetes Mellitus as a Predictor of Severe Outcomes in COVID-19—A Systematic Review and Meta-Analyses. BMC Infect. Dis. 2025;25:719. doi: 10.1186/s12879-025-11089-w. PubMed DOI PMC
Iqbal S.Z. Mycotoxins in Food, Recent Development in Food Analysis and Future Challenges; a Review. Curr. Opin. Food Sci. 2021;42:237–247. doi: 10.1016/j.cofs.2021.07.003. DOI
Di Giovanni S., Zambrini V., Varriale A., D’Auria S. Sweet Sensor for the Detection of Aflatoxin M1 in Whole Milk. ACS Omega. 2019;4:12803–12807. doi: 10.1021/acsomega.9b01300. PubMed DOI PMC
Zhang R., Yan C., Zong Z., Qu W., Yao L., Xu J., Zhu Y., Yao B., Chen W. Taking Glucose as Intermediate Bridge-Signal-Molecule for on-Site and Convenient Detection of Ochratoxin A in Rice with Portable Glucose Meter. Food Chem. 2023;400:134007. doi: 10.1016/j.foodchem.2022.134007. PubMed DOI
Suo Z., Lu T., Liu J., Li J., Wang L., Liu Y., Wei M. Electrochemistry–Glucosemeter–Smartphone Integrated Multi-Mode Biosensor for Accurate Detection of Aflatoxin B1. Anal. Chim. Acta. 2025;1333:343398. doi: 10.1016/j.aca.2024.343398. PubMed DOI
Tudi M., Daniel Ruan H., Wang L., Lyu J., Sadler R., Connell D., Chu C., Phung D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health. 2021;18:1112. doi: 10.3390/ijerph18031112. PubMed DOI PMC
Tosi S., Sfeir C., Carnesecchi E., vanEngelsdorp D., Chauzat M.-P. Lethal, Sublethal, and Combined Effects of Pesticides on Bees: A Meta-Analysis and New Risk Assessment Tools. Sci. Total Environ. 2022;844:156857. doi: 10.1016/j.scitotenv.2022.156857. PubMed DOI
Rohani M.F. Pesticides Toxicity in Fish: Histopathological and Hemato-Biochemical Aspects—A Review. Emerg. Contam. 2023;9:100234. doi: 10.1016/j.emcon.2023.100234. DOI
Saqib M., Dorozhko E.V., Barek J., Korotkova E.I., Semin V.O., Kolobova E., Erkovich A.V. Sensitive Electrochemical Sensing of Carbosulfan in Food Products on Laser Reduced Graphene Oxide Sensor Decorated with Silver Nanoparticles. Microchem. J. 2024;207:112253. doi: 10.1016/j.microc.2024.112253. DOI
Saqib M., Dorozhko E.V., Barek J., Vyskocil V., Korotkova E.I., Shabalina A.V. A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules. 2021;26:5050. doi: 10.3390/molecules26165050. PubMed DOI PMC
Chen Z., Feng R., Zhou Q., Zhang X., Fan Y., Fang D., Zheng R., Zhang W., Lu Z., Chen J., et al. Biomaterials and Biosensing Technologies in the Detection and Removal of Pesticide Residues: Current Trends and Future Prospects. Coord. Chem. Rev. 2026;547:217110. doi: 10.1016/j.ccr.2025.217110. DOI
Fan X., Tang T., Du S., Sang N., Huang H., Zhang C., Zhao X. Simultaneous Determination of 108 Pesticide Residues in Three Traditional Chinese Medicines Using a Modified QuEChERS Mixed Sample Preparation Method and HPLC-MS/MS. Molecules. 2022;27:7636. doi: 10.3390/molecules27217636. PubMed DOI PMC
Lei J., Zhao S., Huang J., Tao K., Dang Q., Peng J., Zhao Y., Zhang L. A Novel Array-Based Fluorescent Sensing Approach for the Identification and Quantification of Pesticides with High Sensitivity Based on Distinguishable Cross-Response Algorithm. J. Fluoresc. 2025;35:7607–7621. doi: 10.1007/s10895-024-04120-x. PubMed DOI
Chauhan C. Contemporary Voltammetric Techniques and Its Application to Pesticide Analysis: A Review. Mater. Today Proc. 2021;37:3231–3240. doi: 10.1016/j.matpr.2020.09.092. DOI
Ding R., Li Z., Xiong Y., Wu W., Yang Q., Hou X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit. Rev. Anal. Chem. 2023;53:1766–1791. doi: 10.1080/10408347.2022.2041391. PubMed DOI
Saqib M., Solomonenko A.N., Barek J., Dorozhko E.V., Korotkova E.I., Aljasar S.A. Graphene Derivatives-Based Electrodes for the Electrochemical Determination of Carbamate Pesticides in Food Products: A Review. Anal. Chim. Acta. 2023;1272:341449. doi: 10.1016/j.aca.2023.341449. PubMed DOI
Liu H., Xie L., Wang Y., Liu Y., Fu R., Cui Y., Zhao Q., Wang C., Jiao B., He Y. Construction of a Portable Immunosensor for the Sensitive Detection of Carbendazim in Agricultural Products Using a Personal Glucose Meter. Food Chem. 2023;407:135161. doi: 10.1016/j.foodchem.2022.135161. PubMed DOI
Ballesteros C.A.S., Mercante L.A., Alvarenga A.D., Facure M.H.M., Schneider R., Correa D.S. Recent Trends in Nanozymes Design: From Materials and Structures to Environmental Applications. Mater. Chem. Front. 2021;5:7419–7451. doi: 10.1039/D1QM00947H. DOI
Zhang X., Huang X., Wang Z., Zhang Y., Huang X., Li Z., Daglia M., Xiao J., Shi J., Zou X. Bioinspired Nanozyme Enabling Glucometer Readout for Portable Monitoring of Pesticide under Resource-Scarce Environments. Chem. Eng. J. 2022;429:132243. doi: 10.1016/j.cej.2021.132243. DOI
Jaitham U., Pintakham T., Kyi N.E.M.M., Samar M., Jeeno P., Hongsibsong S., Pata S., Wongta A. Portable Thiocholine-Based Sensor for Monitoring Blood Cholinesterase Activity and Detecting Organophosphate and Carbamate Pesticides Using Personal Glucose Meters. Foods. 2025;14:1136. doi: 10.3390/foods14071136. PubMed DOI PMC
Yang J., Zhang Y., Shi X., Lv Y. A Portable Ascorbic Acid Touch-in Personal Glucose Meter Based on Enzyme Inhibition Cascade Reaction for on-Site Rapid Detection of Organophosphorus Pesticides. Sens. Actuators B Chem. 2025;433:137576. doi: 10.1016/j.snb.2025.137576. DOI
Saqib M., Solomonenko A.N., Hazra N.K., Aljasar S.A., Korotkova E.I., Dorozhko E.V., Vashisth M., Kar P.K. Electrochemical Detection of Heavy Metals Using Graphene-Based Sensors: Advances, Meta-Analysis, Toxicity, and Sustainable Development Challenges. Biosensors. 2025;15:505. doi: 10.3390/bios15080505. PubMed DOI PMC
Mitra S., Chakraborty A.J., Tareq A.M., Emran T.B., Nainu F., Khusro A., Idris A.M., Khandaker M.U., Osman H., Alhumaydhi F.A., et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022;34:101865. doi: 10.1016/j.jksus.2022.101865. DOI
Han J., Luo J., Wang C., Kapilevich L., Zhang X. Roles and Mechanisms of Copper Homeostasis and Cuproptosis in Osteoarticular Diseases. Biomed. Pharmacother. 2024;174:116570. doi: 10.1016/j.biopha.2024.116570. PubMed DOI
Du B., Chen T., Huang A., Chen H., Liu W. Portable Detection of Copper Ion Using Personal Glucose Meter. Sensors. 2024;24:7002. doi: 10.3390/s24217002. PubMed DOI PMC
Polatoğlu İ., Yardım A. Portable Quantification of Silver Ion by Using Personal Glucose Meter (PGM) and Magnetite Cross-Linked Invertase Aggregates (MCLIA) Anal. Biochem. 2022;643:114527. doi: 10.1016/j.ab.2021.114527. PubMed DOI
Gu C., Chen X., Liu H. Portable, Quantitative, and Sequential Monitoring of Copper Ions and Pyrophosphate Based on a DNAzyme-Fe3O4 Nanosystem and Glucometer Readout. Anal. Bioanal. Chem. 2021;413:6941–6949. doi: 10.1007/s00216-021-03662-4. PubMed DOI PMC
Parithathvi A., Choudhari N., Dsouza H.S. Prenatal and Early Life Lead Exposure Induced Neurotoxicity. Hum. Exp. Toxicol. 2024;43:09603271241285523. doi: 10.1177/09603271241285523. PubMed DOI
Li D., Liu Y., Li Y., Li S., Tang Y. Sensitive and Point-of-Care Detection of Lead Ion in River Water Mediated by Terminal Deoxynucleotidyl Transferase. Sens. Actuators B Chem. 2024;401:134909. doi: 10.1016/j.snb.2023.134909. DOI
Peana M., Pelucelli A., Chasapis C.T., Perlepes S.P., Bekiari V., Medici S., Zoroddu M.A. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules. 2023;13:36. doi: 10.3390/biom13010036. PubMed DOI PMC
Zeng L., Gong J., Rong P., Liu C., Chen J. A Portable and Quantitative Biosensor for Cadmium Detection Using Glucometer as the Point-of-Use Device. Talanta. 2019;198:412–416. doi: 10.1016/j.talanta.2019.02.045. PubMed DOI
Notariale R., Längst E., Perrone P., Crettaz D., Prudent M., Manna C. Effect of Mercury on Membrane Proteins, Anionic Transport and Cell Morphology in Human Erythrocytes. Cell. Physiol. Biochem. 2022;56:500–513. doi: 10.33594/000000572. PubMed DOI
Shi K., Chen J., Li Y., Li Q., Song J., Yi Z., Li D., Zhang J. Hg2+-Triggered Cascade Strand Displacement Assisted CRISPR-Cas12a for Hg2+ Quantitative Detection Using a Portable Glucose Meter. Anal. Chim. Acta. 2023;1278:341756. doi: 10.1016/j.aca.2023.341756. PubMed DOI
Lee J.-H., Song D.-Y., Lim H.J., Kim D.-M. A Cell-Free Protein Synthesis Method for the Detection of Heavy Metal Ions Using a Personal Glucose Meter. Biotechnol. Bioproc. E. 2023;28:137–142. doi: 10.1007/s12257-022-0352-x. DOI
Hossain F., Balasuriya N., Hossain M.M., Serpe M.J. Orthophosphate Quantification in Water Utilizing an Enzymatic Reaction and a Commercial Glucometer Test Strip. Anal. Chem. 2022;94:2056–2062. doi: 10.1021/acs.analchem.1c04121. PubMed DOI
Qiu Y., Gu C., Li B., Shi H. Aptameric Detection of Quinine in Reclaimed Wastewater Using a Personal Glucose Meter. Anal. Methods. 2018;10:2931–2938. doi: 10.1039/C8AY00585K. DOI
Ma W., Liu M., Xie S., Liu B., Jiang L., Zhang X., Yuan X. CRISPR/Cas12a System Responsive DNA Hydrogel for Label-Free Detection of Non-Glucose Targets with a Portable Personal Glucose Meter. Anal. Chim. Acta. 2022;1231:340439. doi: 10.1016/j.aca.2022.340439. PubMed DOI
Chen S., Gan N., Zhang H., Hu F., Li T., Cui H., Cao Y., Jiang Q. A Portable and Antibody-Free Sandwich Assay for Determination of Chloramphenicol in Food Based on a Personal Glucose Meter. Anal. Bioanal. Chem. 2015;407:2499–2507. doi: 10.1007/s00216-015-8478-8. PubMed DOI
Tang W., Yang J., Wang F., Wang J., Li Z. Thiocholine-Triggered Reaction in Personal Glucose Meters for Portable Quantitative Detection of Organophosphorus Pesticide. Anal. Chim. Acta. 2019;1060:97–102. doi: 10.1016/j.aca.2019.01.051. PubMed DOI
Tang J., Huang Y., Liu H., Zhang C., Tang D. Novel Glucometer-Based Immunosensing Strategy Suitable for Complex Systems with Signal Amplification Using Surfactant-Responsive Cargo Release from Glucose-Encapsulated Liposome Nanocarriers. Biosens. Bioelectron. 2016;79:508–514. doi: 10.1016/j.bios.2015.12.097. PubMed DOI
Gu C., Long F., Zhou X., Shi H. Portable Detection of Ochratoxin A in Red Wine Based on a Structure-Switching Aptamer Using a Personal Glucometer. RSC Adv. 2016;6:29563–29569. doi: 10.1039/C5RA27880E. DOI
Zhang S., Luan Y., Xiong M., Zhang J., Lake R., Lu Y. DNAzyme Amplified Aptasensing Platform for Ochratoxin A Detection Using a Personal Glucose Meter. ACS Appl. Mater. Interfaces. 2021;13:9472–9481. doi: 10.1021/acsami.0c20417. PubMed DOI PMC
Shen M., Ni C., Yuan J., Zhou X. Phage-ELISA for Ultrasensitive Detection of Salmonella enteritidis. Analyst. 2025;150:567–575. doi: 10.1039/D4AN01121J. PubMed DOI
Zheng X., Gao S., Wu J., Hu X. Recent Advances in Aptamer-Based Biosensors for Detection of Pseudomonas aeruginosa. Front. Microbiol. 2020;11:605229. doi: 10.3389/fmicb.2020.605229. PubMed DOI PMC
Khatami S.H., Karami S., Siahkouhi H.R., Taheri-Anganeh M., Fathi J., Aghazadeh Ghadim M.B., Taghvimi S., Shabaninejad Z., Tondro G., Karami N., et al. Aptamer-Based Biosensors for Pseudomonas aeruginosa Detection. Mol. Cell. Probes. 2022;66:101865. doi: 10.1016/j.mcp.2022.101865. PubMed DOI
Xie Y., Xie G., Yuan J., Zhang J., Yang Y., Yao Y., Wu Y., Bai D., Chen K., Li B., et al. A Novel Fluorescence Biosensor Based on Double-Stranded DNA Branch Migration-Induced HCR and DNAzyme Feedback Circuit for Sensitive Detection of Pseudomonas aeruginosa (Clean Version) Anal. Chim. Acta. 2022;1232:340449. doi: 10.1016/j.aca.2022.340449. PubMed DOI
Li Y., Hu Y., Chen T., Chen Y., Li Y., Zhou H., Yang D. Advanced Detection and Sensing Strategies of Pseudomonas aeruginosa and Quorum Sensing Biomarkers: A Review. Talanta. 2022;240:123210. doi: 10.1016/j.talanta.2022.123210. PubMed DOI
Schmitz F.R.W., Cesca K., Valério A., de Oliveira D., Hotza D. Colorimetric Detection of Pseudomonas aeruginosa by Aptamer-Functionalized Gold Nanoparticles. Appl. Microbiol. Biotechnol. 2023;107:71–80. doi: 10.1007/s00253-022-12283-5. PubMed DOI
Yang S., Zhang F., Wang Z., Liang Q. A Graphene Oxide-Based Label-Free Electrochemical Aptasensor for the Detection of Alpha-Fetoprotein. Biosens. Bioelectron. 2018;112:186–192. doi: 10.1016/j.bios.2018.04.026. PubMed DOI
Lasserre P., Balansethupathy B., Vezza V.J., Butterworth A., Macdonald A., Blair E.O., McAteer L., Hannah S., Ward A.C., Hoskisson P.A., et al. SARS-CoV-2 Aptasensors Based on Electrochemical Impedance Spectroscopy and Low-Cost Gold Electrode Substrates. Anal. Chem. 2022;94:2126–2133. doi: 10.1021/acs.analchem.1c04456. PubMed DOI PMC
Xue J., Li Y., Liu J., Zhang Z., Yu R., Huang Y., Li C., Chen A., Qiu J. Highly Sensitive Electrochemical Aptasensor for SARS-CoV-2 Antigen Detection Based on Aptamer-Binding Induced Multiple Hairpin Assembly Signal Amplification. Talanta. 2022;248:123605. doi: 10.1016/j.talanta.2022.123605. PubMed DOI PMC
Brett C.M.A., Kresak S., Hianik T., Oliveira Brett A.M. Studies on Self-Assembled Alkanethiol Monolayers Formed at Applied Potential on Polycrystalline Gold Electrodes. Electroanalysis. 2003;15:557–565. doi: 10.1002/elan.200390069. DOI
Hamula C.L.A., Zhang H., Guan L.L., Li X.-F., Le X.C. Selection of Aptamers against Live Bacterial Cells. Anal. Chem. 2008;80:7812–7819. doi: 10.1021/ac801272s. PubMed DOI
Chen F., Zhou J., Luo F., Mohammed A.-B., Zhang X.-L. Aptamer from Whole-Bacterium SELEX as New Therapeutic Reagent against Virulent Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 2007;357:743–748. doi: 10.1016/j.bbrc.2007.04.007. PubMed DOI
Chang Y.-C., Yang C.-Y., Sun R.-L., Cheng Y.-F., Kao W.-C., Yang P.-C. Rapid Single Cell Detection of Staphylococcus aureus by Aptamer-Conjugated Gold Nanoparticles. Sci. Rep. 2013;3:1863. doi: 10.1038/srep01863. PubMed DOI PMC
Yoo S.M., Kim D.-K., Lee S.Y. Aptamer-Functionalized Localized Surface Plasmon Resonance Sensor for the Multiplexed Detection of Different Bacterial Species. Talanta. 2015;132:112–117. doi: 10.1016/j.talanta.2014.09.003. PubMed DOI
Wu W., Li M., Wang Y., Ouyang H., Wang L., Li C., Cao Y., Meng Q., Lu J. Aptasensors for Rapid Detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res. Lett. 2012;7:658. doi: 10.1186/1556-276X-7-658. PubMed DOI PMC
Rooijakkers S.H.M., van Kessel K.P.M., van Strijp J.A.G. Staphylococcal Innate Immune Evasion. Trends Microbiol. 2005;13:596–601. doi: 10.1016/j.tim.2005.10.002. PubMed DOI
Wan Y., Qi P., Zeng Y., Sun Y., Zhang D. Invertase-Mediated System for Simple and Rapid Detection of Pathogen. Sens. Actuators B Chem. 2016;233:454–458. doi: 10.1016/j.snb.2016.04.098. DOI
Yang Y., Wu T., Xu L.-P., Zhang X. Portable Detection of Staphylococcus aureus Using Personal Glucose Meter Based on Hybridization Chain Reaction Strategy. Talanta. 2021;226:122132. doi: 10.1016/j.talanta.2021.122132. PubMed DOI
Du Y., Xiu N. Exonuclease-III Assisted the Target Recycling Coupling with Hybridization Chain Reaction for Sensitive mecA Gene Analysis by Using PGM. Appl. Biochem. Biotechnol. 2024;196:6716–6725. doi: 10.1007/s12010-024-04862-1. PubMed DOI
Jurado-Martín I., Sainz-Mejías M., McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021;22:3128. doi: 10.3390/ijms22063128. PubMed DOI PMC
Sharma G., Rao S., Bansal A., Dang S., Gupta S., Gabrani R. Pseudomonas aeruginosa Biofilm: Potential Therapeutic Targets. Biologicals. 2014;42:1–7. doi: 10.1016/j.biologicals.2013.11.001. PubMed DOI
Xu X., Wang J., He Y., Wu X. Low-Speed Centrifugation Based Isolation and Personal Glucose Meter Assisted Synchronous Quantification of Pseudomonas aeruginosa in Nursing Home-Acquired Pneumonia. Anal. Biochem. 2023;665:115051. doi: 10.1016/j.ab.2023.115051. PubMed DOI
Wang Y., Cao J., Du P., Wang W., Hu P., Liu Y., Ma Y., Wang X., Abd El-Aty A.M. Portable Detection of Salmonella in Food of Animal Origin via Cas12a-RAA Combined with an LFS/PGM Dual-Signaling Readout Biosensor. Microchim. Acta. 2024;191:631. doi: 10.1007/s00604-024-06708-3. PubMed DOI
Kim H.Y., Park K.S., Park H.G. Glucose Oxidase-like Activity of Cerium Oxide Nanoparticles: Use for Personal Glucose Meter-Based Label-Free Target DNA Detection. Theranostics. 2020;10:4507–4514. doi: 10.7150/thno.41484. PubMed DOI PMC
Joo J., Kwon D., Shin H.H., Park K.-H., Cha H.J., Jeon S. A Facile and Sensitive Method for Detecting Pathogenic Bacteria Using Personal Glucose Meters. Sens. Actuators B Chem. 2013;188:1250–1254. doi: 10.1016/j.snb.2013.08.027. DOI
Huang H., Zhao G., Dou W. Portable and Quantitative Point-of-Care Monitoring of Escherichia coli O157:H7 Using a Personal Glucose Meter Based on Immunochromatographic Assay. Biosens. Bioelectron. 2018;107:266–271. doi: 10.1016/j.bios.2018.02.027. PubMed DOI
Bai X., Huang J., Li W., Song Y., Xiao F., Xu Q., Xu H. Portable Dual-Mode Biosensor Based on Smartphone and Glucometer for on-Site Sensitive Detection of Listeria monocytogenes. Sci. Total Environ. 2023;874:162450. doi: 10.1016/j.scitotenv.2023.162450. PubMed DOI
Dorozhko E.V., Solomonenko A.N., Erkovich A.V., Koltsova A.V., Korotkova E.I., Kolobova E.N., Semin V.O., Nikulin L.G., Mikhailova T.V., Kazachinskaya E.I., et al. Copper-Enhanced Electrochemical Immunosensor Based on Gold Nanoparticles for the Quality Control of Hepatitis A Virus Vaccines. Talanta. 2025;297:128579. doi: 10.1016/j.talanta.2025.128579. PubMed DOI
Taebi S., Keyhanfar M., Noorbakhsh A. A Novel Method for Sensitive, Low-Cost and Portable Detection of Hepatitis B Surface Antigen Using a Personal Glucose Meter. J. Immunol. Methods. 2018;458:26–32. doi: 10.1016/j.jim.2018.04.001. PubMed DOI
Shi H., Zheng J., Wang Y., Zhu S., Xiang Y., Zhu X., Li G. Point-of-Care Testing of Protein Biomarkers by Integrating a Personal Glucose Meter with a Concatenated DNA Amplifier. Sens. Actuators B Chem. 2020;322:128659. doi: 10.1016/j.snb.2020.128659. DOI
Ding H., Xu Y., Fang F., Wang H., Chen A. Functionalized Primer Initiated Signal Cycles and Personal Glucose Meter for Sensitive and Portable miRNA Analysis. BioTechniques. 2024;76:333–341. doi: 10.1080/07366205.2024.2348347. PubMed DOI
Chen J., Sun X., Wang Y., Gao Z., Zheng B. Portable Biosensor for Cardiac Troponin I Based on the Combination of a DNA Walking Machine and a Personal Glucose Meter. Sens. Actuators B Chem. 2023;385:133712. doi: 10.1016/j.snb.2023.133712. DOI
Jia Y., Sun F., Na N., Ouyang J. Detection of P53 DNA Using Commercially Available Personal Glucose Meters Based on Rolling Circle Amplification Coupled with Nicking Enzyme Signal Amplification. Anal. Chim. Acta. 2019;1060:64–70. doi: 10.1016/j.aca.2019.01.061. PubMed DOI
Li M., Zang W., Wang S., Lin Z., Liu S., Chen Y., Ruan X., Luo Y., Xing C., Lu C. DNAzyme Assisted Single Amplification for FEN1 Activity Detection Using a Personal Glucose Meter. Anal. Chim. Acta. 2025;1336:343495. doi: 10.1016/j.aca.2024.343495. PubMed DOI
Hu W., Su H., Zeng X., Duan X., Li Y., Li L. Exo-III Enzyme and DNAzyme-Assisted Dual Signal Recycles for Sensitive Analysis of Exosomes by Using Personal Glucose Meter. Appl. Biochem. Biotechnol. 2023;195:861–870. doi: 10.1007/s12010-022-04171-5. PubMed DOI
An Y., Jiang D., Zhang N., Jiang W. Cascade Primer Exchange Reaction-Based Amplification Strategy for Sensitive and Portable Detection of Amyloid β Oligomer Using Personal Glucose Meters. Anal. Chim. Acta. 2022;1232:340440. doi: 10.1016/j.aca.2022.340440. PubMed DOI
Yan Z., Shen X., Zhou B., Pan R., Zhang B., Zhao C., Ren L., Ming J. Precise Analysis of T4 Polynucleotide Kinase and Inhibition by Coupling Personal Glucose Meter with Split DNAzyme and Ligation-Triggered DNA Walker. Sens. Actuators B Chem. 2021;326:128831. doi: 10.1016/j.snb.2020.128831. DOI
Arevalo-Rodriguez I., Buitrago-Garcia D., Simancas-Racines D., Zambrano-Achig P., Campo R.D., Ciapponi A., Sued O., Martinez-García L., Rutjes A.W., Low N., et al. False-Negative Results of Initial RT-PCR Assays for COVID-19: A Systematic Review. PLoS ONE. 2020;15:e0242958. doi: 10.1371/journal.pone.0242958. PubMed DOI PMC
Tromberg B., Schwetz T., Pérez-Stable E., Hodes R., Woychik R., Bright R., Fleurence R., Collins F. Rapid Scaling Up of Covid-19 Diagnostic Testing in the United States—The NIH RADx Initiative. N. Engl. J. Med. 2020;383:1071–1077. doi: 10.1056/NEJMsr2022263. PubMed DOI PMC
Singh N.K., Ray P., Carlin A.F., Magallanes C., Morgan S.C., Laurent L.C., Aronoff-Spencer E.S., Hall D.A. Hitting the Diagnostic Sweet Spot: Point-of-Care SARS-CoV-2 Salivary Antigen Testing with an off-the-Shelf Glucometer. Biosens. Bioelectron. 2021;180:113111. doi: 10.1016/j.bios.2021.113111. PubMed DOI PMC
Li T., Pan R., Wen Y., Xu J., Zhang L., He S., Liang G. A Simple and Universal Nucleic Acid Assay Platform Based on Personal Glucose Meter Using SARS-CoV-2 N Gene as the Model. Biosensors. 2022;12:249. doi: 10.3390/bios12040249. PubMed DOI PMC
Shan Y., Zhang Y., Kang W., Wang B., Li J., Wu X., Wang S., Liu F. Quantitative and Selective DNA Detection with Portable Personal Glucose Meter Using Loop-Based DNA Competitive Hybridization Strategy. Sens. Actuators B Chem. 2019;282:197–203. doi: 10.1016/j.snb.2018.11.062. PubMed DOI
Dai Y., Wu Y., Liu G., Gooding J.J. CRISPR Mediated Biosensing Toward Understanding Cellular Biology and Point-of-Care Diagnosis. Angew. Chem. Int. Ed. 2020;59:20754–20766. doi: 10.1002/anie.202005398. PubMed DOI
Huang D., Shi Z., Qian J., Bi K., Fang M., Xu Z. A CRISPR-Cas12a-Derived Biosensor Enabling Portable Personal Glucose Meter Readout for Quantitative Detection of SARS-CoV-2. Biotechnol. Bioeng. 2021;118:1568–1577. doi: 10.1002/bit.27673. PubMed DOI
Park J., Han H., Jeung J.H., Jang H., Park C., Ahn J.K. CRISPR/Cas13a-Assisted AMP Generation for SARS-CoV-2 RNA Detection Using a Personal Glucose Meter. Biosens. Bioelectron. X. 2022;12:100283. doi: 10.1016/j.biosx.2022.100283. PubMed DOI PMC
Zhu X., Wang S., Xue Y., Wang X., Hu S., Liang T., Liu W. Coupling CRISPR-Cas and a Personal Glucose Meter with an Enzymatic Reporter for Portable Detection of Human Papillomavirus in Biological Samples. Theranostics. 2025;15:2870–2882. doi: 10.7150/thno.106490. PubMed DOI PMC
Jang S.H., Jeon H.W., Han H., Ahn J.K. FEN1-Assisted Cascade Enzymatic Reaction (FACER) for One-Step and Washing-Free Detection of Nucleic Acid Using Personal Glucose Meter. Talanta. 2025;297:128663. doi: 10.1016/j.talanta.2025.128663. PubMed DOI